A folk model structure on omega-cat

Yves Lafont Aix-Marseille 2 & CNRS Institut de Mathématiques de Luminy

joint work with François Métayer & Krzysztof Worytkiewicz

Strict omega-categories O-cells I-cells 2-cells 3-cells ... Compositions O-cells I-cells 2-cells I-cells I-

History

Homology of rewriting (Anick/Squier 1987)
Finite derivation type (Squier 1994)

- Computads/polygraphs (Street & Power/Burroni 1991)
 Polygraphic resolutions (Métayer 2003)
- Model structure on Cat (Joyal & Tierney 1990)
 Model structure on 2-Cat (Lack 2002)

Generating cofibrations

Acyclic fibrations

I-fib:∂Oⁿ → Cin ♥ⁿ ♥

Our strategy

Define the class W of weak equivalences.

- O Prove the following properties (Smith):
 - I-fib \subset W;
 - W has the 3 for 2 property;
 - I-cof ∩ W is closed under pushout, retract, and transfinite composition;
 - ▶ I and W satisfy the solution set condition.

Tools: ω -equivalence & reversibility, connections, gluing factorization, immersions, generic squares.

Our main result

Theorem (Lafont, Métayer & Worytkiewicz):
There is a model structure on ω-Cat such that:
I is a set of generating cofibrations for this structure;
the class W of weak equivalences is minimal.

The following model structures are derivable from this:
on Cat (Joyal & Tierney 1990);
on 2-Cat (Lack 2002);
on n-Cat.
They are obtained by Quillen adjunctions (Beke 2001)

ω -equivalence & reversibility

Definition (by coinduction)

• x ~ y iff there exists a reversible cell $u : x \rightarrow y$;

▶ u : x → y is reversible iff there exists ū : y → x such that u * ū ~ id_x and ū * u ~ id_y.

Lemma

If u is reversible, it satisfies a (left) division property:

For all s : $u * v \rightarrow u * w$, there is r : $v \rightarrow w$

such that u * r ~ s.

(General case: u is a 1-cell and s is a n+1-cell)

Weak equivalences

Definition

W:

By a relaxed version of the right lifting property:

For any $v : f x \rightarrow f y$ in D there is $u : x \rightarrow y$ in C such that f u ~ v (not =)

Proposition

The class W of weak equivalences satisfies 3 for 2.

 $A \rightarrow B \cdots \rightarrow C$

(Some machinery is needed for the third case)

Operations on connections

Theorem: Connections in C form an ω -category $\Gamma(C)$. concatenation 1-composition

0-composition

Concatenation is needed to define n-compositions.

trivial cylinder

We get the following commutative diagram: $C \leftarrow_{\Pi_1} \Gamma(C) \xrightarrow{\to} C$

Gluing factorization

Immersions

Definition

 $f: C \rightarrow D$ is in Z if there are $g: D \rightarrow C$ and $h: D \rightarrow \Gamma(D)$ such that the following three diagrams commute:

Conclusion

We have proved the following properties:

- I-fib \subset W;
- ▶ W has the 3 for 2 property;
- I-cof ∩ W is closed under pushout, retract, and transfinite composition;
- ▶ I and W satisfy the solution set condition.

Generic squares

Definition

The generic squares are the following diagrams:

References

- Y. Lafont, François Métayer & Krzysytof Worytkiewicz, A folk model structure on omega-cat (ArXiv, 2007)
- Y. Lafont & François Métayer, Polygraphic resolutions and homology of monoids (submitted)
- François Métayer, Cofibrant objects among higher dimensional categories (HHA, 2008)