
Diagrammes et
Σ-diagrammes 

Yves Lafont & Pierre Rannou
CNRS - Institut de Mathématiques de Luminy

Université de la Méditerranée (Aix-Marseille 2)

Catégories supérieures, polygraphes et homotopie
Université Paris Diderot

18 juin 2010



PROs

• les objets de C sont les entiers naturels ;

• si p et q sont des entiers naturels, alors p∗q = p+q.

Définition : Un PRO est une catégorie monoïdale stricte 
(C,∗) telle que :

Exemples :

• f : p → q est une application de {1,…,p} vers {1,…,q} ;

• idem, mais on suppose que f : p → q est croissante ;

• f : p → q est une application linéaire de Kp vers Kq  
(ou encore une matrice p × q à coefficients dans K).

Un morphisme de C est donc de la forme f : p → q.



Classification des PROs
• cas basique : + (union disjointe)

• cas classique : × (produit cartésien)

• cas linéaire : ⊕ (somme directe)

• cas quantique: ⊗ (produit tensoriel)

Classification of interpretations

Basic case (control flow): + (disjoint union)

f : p → q (p = {1, . . . ,p} = 1+ · · · + 1)

Classical case (data flow): × (Cartesian product)

f : Bp → B
q (B = {0,1} = 1+ 1, Bp = B× · · · × B)

Linear case: ⊕ (direct sum)

f : Z
p
2 → Z

q
2 (Z2 = {0,1}, Z

p
2 = Z2 ⊕ · · · ⊕ Z2)

Quantum case: ⊗ (tensor product)

f : B
⊗p → B

⊗q (B = C
2 = C ⊕ C, B

⊗p = B ⊗ · · ·⊗ B)

Classification of interpretations

Basic case (control flow): + (disjoint union)

f : p → q (p = {1, . . . ,p} = 1+ · · · + 1)

Classical case (data flow): × (Cartesian product)

f : Bp → B
q (B = {0,1} = 1+ 1, Bp = B× · · · × B)

Linear case: ⊕ (direct sum)

f : Z
p
2 → Z

q
2 (Z2 = {0,1}, Z

p
2 = Z2 ⊕ · · · ⊕ Z2)

Quantum case: ⊗ (tensor product)

f : B
⊗p → B

⊗q (B = C
2 = C ⊕ C, B

⊗p = B ⊗ · · ·⊗ B)

Classification of interpretations

Basic case (control flow): + (disjoint union)

f : p → q (p = {1, . . . ,p} = 1+ · · · + 1)

Classical case (data flow): × (Cartesian product)

f : Bp → B
q (B = {0,1} = 1+ 1, Bp = B× · · · × B)

Linear case: ⊕ (direct sum)

f : Z
p
2 → Z

q
2 (Z2 = {0,1}, Z

p
2 = Z2 ⊕ · · · ⊕ Z2)

Quantum case: ⊗ (tensor product)

f : B
⊗p → B

⊗q (B = C
2 = C ⊕ C, B

⊗p = B ⊗ · · ·⊗ B)

Classification of interpretations

Basic case (control flow): + (disjoint union)

f : p → q (p = {1, . . . ,p} = 1+ · · · + 1)

Classical case (data flow): × (Cartesian product)

f : Bp → B
q (B = {0,1} = 1+ 1, Bp = B× · · · × B)

Linear case: ⊕ (direct sum)

f : Z
p
2 → Z

q
2 (Z2 = {0,1}, Z

p
2 = Z2 ⊕ · · · ⊕ Z2)

Quantum case: ⊗ (tensor product)

f : B
⊗p → B

⊗q (B = C
2 = C ⊕ C, B

⊗p = B ⊗ · · ·⊗ B)

Le Tétragramme : + × ⊕ ⊗



Diagrammes

entrées/sorties :

composition séquentielle :

composition parallèle :

Towards an Algebraic Theory of Boolean Circuits

Yves Lafont∗

February 12, 2003

Abstract

Boolean circuits are used to represent programs on finite data. Reversible Boolean circuits and
quantum Boolean circuits have been introduced to modelize some physical aspects of computation.
Those notions are essential in complexity theory, but we claim that a deep mathematical theory is
needed to make progress in this area. For that purpose, the recent developments of knot theory is a
major source of inspiration.

Following the ideas of Burroni, we consider logical gates as generators for some algebraic structure
with two compositions, and we are interested in the relations satisfied by those generators. For that
purpose, we introduce canonical forms and rewriting systems. Up to now, we have mainly studied
the basic case and the linear case, but we hope that our methods can be used to get presentations
by generators and relations for the (reversible) classical case and for the (unitary) quantum case.

Keywords: boolean circuit; reversible gate; monoidal category; presentation by generators and relations;
canonical form; rewriting; symmetric group; alternating group; linear group; orthogonal group.

1 Introduction

We use diagrams to represent certain kinds of maps. If p and q are natural numbers, φ : p → q stands
for a diagram with p inputs and q outputs. It is pictured as follows:

· · ·
φ

q
︸︷︷︸

︷︸︸︷p

· · ·

Typically, such a diagram represents:

• a map from {1, . . . , p} to {1, . . . , q} (basic case);

• a map from Xp to Xq, where X is a given set (classical case);

• a K-linear map from Kp to Kq, where K is a given field (linear case);

• a K-linear map from
⊗pV to

⊗qV , where V is a given vector space over a field K, and
⊗nV

stands for the n-ary tensor product V ⊗ · · ·⊗ V (quantum case).

The basic case corresponds to control flow diagrams and the classical case to data flow diagrams.

Diagrams may be composed in two different ways. For any φ : p → q and ψ : q → r, we have a diagram
ψ ◦ φ : p → r, which corresponds to the usual composition of maps, and which is pictured as follows:

· · ·

· · ·

· · ·

φ

ψ

This vertical (or sequential) composition is associative, and we have an identity diagram idp : p → p for
each p, such that φ ◦ idp = φ = idq ◦ φ for any φ : p → q. This idp is pictured as follows:

· · ·

∗Université de la Méditerranée & Institut de Mathématiques de Luminy, UPR 9016 du CNRS, 163 avenue de Luminy,
case 930, 13288 Marseille Cedex 9, France. E-mail: lafont@iml.univ-mrs.fr

1

loi d’échange :

For any φ : p → q and φ′ : p′ → q′, we have a diagram φ | φ′ : p + p′ → q + q′ which is pictured as follows:

· · ·

· · ·
φ

· · ·
φ′

· · ·

If φ represents f and φ′ represents f ′, the interpretation g of φ | φ′ depends on the considered case:

• in the basic case, g is the disjoint union (or coproduct) f " f ′ defined by g(i) = f(i) for i = 1, . . . , p
and g(p + i) = q + f ′(i) for i = 1, . . . , p′;

• in the classical case, g is the cartesian product f × f ′ defined by g(x1, . . . , xp+p′ ) = (y1, . . . , yq+q′)
where (y1, . . . , yq) = f(x1, . . . , xp) and (yq+1, . . . , yq+q′) = f ′(xp+1, . . . , xp+p′);

• in the linear case, g is the direct sum f ⊕ f ′ defined by g(u ⊕ u′) = f(u) ⊕ f ′(u′) for u ∈ Kp and
u′ ∈ Kp′

. Note that g coincides with the cartesian product f × f ′;

• in the quantum case, g is the tensor product f ⊗f ′ defined by g(u⊗u′) = f(u)⊗f ′(u′) for u ∈
⊗pV

and u′ ∈
⊗p′

V .

This horizontal (or parallel) composition is associative, and the void diagram id0 : 0 → 0 is such that
φ | id0 = φ = id0 |φ for any φ : p → q. Furthermore, we have idp | idp′ = idp+p′ , and the two compositions
are compatible in the following sense: for any φ : p → q, ψ : q → r, φ′ : p′ → q′, and ψ′ : q′ → r′, we have
(ψ ◦ φ) | (ψ′ ◦ φ′) = (ψ | ψ′) ◦ (φ | φ′). This diagram is pictured as follows:

· · ·

· · ·

· · ·

φ

ψ

· · ·
φ′

· · ·

· · ·
ψ′

In particular, for any φ : p → q and φ′ : p′ → q′, we get (φ | idq′) ◦ (idp | φ′) = φ | φ′ = (idq | φ′) ◦ (φ | idp′).
This corresponds to the following picture:

· · ·
φ

· · ·
φ′· · ·

· · ·

φ φ′

· · ·

· · · · · ·

· · ·

· · ·
φ′

· · ·
φ

· · ·

· · ·

= =

All this can be summarized as follows: the diagrams are the morphisms of a (strict) monoidal category
whose objects are natural numbers (with addition). See [Mac71] for the notion of monoidal category.
Moreover, this monoidal category is freely generated by a given list of atomic diagrams called cells. In
other words, all diagrams are built from identities and cells using vertical and horizontal composition,
and an equality between two diagrams holds only if it follows from the above properties.

An elementary diagram is a diagram ξ of the form idi | α | idj where α is a cell:

· · ·
α
· · ·

· · · · · ·

It is easy to see that any diagram φ is a vertical composition of elementary diagrams ξ1 ◦ · · ·◦ ξn, but this
decomposition is not unique. In fact, two decompositions define the same diagram if and only if they are
equivalent modulo the following commutation rule:

· · · · · ·· · ·

· · ·
α

· · · · · ·
α′

· · ·

· · ·
α

· · ·
α′· · ·

· · ·

· · ·

· · ·· · · =

In particular, all decompositions of φ have the same length. This common length is called the size of φ:
it is the total number of cells in φ.

Diagrams may be interpreted in any monoidal category. We have already seen four examples:

• sets with disjoint union (basic case) or with cartesian product (classical case);

• vector spaces with direct sum (linear case) or with tensor product (quantum case).

We may also consider monoidal subcategories obtained by restricting the class of objects or the class of
morphisms. For instance, we may limit our study to finite sets or to finite dimensional spaces, to bijective,
surjective, or injective maps, and whenever it makes sense, to monotone, orthogonal, or unitary maps. In
this paper, we give presentations by generators and relations for some of those monoidal categories.

2

Towards an Algebraic Theory of Boolean Circuits

Yves Lafont∗

February 12, 2003

Abstract

Boolean circuits are used to represent programs on finite data. Reversible Boolean circuits and
quantum Boolean circuits have been introduced to modelize some physical aspects of computation.
Those notions are essential in complexity theory, but we claim that a deep mathematical theory is
needed to make progress in this area. For that purpose, the recent developments of knot theory is a
major source of inspiration.

Following the ideas of Burroni, we consider logical gates as generators for some algebraic structure
with two compositions, and we are interested in the relations satisfied by those generators. For that
purpose, we introduce canonical forms and rewriting systems. Up to now, we have mainly studied
the basic case and the linear case, but we hope that our methods can be used to get presentations
by generators and relations for the (reversible) classical case and for the (unitary) quantum case.

Keywords: boolean circuit; reversible gate; monoidal category; presentation by generators and relations;
canonical form; rewriting; symmetric group; alternating group; linear group; orthogonal group.

1 Introduction

We use diagrams to represent certain kinds of maps. If p and q are natural numbers, φ : p → q stands
for a diagram with p inputs and q outputs. It is pictured as follows:

· · ·
φ

q
︸︷︷︸

︷︸︸︷p

· · ·

Typically, such a diagram represents:

• a map from {1, . . . , p} to {1, . . . , q} (basic case);

• a map from Xp to Xq, where X is a given set (classical case);

• a K-linear map from Kp to Kq, where K is a given field (linear case);

• a K-linear map from
⊗pV to

⊗qV , where V is a given vector space over a field K, and
⊗nV

stands for the n-ary tensor product V ⊗ · · ·⊗ V (quantum case).

The basic case corresponds to control flow diagrams and the classical case to data flow diagrams.

Diagrams may be composed in two different ways. For any φ : p → q and ψ : q → r, we have a diagram
ψ ◦ φ : p → r, which corresponds to the usual composition of maps, and which is pictured as follows:

· · ·

· · ·

· · ·

φ

ψ

This vertical (or sequential) composition is associative, and we have an identity diagram idp : p → p for
each p, such that φ ◦ idp = φ = idq ◦ φ for any φ : p → q. This idp is pictured as follows:

· · ·

∗Université de la Méditerranée & Institut de Mathématiques de Luminy, UPR 9016 du CNRS, 163 avenue de Luminy,
case 930, 13288 Marseille Cedex 9, France. E-mail: lafont@iml.univ-mrs.fr

1

Towards an Algebraic Theory of Boolean Circuits

Yves Lafont∗

February 12, 2003

Abstract

Boolean circuits are used to represent programs on finite data. Reversible Boolean circuits and
quantum Boolean circuits have been introduced to modelize some physical aspects of computation.
Those notions are essential in complexity theory, but we claim that a deep mathematical theory is
needed to make progress in this area. For that purpose, the recent developments of knot theory is a
major source of inspiration.

Following the ideas of Burroni, we consider logical gates as generators for some algebraic structure
with two compositions, and we are interested in the relations satisfied by those generators. For that
purpose, we introduce canonical forms and rewriting systems. Up to now, we have mainly studied
the basic case and the linear case, but we hope that our methods can be used to get presentations
by generators and relations for the (reversible) classical case and for the (unitary) quantum case.

Keywords: boolean circuit; reversible gate; monoidal category; presentation by generators and relations;
canonical form; rewriting; symmetric group; alternating group; linear group; orthogonal group.

1 Introduction

We use diagrams to represent certain kinds of maps. If p and q are natural numbers, φ : p → q stands
for a diagram with p inputs and q outputs. It is pictured as follows:

· · ·
φ

q
︸︷︷︸

︷︸︸︷p

· · ·

Typically, such a diagram represents:

• a map from {1, . . . , p} to {1, . . . , q} (basic case);

• a map from Xp to Xq, where X is a given set (classical case);

• a K-linear map from Kp to Kq, where K is a given field (linear case);

• a K-linear map from
⊗pV to

⊗qV , where V is a given vector space over a field K, and
⊗nV

stands for the n-ary tensor product V ⊗ · · ·⊗ V (quantum case).

The basic case corresponds to control flow diagrams and the classical case to data flow diagrams.

Diagrams may be composed in two different ways. For any φ : p → q and ψ : q → r, we have a diagram
ψ ◦ φ : p → r, which corresponds to the usual composition of maps, and which is pictured as follows:

· · ·

· · ·

· · ·

φ

ψ

This vertical (or sequential) composition is associative, and we have an identity diagram idp : p → p for
each p, such that φ ◦ idp = φ = idq ◦ φ for any φ : p → q. This idp is pictured as follows:

· · ·

∗Université de la Méditerranée & Institut de Mathématiques de Luminy, UPR 9016 du CNRS, 163 avenue de Luminy,
case 930, 13288 Marseille Cedex 9, France. E-mail: lafont@iml.univ-mrs.fr

1

For any φ : p → q and φ′ : p′ → q′, we have a diagram φ | φ′ : p + p′ → q + q′ which is pictured as follows:

· · ·

· · ·
φ

· · ·
φ′

· · ·

If φ represents f and φ′ represents f ′, the interpretation g of φ | φ′ depends on the considered case:

• in the basic case, g is the disjoint union (or coproduct) f " f ′ defined by g(i) = f(i) for i = 1, . . . , p
and g(p + i) = q + f ′(i) for i = 1, . . . , p′;

• in the classical case, g is the cartesian product f × f ′ defined by g(x1, . . . , xp+p′ ) = (y1, . . . , yq+q′)
where (y1, . . . , yq) = f(x1, . . . , xp) and (yq+1, . . . , yq+q′) = f ′(xp+1, . . . , xp+p′);

• in the linear case, g is the direct sum f ⊕ f ′ defined by g(u ⊕ u′) = f(u) ⊕ f ′(u′) for u ∈ Kp and
u′ ∈ Kp′

. Note that g coincides with the cartesian product f × f ′;

• in the quantum case, g is the tensor product f ⊗f ′ defined by g(u⊗u′) = f(u)⊗f ′(u′) for u ∈
⊗pV

and u′ ∈
⊗p′

V .

This horizontal (or parallel) composition is associative, and the void diagram id0 : 0 → 0 is such that
φ | id0 = φ = id0 |φ for any φ : p → q. Furthermore, we have idp | idp′ = idp+p′ , and the two compositions
are compatible in the following sense: for any φ : p → q, ψ : q → r, φ′ : p′ → q′, and ψ′ : q′ → r′, we have
(ψ ◦ φ) | (ψ′ ◦ φ′) = (ψ | ψ′) ◦ (φ | φ′). This diagram is pictured as follows:

· · ·

· · ·

· · ·

φ

ψ

· · ·
φ′

· · ·

· · ·
ψ′

In particular, for any φ : p → q and φ′ : p′ → q′, we get (φ | idq′) ◦ (idp | φ′) = φ | φ′ = (idq | φ′) ◦ (φ | idp′).
This corresponds to the following picture:

· · ·
φ

· · ·
φ′· · ·

· · ·

φ φ′

· · ·

· · · · · ·

· · ·

· · ·
φ′

· · ·
φ

· · ·

· · ·

= =

All this can be summarized as follows: the diagrams are the morphisms of a (strict) monoidal category
whose objects are natural numbers (with addition). See [Mac71] for the notion of monoidal category.
Moreover, this monoidal category is freely generated by a given list of atomic diagrams called cells. In
other words, all diagrams are built from identities and cells using vertical and horizontal composition,
and an equality between two diagrams holds only if it follows from the above properties.

An elementary diagram is a diagram ξ of the form idi | α | idj where α is a cell:

· · ·
α
· · ·

· · · · · ·

It is easy to see that any diagram φ is a vertical composition of elementary diagrams ξ1 ◦ · · ·◦ ξn, but this
decomposition is not unique. In fact, two decompositions define the same diagram if and only if they are
equivalent modulo the following commutation rule:

· · · · · ·· · ·

· · ·
α

· · · · · ·
α′

· · ·

· · ·
α

· · ·
α′· · ·

· · ·

· · ·

· · ·· · · =

In particular, all decompositions of φ have the same length. This common length is called the size of φ:
it is the total number of cells in φ.

Diagrams may be interpreted in any monoidal category. We have already seen four examples:

• sets with disjoint union (basic case) or with cartesian product (classical case);

• vector spaces with direct sum (linear case) or with tensor product (quantum case).

We may also consider monoidal subcategories obtained by restricting the class of objects or the class of
morphisms. For instance, we may limit our study to finite sets or to finite dimensional spaces, to bijective,
surjective, or injective maps, and whenever it makes sense, to monotone, orthogonal, or unitary maps. In
this paper, we give presentations by generators and relations for some of those monoidal categories.

2

For any φ : p → q and φ′ : p′ → q′, we have a diagram φ | φ′ : p + p′ → q + q′ which is pictured as follows:

· · ·

· · ·
φ

· · ·
φ′

· · ·

If φ represents f and φ′ represents f ′, the interpretation g of φ | φ′ depends on the considered case:

• in the basic case, g is the disjoint union (or coproduct) f " f ′ defined by g(i) = f(i) for i = 1, . . . , p
and g(p + i) = q + f ′(i) for i = 1, . . . , p′;

• in the classical case, g is the cartesian product f × f ′ defined by g(x1, . . . , xp+p′ ) = (y1, . . . , yq+q′)
where (y1, . . . , yq) = f(x1, . . . , xp) and (yq+1, . . . , yq+q′) = f ′(xp+1, . . . , xp+p′);

• in the linear case, g is the direct sum f ⊕ f ′ defined by g(u ⊕ u′) = f(u) ⊕ f ′(u′) for u ∈ Kp and
u′ ∈ Kp′

. Note that g coincides with the cartesian product f × f ′;

• in the quantum case, g is the tensor product f ⊗f ′ defined by g(u⊗u′) = f(u)⊗f ′(u′) for u ∈
⊗pV

and u′ ∈
⊗p′

V .

This horizontal (or parallel) composition is associative, and the void diagram id0 : 0 → 0 is such that
φ | id0 = φ = id0 |φ for any φ : p → q. Furthermore, we have idp | idp′ = idp+p′ , and the two compositions
are compatible in the following sense: for any φ : p → q, ψ : q → r, φ′ : p′ → q′, and ψ′ : q′ → r′, we have
(ψ ◦ φ) | (ψ′ ◦ φ′) = (ψ | ψ′) ◦ (φ | φ′). This diagram is pictured as follows:

· · ·

· · ·

· · ·

φ

ψ

· · ·
φ′

· · ·

· · ·
ψ′

In particular, for any φ : p → q and φ′ : p′ → q′, we get (φ | idq′) ◦ (idp | φ′) = φ | φ′ = (idq | φ′) ◦ (φ | idp′).
This corresponds to the following picture:

· · ·
φ

· · ·
φ′· · ·

· · ·

φ φ′

· · ·

· · · · · ·

· · ·

· · ·
φ′

· · ·
φ

· · ·

· · ·

= =

All this can be summarized as follows: the diagrams are the morphisms of a (strict) monoidal category
whose objects are natural numbers (with addition). See [Mac71] for the notion of monoidal category.
Moreover, this monoidal category is freely generated by a given list of atomic diagrams called cells. In
other words, all diagrams are built from identities and cells using vertical and horizontal composition,
and an equality between two diagrams holds only if it follows from the above properties.

An elementary diagram is a diagram ξ of the form idi | α | idj where α is a cell:

· · ·
α
· · ·

· · · · · ·

It is easy to see that any diagram φ is a vertical composition of elementary diagrams ξ1 ◦ · · ·◦ ξn, but this
decomposition is not unique. In fact, two decompositions define the same diagram if and only if they are
equivalent modulo the following commutation rule:

· · · · · ·· · ·

· · ·
α

· · · · · ·
α′

· · ·

· · ·
α

· · ·
α′· · ·

· · ·

· · ·

· · ·· · · =

In particular, all decompositions of φ have the same length. This common length is called the size of φ:
it is the total number of cells in φ.

Diagrams may be interpreted in any monoidal category. We have already seen four examples:

• sets with disjoint union (basic case) or with cartesian product (classical case);

• vector spaces with direct sum (linear case) or with tensor product (quantum case).

We may also consider monoidal subcategories obtained by restricting the class of objects or the class of
morphisms. For instance, we may limit our study to finite sets or to finite dimensional spaces, to bijective,
surjective, or injective maps, and whenever it makes sense, to monotone, orthogonal, or unitary maps. In
this paper, we give presentations by generators and relations for some of those monoidal categories.

2

Remarque : Ce sont les morphismes du PRO libre.



Exemple : le PRO     des   
permutations finies

générateur :

Example 1: S (finite permutations)

Generator:

Relations:

==

Theorem:

! Any finite permutation is a product of transpositions:

· · ·· · ·

! Two diagrams define the same permutation if and only if

they are equivalent modulo the above relations.

relations :

Example 1: S (finite permutations)

Generator:

Relations:

==

Theorem:

! Any finite permutation is a product of transpositions:

· · ·· · ·

! Two diagrams define the same permutation if and only if

they are equivalent modulo the above relations.

Example 1: S (finite permutations)

Generator:

Relations:

==

Theorem:

! Any finite permutation is a product of transpositions:

· · ·· · ·

! Two diagrams define the same permutation if and only if

they are equivalent modulo the above relations.

Théorème : Cette présentation par générateurs et 
relations définit le PRO des permutations finies.

2 YVES LAFONT

In order to define a PRO, since objects are already known, it suffices to give the
set C(p, q) of morphisms f : p → q for all p, q ∈ N, together with:

– a sequential composition g ◦ f : p → r for any f : p → q and g : q → r;
– a parallel composition f ∗ f ′ : p + p′ → q + q′ for any f : p → q and f ′ : p′ → q′;
– an identity idp : p → p for all p ∈ N.

This terminology will be explained in the next section.

Of course, those two compositions must be associative, with units:

– (h ◦ g) ◦ f = h ◦ (g ◦ f) for any f : p → q, g : q → r, and h : r → s;
– (f ∗ f ′) ∗ f ′′ = f ∗ (f ′ ∗ f ′′) for any f : p → q, f ′ : p′ → q′, and f ′′ : p′′ → q′′;
– f ◦ idp = f = idq ◦ f and f ∗ id0 = f = id0 ∗ f for any f : p → q.

But they must also satisfy the law of interchange:

– (g ◦ f) ∗ (g′ ◦ f ′) = (g ∗ g′) ◦ (f ∗ f ′) for any f : p → q, g : q → r, f ′ : p′ → q′,
and g′ : q′ → r′;

– idp ∗ idq = idp+q for all p, q ∈ N.

Here are typical examples:

– the PRO F, where a morphism f : p → q is a map from {1, . . . , p} to {1, . . . , q};
– the PRO M ⊂ F, where a morphism f : p → q is a monotone map from

{1, . . . , p} to {1, . . . , q};
– the PRO L(K), where a morphism f : p → q is a K-linear map from Kp to Kq

(or a q × p matrix).

In the third case, K stands for any commutative field. In all cases :

– ◦ is composition of maps (or product of matrices);
– ∗ is disjoint union (for F), ordered sum (for M), or direct sum (for L(K)).

If we remove the object 0 from the PRO M, then we get the simplicial category ∆.

Definition 2. — A PRO C is reversible if:

– all C(p, p) are groups;
– C(p, q) = ∅ for p (= q.

In order to define such a PRO, it suffices to give a group Cp = C(p, p) for all p,
together with a parallel composition f ∗g ∈ Cp+q defined for any f ∈ Cp and g ∈ Cq.
Here are typical examples:

– the PRO S ⊂ F, where Sp is the p-th symmetric group;
– the PRO B, where Bp is the p-th braid group;
– the PRO GL(K) ⊂ L(K), where GLp(K) is the p-th linear group over K;
– the PRO O ⊂ GL(R), where Op ⊂ GLp(R) is the p-th orthogonal group.

Note that a reversible PRO is a groupoid, but the condition C(p, q) = ∅ for p (= q is
not necessary to get a groupoid.

Définition : Un PROP est un PRO qui contient    .

2 YVES LAFONT

In order to define a PRO, since objects are already known, it suffices to give the
set C(p, q) of morphisms f : p → q for all p, q ∈ N, together with:

– a sequential composition g ◦ f : p → r for any f : p → q and g : q → r;
– a parallel composition f ∗ f ′ : p + p′ → q + q′ for any f : p → q and f ′ : p′ → q′;
– an identity idp : p → p for all p ∈ N.

This terminology will be explained in the next section.

Of course, those two compositions must be associative, with units:

– (h ◦ g) ◦ f = h ◦ (g ◦ f) for any f : p → q, g : q → r, and h : r → s;
– (f ∗ f ′) ∗ f ′′ = f ∗ (f ′ ∗ f ′′) for any f : p → q, f ′ : p′ → q′, and f ′′ : p′′ → q′′;
– f ◦ idp = f = idq ◦ f and f ∗ id0 = f = id0 ∗ f for any f : p → q.

But they must also satisfy the law of interchange:

– (g ◦ f) ∗ (g′ ◦ f ′) = (g ∗ g′) ◦ (f ∗ f ′) for any f : p → q, g : q → r, f ′ : p′ → q′,
and g′ : q′ → r′;

– idp ∗ idq = idp+q for all p, q ∈ N.

Here are typical examples:

– the PRO F, where a morphism f : p → q is a map from {1, . . . , p} to {1, . . . , q};
– the PRO M ⊂ F, where a morphism f : p → q is a monotone map from

{1, . . . , p} to {1, . . . , q};
– the PRO L(K), where a morphism f : p → q is a K-linear map from Kp to Kq

(or a q × p matrix).

In the third case, K stands for any commutative field. In all cases :

– ◦ is composition of maps (or product of matrices);
– ∗ is disjoint union (for F), ordered sum (for M), or direct sum (for L(K)).

If we remove the object 0 from the PRO M, then we get the simplicial category ∆.

Definition 2. — A PRO C is reversible if:

– all C(p, p) are groups;
– C(p, q) = ∅ for p (= q.

In order to define such a PRO, it suffices to give a group Cp = C(p, p) for all p,
together with a parallel composition f ∗g ∈ Cp+q defined for any f ∈ Cp and g ∈ Cq.
Here are typical examples:

– the PRO S ⊂ F, where Sp is the p-th symmetric group;
– the PRO B, where Bp is the p-th braid group;
– the PRO GL(K) ⊂ L(K), where GLp(K) is the p-th linear group over K;
– the PRO O ⊂ GL(R), where Op ⊂ GLp(R) is the p-th orthogonal group.

Note that a reversible PRO is a groupoid, but the condition C(p, q) = ∅ for p (= q is
not necessary to get a groupoid.



Exemple : le PRO    des
applications finies

générateurs :

Example 1: S (finite permutations)

Generator:

Relations:

==

Theorem:

! Any finite permutation is a product of transpositions:

· · ·· · ·

! Two diagrams define the same permutation if and only if

they are equivalent modulo the above relations.

relations :

Example 1: S (finite permutations)

Generator:

Relations:

==

Theorem:

! Any finite permutation is a product of transpositions:

· · ·· · ·

! Two diagrams define the same permutation if and only if

they are equivalent modulo the above relations.

Example 1: S (finite permutations)

Generator:

Relations:

==

Theorem:

! Any finite permutation is a product of transpositions:

· · ·· · ·

! Two diagrams define the same permutation if and only if

they are equivalent modulo the above relations.

Example 2: F (finite maps)

Generators:

Relations:

= =

= =

= = =

Example 2: F (finite maps)

Generators:

Relations:

= =

= =

= = =

Example 2: F (finite maps)

Generators:

Relations:

= =

= =

= = =

Example 2: F (finite maps)

Generators:

Relations:

= =

= =

= = =

Example 2: F (finite maps)

Generators:

Relations:

= =

= =

= = =

Example 2: F (finite maps)

Generators:

Relations:

= =

= =

= = =

Example 2: F (finite maps)

Generators:

Relations:

= =

= =

= = =

6 YVES LAFONT

Note that the third family of relations does not come from the relations for the
PRO S, but from the commutation laws.

In the PRO M, we have two morphisms µ : 2 → 1 and η : 0 → 1, which are
pictured as follows:

It is easy to see that µ and η generate M, and they satisfy the following three relations:

µ ◦ (µ ∗ id1) = µ ◦ (id1 ∗ µ), µ ◦ (η ∗ id1) = id1, µ ◦ (id1 ∗ η) = id1.

Those relations are pictured as follows:

== =

Theorem 2. — The generators µ : 2 → 1 and η : 0 → 1 together with the above three
relations form a presentation of the PRO M.

It is possible to extract an infinite presentation of the simplicial category ∆ from
this finite presentation of the PRO M.

Since F contains S and M, we get morphisms τ : 2 → 2, µ : 2 → 1, η : 0 → 1 in F,
which are pictured as follows:

Again, it is easy to see that τ , µ and η generate F, and they satisfy the following
extra relations:

τ ◦ (µ ∗ id1) = (id1 ∗ µ) ◦ (τ ∗ id1) ◦ (id1 ∗ τ), τ ◦ (η ∗ id1) = id1 ∗ η, µ ◦ τ = µ.

The relation µ ◦ (id1 ∗ η) = id1 becomes superfluous. Hence, we get seven relations,
which are pictured as follows:

= = = =

= = =

Theorem 3. — The generators τ : 2 → 2, µ : 2 → 1, and η : 0 → 1 together with the
above seven relations form a presentation of the PRO F.

This crucial result was first stated and proved in [Bu93], where a presentation of
a PRO is seen as a 3-polygraph. Note that this presentation is minimal: See [Ma97].



Exemple : le PRO dual   * 

générateurs :

relations :

Example 3: Fop (theory of structural gates)

Generators:

Relations:

==

=

= = =

=

Example 3: Fop (theory of structural gates)

Generators:

Relations:

==

=

= = =

=

6 YVES LAFONT

Note that the third family of relations does not come from the relations for the
PRO S, but from the commutation laws.

In the PRO M, we have two morphisms µ : 2 → 1 and η : 0 → 1, which are
pictured as follows:

It is easy to see that µ and η generate M, and they satisfy the following three relations:

µ ◦ (µ ∗ id1) = µ ◦ (id1 ∗ µ), µ ◦ (η ∗ id1) = id1, µ ◦ (id1 ∗ η) = id1.

Those relations are pictured as follows:

== =

Theorem 2. — The generators µ : 2 → 1 and η : 0 → 1 together with the above three
relations form a presentation of the PRO M.

It is possible to extract an infinite presentation of the simplicial category ∆ from
this finite presentation of the PRO M.

Since F contains S and M, we get morphisms τ : 2 → 2, µ : 2 → 1, η : 0 → 1 in F,
which are pictured as follows:

Again, it is easy to see that τ , µ and η generate F, and they satisfy the following
extra relations:

τ ◦ (µ ∗ id1) = (id1 ∗ µ) ◦ (τ ∗ id1) ◦ (id1 ∗ τ), τ ◦ (η ∗ id1) = id1 ∗ η, µ ◦ τ = µ.

The relation µ ◦ (id1 ∗ η) = id1 becomes superfluous. Hence, we get seven relations,
which are pictured as follows:

= = = =

= = =

Theorem 3. — The generators τ : 2 → 2, µ : 2 → 1, and η : 0 → 1 together with the
above seven relations form a presentation of the PRO F.

This crucial result was first stated and proved in [Bu93], where a presentation of
a PRO is seen as a 3-polygraph. Note that this presentation is minimal: See [Ma97].



Termes ou diagrammes?

• Une théorie équationelle finie (termes) donne une 
présentation finie (diagrammes) [Burroni 91].

• Un système de réécriture convergent fini (termes) 
qui est linéaire à gauche donne une présentation 
convergente finie (diagrammes) [Lafont 95].

Le cas non linéaire est plus délicat (pics critiques).



Exemple : le PRO L(ℤ2) des
applications linéaires modulo 2
générateurs :

relations :

Example 4: L(Z2) (linear boolean maps)
Generators:

y

x+y

x y

y x

x

0

x

x x

x

Reversible gates:

x+y y x+y x

x y x y

y x+yx x+y

x y x y

Decomposition:

=

==

=

Example 4: L(Z2) (linear boolean maps)
Generators:

y

x+y

x y

y x

x

0

x

x x

x

Reversible gates:

x+y y x+y x

x y x y

y x+yx x+y

x y x y

Decomposition:

=

==

=

Example 4: L(Z2) (linear boolean maps)
Generators:

y

x+y

x y

y x

x

0

x

x x

x

Reversible gates:

x+y y x+y x

x y x y

y x+yx x+y

x y x y

Decomposition:

=

==

=

Example 4: L(Z2) (linear boolean maps)
Generators:

y

x+y

x y

y x

x

0

x

x x

x

Reversible gates:

x+y y x+y x

x y x y

y x+yx x+y

x y x y

Decomposition:

=

==

=

Example 4: L(Z2) (linear boolean maps)
Generators:

y

x+y

x y

y x

x

0

x

x x

x

Reversible gates:

x+y y x+y x

x y x y

y x+yx x+y

x y x y

Decomposition:

=

==

=

conjugatetranspose

transpose
conjugate conjugate

transpose
conjugate conjugate

Figure 12: Symmetries of the generators for L(Z2)

==

= =

= =

===

= ==

= = =

=

=

Figure 13: Relations for L(Z2)

inversetranspose

conjugate

conjugate

transpose
inverse inverse

conjugate

inverse
transpose transpose

Figure 14: Symmetries of the generators for GL(Z2)

11



Exemple : le PRO GL(ℤ2) des
permutations linéaires modulo 2
générateurs :

relations :

Example 4: L(Z2) (linear boolean maps)
Generators:

y

x+y

x y

y x

x

0

x

x x

x

Reversible gates:

x+y y x+y x

x y x y

y x+yx x+y

x y x y

Decomposition:

=

==

=
Example 1: S (finite permutations)

Generator:

Relations:

==

Theorem:

! Any finite permutation is a product of transpositions:

· · ·· · ·

! Two diagrams define the same permutation if and only if

they are equivalent modulo the above relations.

== =

= = =

Figure 15: Relations for GL(Z2)

0
0
1
1

1
0
0
0

1
1
0
1

1
0

0
1

0
0
1
1

1
0

0
1

1
1
0
1

1
0
0
0

1 1 0 0
1 1 1 1

0 1 0 1
1 0 0 0

1 1 1 1

0 1 0 1

1 0 0 0
0 1 0 0

1 1 1 1
1 1 0 0
0 1 0 1
1 0 0 0

1
1
1

1
0
0

1
0
1

1
1
1

1
0
1

1
0
0

1 0 1
0 1 0
1 0 0

1 0 1
1 0 0
0 1 0

0 1
1 0

1 0
0 1

0 1 0

1 0 0
0 0 1

0 1 0 1

1 0 0 0
0 1 1 1
0 1 0 0

Figure 16: Computing the first canonical form of a matrix in GL(Z2)

0 1 1 1
1 0 0 1
1 0 0 0
0 0 1 0

0 1 1 1

0 0 1 0
0 0 0 1
1 0 0 0

0 0 1 0
0 0 0 1
0 1 1 1
1 0 0 00

1
0
1

0 1 1 1
0 0 1 0
1 0 0 1
1 0 1 0

0

1

0
1

0 1 1 1

1 0 1 0

1 0 0 1
0 0 1 0

0

1

0
0

0 1 1 1
1 0 0 1
1 0 1 0
1 0 0 0

00 1
1 0 0

1 00 1 00

1 0 0
00 1

1
1
1

1 1 1
00 1
1 00

0

1
1

1 00

00 1
1 1 0

0

1
0

00 1
1 00

1 0 0

1 0
0 1

0
11 0

0 1

Figure 17: Computing the second canonical form of a matrix in GL(Z2)

14



Σ-diagrammes
Définition : Un Σ-diagramme Φ : p→q est une 

combinaison linéaire ∑ λi φi de diagrammes φi : p→q.

Remarques :

• Les coefficients λi sont dans ℤ, ℚ, ℝ, ou ℂ, …

• Ces Σ-diagrammes forment un PRO.

• On les interprète dans le cas quantique (opérades).

Analogies :

• diagrammes de Feynman ;

• réseaux d’interaction différentiels.



Références
• Albert Burroni, Higher dimensional word 

problems (TCS, 1993)

• Yves Lafont, Towards an algebraic theory of 
Boolean circuits (JPAA, 2003)

• Yves Guiraud, Termination Orders for        
3-Dimensional Rewriting (JPAA, 2006)

•  Yves Lafont & Pierre Rannou, Diagram 
rewriting for orthogonal matrices (RTA 2008) 

• Yves Lafont, Diagram rewriting and operads 
(SMF, à paraître)

• Pierre Rannou, Properties of co-operations: 
diagrammatic proofs (soumis à publication)


