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Abstract. — We give a survey of a diagrammatic syntax for PROs and PROPs,
which are related to the theory of operads and bialgebras. Using diagram rewriting,
we obtain presentations of PROs by generators and relations. In some cases, we even
get convergent rewrite systems.

Résumé (Réécriture de diagrammes et opérades). — Nous donnons un aperçu
de la syntaxe diagrammatique pour les PROs et les PROPs, qui sont liés à la théorie
des opérades et des bigèbres. En utilisant la réécriture de diagrammes, on obtient des
présentations de PROs par générateurs et relations. Dans certains cas, on obtient
même des systèmes de réécriture convergents.
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Except for Sections 4 and 7, most of the material presented in this paper comes

from [Laf03], which was inspired by [Bur93].

1. PROs and PROPs

Definition 1. — A PRO (or product category) is a strict monoidal category, that is

a (small) category C equipped with some associative functor ∗ : C × C → C and a

unit object, such that the set of objects of C is N, and p ∗ q = p+ q for all p, q ∈ N.

In particular, the unit object is 0.
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In order to define a PRO, since objects are already known, it suffices to give the

set C(p, q) of morphisms f : p→ q for all p, q ∈ N, together with:

– a sequential composition g ◦ f : p→ r for any f : p→ q and g : q → r;

– a parallel composition f ∗ f ′ : p+ p′ → q+ q′ for any f : p→ q and f ′ : p′ → q′;

– an identity idp : p→ p for all p ∈ N.

This terminology will be clear in the next section. Of course, those two compositions

must be associative, with units:

– (h ◦ g) ◦ f = h ◦ (g ◦ f) for any f : p→ q, g : q → r, and h : r → s;

– (f ∗ f ′) ∗ f ′′ = f ∗ (f ′ ∗ f ′′) for any f : p→ q, f ′ : p′ → q′, and f ′′ : p′′ → q′′;

– f ◦ idp = f = idq ◦ f and f ∗ id0 = f = id0 ∗ f for any f : p→ q.

But they must also be compatible (law of interchange):

– (g ◦ f) ∗ (g′ ◦ f ′) = (g ∗ g′) ◦ (f ∗ f ′) for any f : p → q, g : q → r, f ′ : p′ → q′,

and g′ : q′ → r′;

– idp ∗ idq = idp+q for all p, q ∈ N.

Here are typical examples:

– the PRO F, where a morphism f : p→ q is a map from {1, . . . , p} to {1, . . . , q};

– the PRO M ⊂ F, where a morphism f : p → q is a monotone map from

{1, . . . , p} to {1, . . . , q};

– the PRO L(K), where a morphism f : p → q is a K-linear map from K
p to K

q

(or a q × p matrix) for any commutative field K.

Compositions are obvious:

– ◦ is composition of maps (or product of matrices);

– ∗ is disjoint union (for F), ordered sum (for M), or direct sum (for L(K)).

If we remove the object 0 from the PRO M, then we get the simplicial category ∆.

Definition 2. — A PRO C is reversible if all C(p, p) are groups and C(p, q) = ∅

whenever p 6= q.

In order to define such a PRO, it suffices to give a group Cp = C(p, p) for all p,

together with a parallel composition f ∗g ∈ Cp+q defined for any f ∈ Cp and g ∈ Cq.

Note that a reversible PRO is a groupoid, but the condition C(p, q) = ∅ for p 6= q is

not necessary to get a groupoid. Here are typical examples:

– the PRO S ⊂ F, where Sp is the p-th symmetric group;

– the PRO B, where Bp is the p-th braid group;

– the PRO GL(K) ⊂ L(K), where GLp(K) is the p-th linear group over K;

– the PRO O ⊂ GL(R), where Op ⊂ GLp(R) is the p-th orthogonal group.

Definition 3. — A PROP (or product and permutation category) is a PRO C ⊃ S.

For instance, both F and L(K) are PROPs, but not M. PROPs are introduced

in [Mac65], with a slightly different definition, but of course, our notion is equivalent.
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2. Diagrams

We recall the diagrammatic syntax of [Laf03]:

– a morphism f : p→ q is pictured as a box with p inputs and q outputs:

q

· · ·
︷︸︸︷

· · ·
f

︸︷︷︸

p

– for f : p→ q and g : q → r, the sequential composition g ◦ f : p→ r is pictured

as follows:

r

· · ·

· · ·

· · ·

f

g

︷︸︸︷

︸︷︷︸

p

– for f : p→ q and f ′ : p′ → q′, the parallel composition f ∗ f ′ : p+ p′ → q+ q′ is

pictured as follows:

q′

· · ·

· · ·
f

· · ·
f ′

· · ·
︸︷︷︸ ︸︷︷︸

︷︸︸︷ ︷︸︸︷

p p′

q

– the identity idp : p→ p is pictured as follows:

︷︸︸︷

· · ·
︸︷︷︸

p

p

– in particular, id0 : 0 → 0 is pictured as an empty diagram.

Definition 4. — A signature is a graph S with vertices in N. An edge α : p → q

in S is called a symbol with p inputs and q outputs.

For instance, the following signature will be introduced in the next section:

τ0 1 2

η µ
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Definition 5. — An elementary diagram built over signature S is a formal parallel

composition idi ∗ α ∗ idj : i+ p+ j → i+ q+ j, where α : p→ q is a symbol of S, and

i, j ∈ N. It is pictured as follows:

i

· · ·
α
· · ·

· · · · · ·

︸︷︷︸

p
︷︸︸︷

q

︷︸︸︷ ︷︸︸︷

︸︷︷︸ ︸︷︷︸

i j

j

Definition 6. — A diagram built over signature S is a formal sequential composition

φn ◦ · · · ◦ φ1 : p0 → pn, where φ1 : p0 → p1, φ2 : p1 → p2, . . . , φn : pn−1 → pn are

elementary diagrams. In particular, we get idp0
: p0 → p0 when n = 0.

Definition 7. — The free PRO S∗ consists of all diagrams built over a signature S,

modulo the commutation laws:

(idi ∗ α ∗ idj+s+k) ◦ (idi+p+j ∗ β ∗ idk) = (idi+q+j ∗ β ∗ idk) ◦ (idi ∗ α ∗ idj+r+k)

for any symbols α : p→ q and β : r → s, and for all i, j, k ∈ N.

k

=

· · ·
α

· · ·
β

· · ·

· · ·

· · ·

· · ·· · · · · · · · ·· · ·

· · ·
α

· · · · · ·
β

· · ·

︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

i p j r k i p j r k

i q j s k i q j s

The commutation laws are necessary to get a PRO, which must satisfy interchange.

In fact, a morphism of S∗ can also be considered as a formal (sequential and parallel)

composition of symbols modulo associativity, units, and interchange.

3. Presentations by generators and relations

Definition 8. — A relation ρ = σ (over a signature S) is given by two diagrams

ρ, σ : p→ q built over S.

Definition 9. — A presentation of a PRO C consists of a signature S together with

a set R of relations over S, such that C ≃ S∗/ ↔∗
R, where ↔∗

R is the congruence

generated by R.

See Section 6 for a rigorous definition of ↔∗
R. Note that the commutation laws

will never appear in presentations, since they are implicit. In fact, generators and

relations for PROs have been introduced in the framework of computads, also called

polygraphs : See [Str87, Pow91, Bur93, Str95].
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For instance, we have a morphism τ : 2 → 2 in S, defined by τ(1) = 2 and τ(2) = 1.

It is pictured as follows:

The transposition idi ∗ τ ∗ idj : i + 2 + j → i + 2 + j corresponds to the following

elementary diagram:

j
︷︸︸︷

︸︷︷︸ ︸︷︷︸

︷︸︸︷

i j

· · · · · ·

i

Since any permutation is a product of such transpositions, τ generates S, and the

following two relations hold:

τ ◦ τ = id2, (τ ∗ id1) ◦ (id1 ∗ τ) ◦ (τ ∗ id1) = (id1 ∗ τ) ◦ (τ ∗ id1) ◦ (id1 ∗ τ).

Those relations are pictured as follows:

==

Theorem 1. — The symbol τ : 2 → 2 together with the above two relations form a

presentation of the PRO S.

In other words, the following two statements hold:

– any permutation f : p→ p is defined by some diagram φ : p→ p built over the

generator τ : 2 → 2;

– two diagrams φ, ψ : p → q define the same permutation if and only if φ ↔∗
R ψ,

where R consists of the above two relations.

This folklore result can be proved by means of diagram rewriting: See Section 5.

Moreover, the usual presentation of Sp as a group can be deduced from this simple

presentation of all Sp, collectively seen as a (reversible) PRO:

Corollary 1. — The group Sp is presented by p−1 generators τ1, . . . , τp−1 together

with the following p(p−1)
2 relations:

τ2
i = 1 (for i = 1, . . . , p− 1), τiτi+1τi = τi+1τiτi+1 (for i = 1, . . . , p− 2),

τiτj = τjτi (for i = 1, . . . , p− 3 and j = i+ 2, . . . , p− 1).

Note that the third family of relations does not come from the relations for the

PRO S, but from the commutation laws.
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In the PRO M, we have two morphisms µ : 2 → 1 and η : 0 → 1, which are

pictured as follows:

It is easy to see that µ and η generate M, and they satisfy the following three relations:

µ ◦ (µ ∗ id1) = µ ◦ (id1 ∗ µ), µ ◦ (η ∗ id1) = id1, µ ◦ (id1 ∗ η) = id1.

Those relations are pictured as follows:

== =

Theorem 2. — The symbols µ : 2 → 1 and η : 0 → 1 together with the above three

relations form a presentation of the PRO M.

It is possible to extract an infinite presentation of the simplicial category ∆ from

this finite presentation of the PRO M.

Since F contains S and M, we get morphisms τ : 2 → 2, µ : 2 → 1, η : 0 → 1 in F,

which are pictured as follows:

Again, it is easy to see that τ , µ and η generate F, and they satisfy the following

extra relations:

τ ◦ (µ ∗ id1) = (id1 ∗ µ) ◦ (τ ∗ id1) ◦ (id1 ∗ τ), τ ◦ (η ∗ id1) = id1 ∗ η, µ ◦ τ = µ.

The relation µ ◦ (id1 ∗ η) = id1 becomes superfluous. Hence, we get seven relations,

which are pictured as follows:

= = = =

= = =

Theorem 3. — The symbols τ : 2 → 2, µ : 2 → 1, and η : 0 → 1 together with the

above seven relations form a presentation of the PRO F.

This crucial result was first stated and proved in [Bur93], where a presentation of

a PRO is seen as a 3-polygraph. This presentation is minimal: See [Mas97].
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4. Schur functors and operads

Definition 10. — If K is a commutative field and C is a PRO, the Schur functor CK

is given by

CK(V ) =
⊕

p∈N

CK

p ⊗ V ⊗p for any K-vector space V ,

where CK
p is the free K-vector space generated by the set C(p, 1).

So we get:

CK(CK(V )) =
⊕

p,q∈N

CK

p ⊗ (CK

q ⊗ V ⊗q)⊗p for any V .

We define γ : CK(CK(V )) → CK(V ) and ι : V → CK(V ) by the following formulas:

– γ(g ⊗ (f1 ⊗ v1 ⊗ · · · ⊗ vq) ⊗ · · · ⊗ (fp ⊗ vpq−q+1 ⊗ · · · ⊗ vpq)) =

(g ◦ (f1 ∗ · · · ∗ fp)) ⊗ v1 ⊗ · · · ⊗ vpq;

– ι(v) = id1 ⊗ v.

By the axioms of PRO, we get a monad structure on CK, which is the (nonsymmetric)

operad associated with C.

This definition forgets most of the structure of C, since it only uses the sets C(p, 1).

For instance, SK is trivial. However, if C is a PROP, we define a right action of Sp

on CK
p by f · g = f ◦ g for any f : p → 1 and g ∈ Sp, which by hypothesis, can be

considered as a morphism g : p→ p in C. In that case, CK is a symmetric operad.

Here are typical examples:

– MK is the (nonsymmetric) operad AssK of (unital) associative K-algebras ;

– FK is the (symmetric) operad ComK of (unital) commutative K-algebras.

See [Lod08] for more details.

In fact, MK is the same functor as FK, since all M(p, 1) are singletons, and similarly

for the F(p, 1). But the PRO M also extends to a PROP M ⊗ S, which defines a

(symmetric) operad (M ⊗ S)
K
, and this operad is not FK. The PRO M ⊗ S is

presented by the (disjoint) union of a presentation of M with a presentation of S,

together with some commutation relations. Essentially, we get the presentation of F,

but without the commutativity µ ◦ τ = µ.

Note that [Lod08] uses Σ-diagrams, which are linear combinations of diagrams,

rather than diagrams. Hence, they are enriched in the category of Abelian groups.

For instance, here is the compatibility relation in the infinitesimal unital case:

= - + +

Therefore, we should introduce Σ-diagram rewriting, as in [Ran09].
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5. Canonical forms

To prove Theorem 1, we introduce canonical forms, which are recursively defined

by the following grammar :

· · ·

· · ·

· · ·

· · ·

oris
· · ·

· · ·
· · ·

· · ·· · ·

· · ·is empty or

In other words, a canonical form is a diagram φ : p→ p of the following form:
{

id0 if p = 0,

(τq ∗ idp−q) ◦ (id1 ∗ ψ) if p > 0, where

1 ≤ q ≤ p and τq : q → q is

{
id1 if q = 1,

(idq−2 ∗ τ) ◦ τq−1 if q > 1,

ψ : p− 1 → p− 1 is a canonical form.

Lemma 1. — idp is a canonical form for all p ∈ N.

This is proved by induction on p:

– id0 is a canonical form by definition;

– if p > 0, then idp = idp ◦ idp = (id1 ∗ idp−1) ◦ (id1 ∗ idp−1) is a canonical form

by induction hypothesis.

Lemma 2. — Any permutation f : p→ p corresponds to a unique canonical form.

This is proved by induction on p:

– if p = 0, then f = id0;

– if p > 0, then f = (τq ∗ idp−q) ◦ (id1 ∗ g) where q = f(1) and g : p− 1 → p− 1 is

defined by

g(i) =

{
f(i+ 1) if f(i+ 1) < q,

f(i+ 1) − 1 if f(i+ 1) > q.

By induction hypothesis, g corresponds to a unique canonical form. So we get a

unique canonical form for f . In particular, τ generates S.

Lemma 3. — Any diagram φ : p → p reduces to a canonical form by the following

two rewrite rules:

1 2

Rewrite rules are applied from left to right. See Section 6 for a precise definition

of diagram rewriting.
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This lemma is proved by double induction on the width p and on the size n of φ,

that is the length of the sequence φ1, . . . , φn of elementary diagrams defining φ:

– if n = 0, then φ = idp is a canonical form by Lemma 1.

– if n > 0, then φ = (idi ∗ τ ∗ idj) ◦ φ
′ where φ′ has width p = i+ 2 + j and size

n− 1.

By induction hypothesis for size n − 1, we may assume that φ′ is a canonical form

(τq ∗ idp−q) ◦ (id1 ∗ ψ) where ψ has width p− 1. There are four cases (see Figure 1):

– if i < q − 2, apply commutation, rule 2, commutation again, and the induction

hypothesis for width p− 1;

– if i = q − 2, apply rule 1;

– if i = q − 1, then φ is a canonical form;

– if i ≥ q, apply commutation and the induction hypothesis for width p− 1.

Hence, we have proved Lemma 3.

In particular, if two diagrams φ, ψ : p → p define the same permutation, then φ

reduces to a canonical form φ̂ and ψ reduces to a canonical form ψ̂. Since φ, φ̂, ψ, and

ψ̂ represent the same permutation, then φ̂ = ψ̂ by Lemma 2. Hence, φ is equivalent

to ψ modulo the above relations, and we have proved Theorem 1.

Theorems 2 and 3 are proved by the same method, using some suitable notions of

canonical forms: See [Laf03].

Figure 1. the four cases of Lemma 3

· · ·

· · ·

· · ·

· · ·

· · · · · ·

i < q − 2

ψ

· · ·

· · ·

· · · · · ·

i = q − 2

ψ

· · ·

· · ·

· · ·· · ·

i = q − 1

ψ
· · ·

· · · · · · · · ·

· · ·

i ≥ q

ψ
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6. Convergent rewriting

The notions introduced in this section (rewrite rules, termination, confluence,

and convergence) are usually given in the case of strings (or words), or of terms :

See [KN85b, BN98]. Here, we consider a generalization to diagrams.

Definition 11. — A rewrite rule over signature S is a directed relation ρ → σ,

where ρ, σ : p→ q are diagrams built over S.

Definition 12. — A rewrite system for C is given by a signature S together with a

set R of rewrite rules over S such that S,R form a presentation of C.

For instance, the two rules of Lemma 3 form a rewrite system for S. Again, such

a rewrite system is a 3-polygraph.

If R is a rewrite system, we introduce one-step and many-step reduction:

– →R is defined by ψ ◦ (idi ∗ρ∗ idj)◦φ→R ψ ◦ (idi ∗σ ∗ idj)◦φ for any rule ρ→ σ

in R with ρ, σ : p → q, for all i, j ∈ N, and for any diagrams φ : r → i + p+ j

and ψ : i+ q + j → s;

R
ρ
· · ·

· · ·
· · · · · ·

· · ·

· · ·

φ

ψ

σ
· · ·

· · ·
· · · · · ·

· · ·

· · ·

φ

ψ

– →∗
R is defined by φ →∗

R ψ if φ = φ0 →R φ1 →R · · · →R φn−1 →R φn = ψ.

In particular, we get φ→∗
R φ.

→∗
R is the transitive closure of →R, that is the smallest ordering containing R which

is compatible with ◦ and ∗. Note that if φ→∗
R ψ with φ : p→ q, we get ψ : p→ q.

Similarly, we define ↔R by φ ↔R ψ whenever φ →R ψ or ψ →R φ, and ↔∗
R is

the transitive closure of ↔R, that is the smallest congruence containing R.

Definition 13. — A rewrite system R is convergent if:

– R is Noetherian (or terminating), which means there is no infinite reduction:

φ0 →R φ1 →R · · · →R φn−1 →R φn →R φn+1 · · ·

– R is confluent, which means that for any diagrams φ, ψ, ψ′ such that φ →∗
R ψ

and φ→∗
R ψ′, there is some diagram ω such that ψ →∗

R ω and ψ′ →∗
R ω:

∗

ψ′ψ

φ

ω

∗ ∗

∗
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In the Noetherian case, confluence is equivalent to local confluence:

∗

ψ′ψ

φ

ω
∗

Therefore, we shall consider all possible conflicts between rules, which are also called

critical pairs, or branchings.

Definition 14. — A diagram φ is normal if there is no reduction φ→R ψ.

In the Noetherian case, any diagram reduces to a normal one, which is unique in

the confluent case:

Definition 15. — In the convergent case, the normal form of φ is the unique normal

diagram φ̂ such that φ→∗
R φ̂.

Proposition 1. — In the convergent case, we have φ↔∗
R ψ if and only if φ̂ = ψ̂.

Hence, if R is a finite convergent rewrite system for C, we get an algorithm solving

the word problem for C. Moreover, the Knuth-Bendix completion transforms a rewrite

system into a convergent one: See [KN85b]. But this completion may loop.

Lemma 4. — The rewrite system for S is Noetherian.

To prove this, it suffices to define |φ| ∈ N for any diagram φ, in such a way that

|φ| > |ψ| whenever φ→R ψ:

|idp| = 0, |(idi ∗ τ ∗ idj) ◦ φ| = j + 1 + |φ|.

In fact, this method works because any diagram with p inputs also has p outputs.

A general method for proving termination of diagram rewriting is given in [Gui06].

Lemma 5. — The rewrite system for S is confluent.

In this case, there are five conflicts:

The first four ones are obtained by superposing left members of rules, just as in string

rewriting: See [KN85b]. But the last one is a global conflict, because the rightmost

occurrence of τ is not involved in any rewriting process. This complication comes

from the commutation laws: See appendix A of [Laf03]. In fact, it may happen that

a diagram rewrite system produces infinitely many (global) conflicts: See [GM09].
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Fortunately, we only get one global conflict in that case, and the five conflicts are

confluent (Figure 2). To sum up:

– the above rewrite system is convergent;

– the canonical forms of Section 5 are the normal diagrams for this rewrite system.

Similarly, we have a rewrite system with three rules for M:

Termination comes from the fact that some occurrence of µ moves to the right (in the

first case) or disappears (in the two other cases). Furthermore, there are five conflicts,

which are confluent (Figure 3). Hence, this system is convergent. Note that the first

two diagrams of Figure 3 are Mac Lane’s coherence conditions : See [Mac71].

Finally, we have a rewrite system with 12 rules for F: See Figure 4. In this case,

there are 68 conflicts: See [Laf03]. Again, this rewrite system is convergent.

7. The braided case

In the PRO B, we have a generator τ : 2 → 2 and its inverse τ : 2 → 2:

This generator satisfies the Yang-Baxter equation:

(τ ∗ id1) ◦ (id1 ∗ τ) ◦ (τ ∗ id1) = (id1 ∗ τ) ◦ (τ ∗ id1) ◦ (id1 ∗ τ).

To sum up, we get the following relations:

== =

Theorem 4. — The symbols τ : 2 → 2 and τ : 2 → 2 together with the above three

relations form a presentation of the PRO B.

Corollary 2. — The group Bp is presented by p−1 generators τ1, . . . , τp−1 together

with the following (p−1)(p−2)
2 relations:

τiτi+1τi = τi+1τiτi+1 (for i = 1, . . . , p− 2),

τiτj = τjτi (for i = 1, . . . , p− 3 and j = i+ 2, . . . , p− 1).

The PRO B extends to the (non reversible) PRO T of tangles. In T, we have three

morphisms τ : 2 → 2, ε : 2 → 0, and η : 0 → 2, which are pictured as follows:
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In particular, a knot can be seen as a tangle φ : 0 → 0: See [JS93, KRT97]. Note

also that the inverse τ : 2 → 2 becomes definable:

=

Those generators satisfy the following relations, corresponding to Reidemeister moves :

===

===

Theorem 5. — The symbols τ : 2 → 2, ε : 2 → 0, and η : 0 → 2 together with the

above six relations form a presentation of the PRO T.

But no convergent rewrite system is known for B or for T. In fact, there is already

a problem with the monoid B
+
3 of positive braids : See [KN85a].

8. Going further

More examples of presentations of PROs are given in [Laf03], for instance:

– a finite convergent rewrite system for the PRO L(Z2), where Z2 = Z/2Z;

– a finite presentation for the reversible PRO GL(Z2) of Z2-linear permutations;

– a convergent rewrite system for the reversible PRO O of orthogonal transforms.

The third one was motivated by the theory of quantum boolean circuits: See [LR08],

where the connections with Euler angles and Zamolodchikov equation are explained.

This diagrammatic syntax is not only useful for practical computations, but also for

theoretical results. In fact, rewriting is strongly related to homotopical algebra: It can

be used to compute homological invariants of algebraic structures, as in [Squ87], or to

prove coherence results, as in [Mac71]. Connections with homology are also explained

in [Laf07].

Note also that diagrams are informally related to proof-nets and interaction nets,

which were introduced in the context of proof theory: See [Gir87, Laf97, ER06].
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Figure 2. confluence of the rewrite system for S



DIAGRAM REWRITING AND OPERADS 15

Figure 3. confluence of the rewrite system for M

Figure 4. rewrite system for F
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