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Abstract
Orthogonal diagramgepresent decompositions of orthogonal matrices, cor-
responding to isometries &", into elementary ones: 1-dimensional symmetries
and 2-dimensional rotations. A convergent rewrite systentHis structure was
introduced by the first author.

One of the rules, which is similar to the Yang-Baxter equagtinvolves a map
h: [0, 2] — [0, #[3. To study the algebraic propertieshofwe use the confluence
of critical peaks in our rewrite system, and we introdpegametric diagramsle-
scribing the calculation of angles of rotations generatecetyriting. In particular,
h satisfies theetrahedron equatiofalso called Zamolodchikov equation).

1 Introduction

Diagrams are widely used for computation in various fieldmathematics and physics,
like category theory, knot theory, proof theory, quantuet&bdynamics and relativity.

Formally, a diagram is an element of the freen®noid(or strict monoidal category)

generated by some@mputador 2-polygraph. See [Pow91, Bur93].

Typical examples arkoolean circuiteandquantum circuitswhich are respectively
interpreted in the 2-monoid of finite sets with Cartesiardpici and in the 2-monoid of
finite dimensional (complex) vector spaces with tensor pebdSee [Laf03, Ran07].
Here we study the case ofthogonal diagramswhich are interpreted in the 2-monoid
of finite dimensional (real) vector spaces with direct sum.

The starting point is the classical decomposition of rotaiinR® (Euler angle$,
which can be generalized to a decomposition of isometri@s'irFrom this, we get a
convergent rewrite system. In that case, critical peaksatrased to prove confluence,
since it holds by construction, but to derive some algelpeiperties of the rules.

Here are some motivations for such a study: First, simillsrappear in the theory
of quantum circuits, for which no complete presentatiomiswn. Moreover, we must
study enough examples in order to get a general theory of ende for diagram
rewriting. Finally, there are interesting connectionsa@n rewriting and homology,
which should extend to diagram rewriting. See [Laf07] fouavgy.

*This work is partially supported by ANR projekivariants algébriques des systemes informatiques



2 Rotations ofR3

The matrix of an isometry is an orthogonal matrix. Such a imats determinantl.
If the determinant is 1, it corresponds to a rotation. Inipatar, the following matrices
correspond to rotations of respective a@sandOzin R3:

1 0 0 cosay -sina 0
0 cose -sina|, |sina cosa O].
0 sina cosa 0 0 1

Theorem 1 (Euler angles)

Any rotation ofR3 can be decomposed into three rotations, possibly precegethb
axial symmetry, where:

¢ the axes of the three rotations are, in order, Ox, Oz, and OX;
¢ the angles of the three rotations are[ n[;
¢ the axis of the symmetry is Ox, Oy, or Oz.

Moreover, this decomposition is unique if the second arggted. Otherwise, we get a
single rotation of axis OXx, possibly preceded by an axialragtny.

We get the following decomposition for a rotation matrix:

1 0 0 cosB -sing 0)(1 O 0 u 0 0
R=|0 cosy -siny||sing cosB O0||0 cose -sina||/0 v O
0 siny cosy 0 0 1J\0 sina cosa JIO O w

wherea, 3,y € [0, x[, u,v,w = +1,uvw= detR = 1, andy = 0 whenevep = 0.

This is called gleft) canonical decompositiont is standardif the angles of the three
rotations are+ 0 and if there is no axial symmetry. In that cases, y are called the
Euler anglef the rotation.

By exchanginddxandOz we get the notions aight canonical decompositioand of
right standard decomposition

Lemma 1 The canonical decomposition of a rotation matrix is stamdiéiand only if
its lower left cogficient and its upper right cggcient are positive.

Proof: The decomposition is standard if and onlyif3,y # 0 andu = v = w = 1.
Moreover, the lower left cd&cient and the upper right cigcient are:

a = usinysing,
b w sing sina.

Sincea, 3,y € [0, [, we havea,b > O ifand only ifa, 8,y # 0 andu=v=w = 1.

Corollary 1 The left canonical decomposition of a rotation matrix isnstard if and
only if its right canonical decomposition is standard.



3 Orthogonal diagrams

We introduce orthogonal diagrams. A diagramromires is interpreted as an isometry
of R"=Ra---®R, or equivalently, as an orthogorak n matrix. The gates represent
elementary isometries in low dimension.

Compositions of diagrams are interpreted as follows:

e Let AandB be diagrams respectively withandmwires, interpreted by orthog-
onal matricesMp andMg. Their parallel composition is the following diagram:

I’ ___________\\
C
A B |
. . Ma| O
Itis interpreted by the matrikc = Ma ® Mg = o T |
B

¢ If n=m, the sequential composition &fandB is the following diagram:

L - - — = -

Itis interpreted by the matrikc = MaMg.

Remark: The identity orR is represented by a wire. Hence, the malkdx® Ma @ 1d;
is represented by the following diagram:

I

There are two kinds of gates:

opposite gate  rotation gate

fora €]0, x|
The first one is interpreted by the scatdr and the second one by the matrix

R, = (COSQ' —sma).

sine  cosa



Definition 1 Canonical diagrams are defined by induction on the numberirefsw
e A canonical diagram on 1 wire is:

or

e If n > 0, the general form of a canonical diagram on n wires is givefigare 1,
where G and G,_; are canonical diagrams respectively drand n— 1 wires,
andO<k<n-1

Remark: An orthogonal diagram is canonical if and only if it contanmssub-diagram
of the following form:

or I [T or L% Jor L% Jor B

CH I =R

Theorem 1 can be generalized as follows:
Theorem 2 Any isometry oR" can be represented by a unique canonical diagram.

Consider the rewriting rules of figure 2. The last one tramafoa right standard form
into a left standard form with the same interpretation: Thglesa’, 8, v’ are given by

corollary 1, which asserts the existence and the uniquesfabss left standard form.
There are some complicated formulas for those angles, bshalénot use them.

Remark: If a diagramD reduces td’, then D and D’ have the same interpretation.

For the last rule, this holds by construction. The other gase obvious. For instance,
the second, the fourth and the fifth rule correspond to tHeviahg identities:

1 0)(cose -sine\ (cosg—a) -sinm—a)\(-1 O
(0 —1)(sina cow)_(sin(n—a) cosér—a))(o 1)

(cosér —a) -sinf - a)) (COSa/ - sina) B (—1 0)

sinr —a) cosfr—a) /\sina cosa |/ |0 -1

cosB -—sinB)[cosa —sina
sing  cosB J\sina  cosa

Lemma 2 The system is noetherian.

cos@+pB) —sin(@+p)
(sin(a+ﬁ) cos(z+,8))

Proof: For each diagram omwires we define a vectopy, . .., pn_1, q) as follows:

e p; is the number of occurrences of binary gates having theiirpfit on wirei;

e q=2a=(f(A) + 1), where= is the set of occurrences of unary gates &) is
the number of occurrences of binaries gate abave

Then, one checks that each rule makes this vector decreabe fexicographic order.
Since this order is well founded, we are done.



Figure 1: General form of a canonical diagram
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Figure 2: Rules for orthogonal diagrams
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Lemma 3 Every orthogonal diagram reduces to a unique canonical diay

Proof: By double induction on the number of wires and the number tdga

Consider a diagrar®,,» with n wires andm gates and leA be its last gate. In other
words,Dn n, consists of some diagraBy, m-1 followed by A.

By induction hypothesisDnm-1 reduces to a canonical diagrdd ., ,. Hence,Dnm

reduces tdy, ., which consists oD, ., followed by A. It remains to reduc®y .

There are several configurations, depending on the typehenuiossition ofA:
e if Ais an opposite gate, there are three cases: see figure 3;

e if Ais arotation, there are four cases: see figure 4.

After reduction, we obtain a new diagram, where some unaty geay appear just
belowC; and some (unary or binary) gate may appear just b&gpw. The first one
can always be eliminated using the first rule, and the secoadan be eliminated by
applying the induction hypothesis far- 1 wires.

Uniqueness follows from theorem 2 and the remark.
To sum up, we get the following result:

Theorem 3 The system is convergent. In other words, it is noetheriahcamfluent.

4 Critical peaks

Let P be a set. Assume we have a partitRi= A° UA~ UA* and the following maps:
e f: P — Psuch thatf(e) = gif and only if (o, 8) € A;
e g A" > Pandg, : AT - P
e h:P®— P?given byh(a.,7) = (i(a. 3,7), ho(a. B,7), hs(a. B, 7))
We writea | Bif (a,8) € A°, @ - Bif (e, 8) € A~, anda ~ Bif (a,8) € A*.
We are mainly interested in the case where ]0, »[ and:
e a|Bifa+B=ma-Bifa+p<r anda ~pif a+pB>m;
o f(a)=n—-0a,0-(a,B) = a+B,andg,(e,p) = a +B — 7,
e hcorresponds to the last rule of figure 2.

We considegeneralized orthogonal diagramgth parameterg € P, and the rewrite
systemH of figure 5.

In order to represent calculations on parameters, we also the following gates for
parametric diagrams

f ]

Each gate is interpreted by the corresponding map, whichb@agartial: In particular,
the second one is interpreted by the prediaaltg. Since each one has a distinct shape,
we shall omit labels in parametric diagrams.




Figure 3: Configurations for a unary gate
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Figure 4: Configurations for a rotation

case one
[ | [ 1]
Cl Cn—l
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case three
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case two
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I
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[




Lemma 4 The systeriH is noetherian.

Proof: By the same argument as for lemma 2.
Theorem 4 The following statements are equivalent:
1. H is confluent;
2. thecritical peakf figure 6 are confluent;
3. the four maps satisfy the identities of figure 7.

Proof: Obviously, we have & 2.

Conversely, assunie reduces in one step i@ and toD”. If the rules apply to disjoint
subdiagrams ob, thenD’ andD” reduce to a common diagram in one step and we
are done. Otherwise, we have a conflict and there are two:cases

¢ if one of the rules of the conflict is not ternary, the conflippaars in figure 6;

o if both rules are ternary, we getggobal conflictof the following form:

[ ‘
@
I
B
I I
y C
I I
ﬁ’
I
o ‘
IE—

Here,C stands for an arbitrary diagram, but in fact, iffszes to consider the cases
whereC is a normal form: See appendix A of [Laf03]. Therefore, wefget cases:

The first two cases appear in figure 6, whereas the two otheraarebe decomposed
into simpler conflicts. Hence, we get=2 1.

Now, assume that each critical peak of figure 6 is confluenis fifeans that we have
two reductions leading to a common diagram. Each one yieftirametric diagram



Figure 5: Rules for generalized orthogonal diagrams
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Figure 6: Critical peaks

10



Figure 7: Parametric identities
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(which is empty in few cases) representing calculation aampaters, and both calcu-
lations must give the same result. Hence, we get an idergiyden two parametric
diagrams. Three examples are given in figure 8: In each cakmjlations have been
drawn over reductions to show how the corresponding parantgagrams are built.

In fact, some critical peaks of figure 6 yield several idésgibecause there are several
cases to consider according to the conditions satisfieddpdhameters. By a careful
analysis, we obtain the list of identities of figure 7. So weye> 3 and we are done.

Note that half of the identities of figure 7 do not involve thenary gate corresponding
to the maph. All those identities are trivially satisfied in the case ofhogonal dia-
grams: For instance, the first one corresponds to the asisdgiaf +. We are mainly
interested in the other identities, which express propguf our mag. The last one
is known as theetrahedron equatiofor Zamolodchikov equatign

5 Conclusion

We used critical peaks to study the properties,dior which we obtained a list of 19
identities. However, there are many redundancies in thiislh a future work, we shall
explain how this list can be reduced to a shorter one expiéaderms ofundirected
parametric diagrams

It is also important to notice that diagram rewriting is mooenplicated than word or
term rewriting. See [Gui06] for a general theory of termioat A general theory of
confluence including the notion of global conflict shoulcdte developed.
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Figure 8: Confluence of 3 critical peaks
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