Homotopy of computation: a deconstruction of equality

Yves Lafont

Institut de Mathématiques de Luminy CNRS – Université de la Méditerranée 6 décembre 2010

Equality versus homotopy

Sequality is a trivial notion: a = a

a•a

Homotopy is a rich notion: a ~ a'

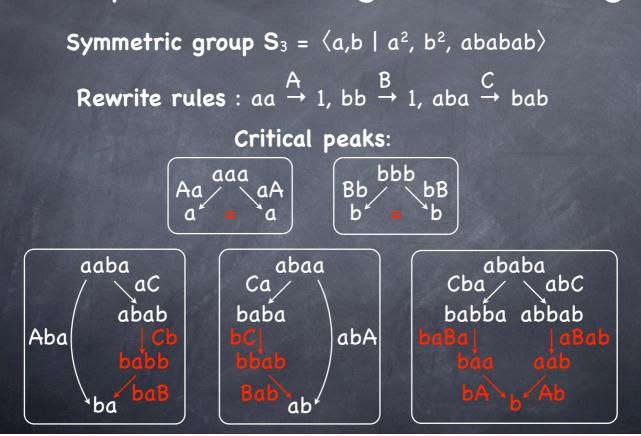
ø because you can compose homotopies:

a•----•a'

and there are homotopies between homotopies:

Convergent rewriting Motivation: symbolic computation in some algebraic structure (group, monoid, ...) orient equality (u → v instead of u = v) termination: no infinite computation u → u1 → · · · un → · confluence: resolution of « conflicts » two provided to the normal form û

Example of convergent rewriting



Squier theory

Theorem (Squier 1987) Any finite convergent presentation of a monoid M yields a partial resolution of Z by free ZM-modules: $0 \leftarrow Z \leftarrow F_0 \leftarrow F_1 \leftarrow F_2 \leftarrow F_3$ where the F_i (including F₃) have finite dimension.

Idea:

(modulo critical diagrams)

Corollary

û

If a monoid M has a finite convergent presentation, then its homology group $H_3(M)$ has finite type.

Squier theory

Theorem (Kobayashi 1990) Any finite convergent presentation of a monoid M yields a full resolution of Z by free ZM-modules: $0 \leftarrow Z \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_n \leftarrow \cdots$ where all the F_i have finite dimension.

Idea: consider higher dimensional critical peaks

Corollary

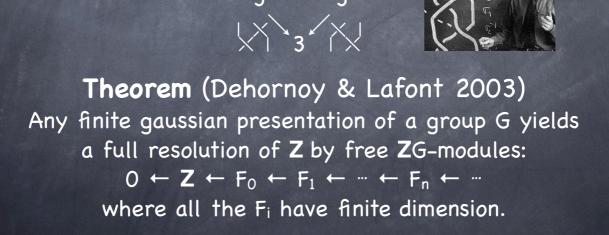
If a monoid M has a finite convergent presentation, then all its homology groups $H_n(M)$ have finite type.

Gaussian groups

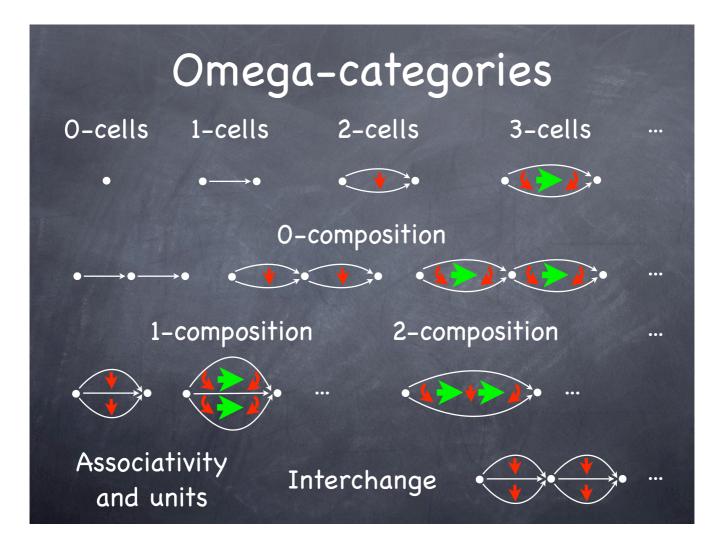
Example: **braid group** $B_3 = \langle a, b | abab^{-1}a^{-1}b^{-1} \rangle$

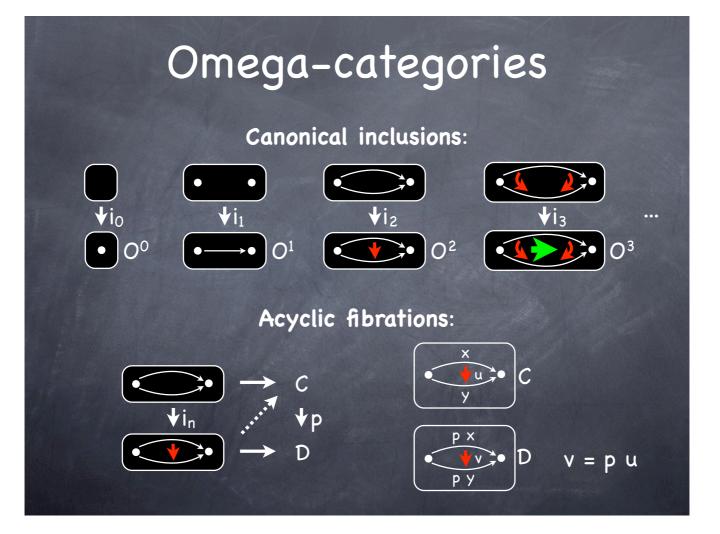
Analogue of confluence:

 $\times 1/3$ \times



Idea: follow Kobayashi





Polygraphs (or computads)

Definition (Burroni 1993): A polygraph is an ω-category S* of the form S₀* ξ S₁* ξ S₂* ξ S₃* ξ ... where each S_n* is freely generated by a set S_n.

S*

Polygraphs can be seen as: higher dimensional rewrite systems;
directed cellular complexes.

Lemma: Polygraphs are cofibrant.

The converse holds (Métayer 2008).

Polygraphic resolutions

Theorem (Métayer 2003)

Any ω -category C has a **polygraphic resolution**:

 $p: S^* \rightarrow C$ (where p is an acyclic fibration).

Theorem (Lafont & Métayer 2009)

The homology of a monoid M is obtained by abelianization of a polygraphic resolution of M.

A model structure

Theorem (Lafont, Métayer & Worytkiewicz 2010) There is a (Quillen) model structure on the category ω -Cat of ω -categories such that:

- > generating cofibrations are canonical inclusions;
- ▶ the class W of weak equivalences is minimal.

The folk model structures on **Cat** (Joyal & Tierney 1990) and 2-**Cat** (Lack 2002) are derivable from this structure.

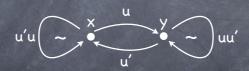
Reversibility

This notion is crucial for the definition of the class W of **weak equivalences**.

Coinductive definition:

 $x \sim y$ iff there are $u : x \rightarrow y$ and $u' : y \rightarrow x$ such that

u'u ~ id_x and $uu' ~ id_y$.



In that case, we say that u is reversible.

This is a deconstruction of the notion of isomorphism!

References

- P. Dehornoy & Y. Lafont, Homology of Gaussian groups, Annales de l'Institut Fourier 53 (2), p. 489–540 (2003)
- Y. Lafont, Algebra and geometry of rewriting, Applied Categorical Structures 15, p. 415–437 (2007)
- Y. Lafont & François Métayer, Polygraphic resolutions and homology of monoids, Journal of Pure and Applied Algebra 213 (6), p. 947–968 (2009)
- Y. Lafont, François Métayer & Krzysytof Worytkiewicz, A folk model structure on omega-cat, Advances in Mathematics 224 (3), p. 1183–1231 (2010)