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Abstract
Orthogonal diagramsrepresent decompositions of orthogonal matrices, cor-

responding to isometries ofRn, into elementary ones: 1-dimensional symmetries
and 2-dimensional rotations. A convergent rewrite system for this structure was
introduced by the first author.

One of the rules, which is similar to the Yang-Baxter equation, involves a map
h : [0, π[3 → [0, π[3. To study the algebraic properties ofh, we use the confluence
of critical peaks in our rewrite system, and we introduceparametric diagramsde-
scribing the calculation of angles of rotations generated by rewriting. In particular,
h satisfies thetetrahedron equation(also called Zamolodchikov equation).

1 Introduction

Diagrams are widely used for computation in various fields ofmathematics and physics,
like category theory, knot theory, proof theory, quantum electrodynamics and relativity.
Formally, a diagram is an element of the free 2-monoid(or strict monoidal category)
generated by some 2-computad(or 2-polygraph). See [Pow91, Bur93].

Typical examples areboolean circuitsandquantum circuits, which are respectively
interpreted in the 2-monoid of finite sets with Cartesian product and in the 2-monoid of
finite dimensional (complex) vector spaces with tensor product. See [Laf03, Ran07].
Here we study the case oforthogonal diagrams, which are interpreted in the 2-monoid
of finite dimensional (real) vector spaces with direct sum.

The starting point is the classical decomposition of rotations inR3 (Euler angles),
which can be generalized to a decomposition of isometries inR

n. From this, we get a
convergent rewrite system. In that case, critical peaks arenot used to prove confluence,
since it holds by construction, but to derive some algebraicproperties of the rules.

Here are some motivations for such a study: First, similar rules appear in the theory
of quantum circuits, for which no complete presentation is known. Moreover, we must
study enough examples in order to get a general theory of confluence for diagram
rewriting. Finally, there are interesting connections between rewriting and homology,
which should extend to diagram rewriting. See [Laf07] for a survey.
∗This work is partially supported by ANR projectInvariants algébriques des systèmes informatiques.
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2 Rotations ofR3

The matrix of an isometry is an orthogonal matrix. Such a matrix has determinant±1.
If the determinant is 1, it corresponds to a rotation. In particular, the following matrices
correspond to rotations of respective axesOx andOz in R3:





















1 0 0
0 cosα − sinα
0 sinα cosα





















,





















cosα − sinα 0
sinα cosα 0

0 0 1





















.

Theorem 1 (Euler angles)

Any rotation ofR3 can be decomposed into three rotations, possibly preceded by an
axial symmetry, where:

• the axes of the three rotations are, in order, Ox, Oz, and Ox;

• the angles of the three rotations are in[0, π[;

• the axis of the symmetry is Ox, Oy, or Oz.

Moreover, this decomposition is unique if the second angle is, 0. Otherwise, we get a
single rotation of axis Ox, possibly preceded by an axial symmetry.

We get the following decomposition for a rotation matrix:

R=





















1 0 0
0 cosγ − sinγ
0 sinγ cosγ









































cosβ − sinβ 0
sinβ cosβ 0

0 0 1









































1 0 0
0 cosα − sinα
0 sinα cosα









































u 0 0
0 v 0
0 0 w





















whereα, β, γ ∈ [0, π[, u, v,w = ±1, uvw= detR= 1, andγ = 0 wheneverβ = 0.

This is called a(left) canonical decomposition. It is standardif the angles of the three
rotations are, 0 and if there is no axial symmetry. In that case,α, β, γ are called the
Euler anglesof the rotation.

By exchangingOxandOz, we get the notions ofright canonical decompositionand of
right standard decomposition.

Lemma 1 The canonical decomposition of a rotation matrix is standard if and only if
its lower left coefficient and its upper right coefficient are positive.

Proof: The decomposition is standard if and only ifα, β, γ , 0 andu = v = w = 1.
Moreover, the lower left coefficient and the upper right coefficient are:

a = u sinγ sinβ,
b = w sinβ sinα.

Sinceα, β, γ ∈ [0, π[, we havea, b > 0 if and only ifα, β, γ , 0 andu = v = w = 1.

Corollary 1 The left canonical decomposition of a rotation matrix is standard if and
only if its right canonical decomposition is standard.
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3 Orthogonal diagrams

We introduce orthogonal diagrams. A diagram onn wires is interpreted as an isometry
of Rn

= R⊕ · · · ⊕R, or equivalently, as an orthogonaln× n matrix. The gates represent
elementary isometries in low dimension.

Compositions of diagrams are interpreted as follows:

• Let A andB be diagrams respectively withn andmwires, interpreted by orthog-
onal matricesMA andMB. Their parallel composition is the following diagram:

· · ·

· · ·

A B

· · ·

· · ·

C

It is interpreted by the matrixMC = MA ⊕ MB =

(

MA 0
0 MB

)

.

• If n = m, the sequential composition ofA andB is the following diagram:

B

· · ·

A

· · ·

C

· · ·

It is interpreted by the matrixMC = MAMB.

Remark: The identity onR is represented by a wire. Hence, the matrixIdi ⊕MA ⊕ Id j

is represented by the following diagram:

· · ·
i · · ·

· · ·

· · ·
j

A

There are two kinds of gates:

opposite gate rotation gate

α

for α ∈ ]0, π[

The first one is interpreted by the scalar−1 and the second one by the matrix

Rα =

(

cosα − sinα
sinα cosα

)

.

3



Definition 1 Canonical diagrams are defined by induction on the number of wires:

• A canonical diagram on 1 wire is:

or

• If n > 0, the general form of a canonical diagram on n wires is given infigure 1,
where C1 and Cn−1 are canonical diagrams respectively on1 and n− 1 wires,
and0 ≤ k ≤ n− 1.

Remark: An orthogonal diagram is canonical if and only if it containsno sub-diagram
of the following form:

α

β

α α

α

β

γ

or or oror

Theorem 1 can be generalized as follows:

Theorem 2 Any isometry ofRn can be represented by a unique canonical diagram.

Consider the rewriting rules of figure 2. The last one transforms a right standard form
into a left standard form with the same interpretation: The anglesα′, β′, γ′ are given by
corollary 1, which asserts the existence and the uniquenessof this left standard form.
There are some complicated formulas for those angles, but weshall not use them.

Remark: If a diagramD reduces toD′, then D and D’ have the same interpretation.

For the last rule, this holds by construction. The other cases are obvious. For instance,
the second, the fourth and the fifth rule correspond to the following identities:

(

1 0
0 −1

) (

cosα − sinα
sinα cosα

)

=

(

cos(π − α) − sin(π − α)
sin(π − α) cos(π − α)

) (

−1 0
0 1

)

(

cos(π − α) − sin(π − α)
sin(π − α) cos(π − α)

) (

cosα − sinα
sinα cosα

)

=

(

−1 0
0 −1

)

(

cosβ − sinβ
sinβ cosβ

) (

cosα − sinα
sinα cosα

)

=

(

cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

)

Lemma 2 The system is noetherian.

Proof: For each diagram onn wires we define a vector (p1, . . . , pn−1, q) as follows:

• pi is the number of occurrences of binary gates having their left input on wirei;

• q = ΣA∈Ξ( f (A) + 1), whereΞ is the set of occurrences of unary gates andf (A) is
the number of occurrences of binaries gate aboveA.

Then, one checks that each rule makes this vector decrease for the lexicographic order.
Since this order is well founded, we are done.
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Figure 1: General form of a canonical diagram

Cn−1C1

α1

α2

α3

αk−1

αk · · ·

· · ·

· · ·

· · · · · ·

Figure 2: Rules for orthogonal diagrams

β′

γ′

α′α

→
β

γ

α
π − α

α
π − α

α

π − α

→ → → →

α

β

α + β

α

β

if α + β < π if α + β > π

→ →
α + β − π
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Lemma 3 Every orthogonal diagram reduces to a unique canonical diagram.

Proof: By double induction on the number of wires and the number of gates.

Consider a diagramDn,m with n wires andm gates and letA be its last gate. In other
words,Dn,m consists of some diagramDn,m−1 followed byA.

By induction hypothesis,Dn,m−1 reduces to a canonical diagramD′n,m′−1. Hence,Dn,m

reduces toD′n,m′ which consists ofD′n,m′−1 followed by A. It remains to reduceD′n,m′ .
There are several configurations, depending on the type and the position ofA:

• if A is an opposite gate, there are three cases: see figure 3;

• if A is a rotation, there are four cases: see figure 4.

After reduction, we obtain a new diagram, where some unary gate may appear just
belowC1 and some (unary or binary) gate may appear just belowCn−1. The first one
can always be eliminated using the first rule, and the second one can be eliminated by
applying the induction hypothesis forn− 1 wires.

Uniqueness follows from theorem 2 and the remark.

To sum up, we get the following result:

Theorem 3 The system is convergent. In other words, it is noetherian and confluent.

4 Critical peaks

Let P be a set. Assume we have a partitionP2
= ∆

0∪∆− ∪∆+ and the following maps:

• f : P→ P such thatf (α) = β if and only if (α, β) ∈ ∆0;

• g− : ∆− → P andg+ : ∆+ → P;

• h : P3→ P3 given byh(α, β, γ) = (h1(α, β, γ), h2(α, β, γ), h3(α, β, γ)).

We writeα | β if (α, β) ∈ ∆0, α ` β if (α, β) ∈ ∆−, andα a β if (α, β) ∈ ∆+.

We are mainly interested in the case whereP = ]0, π[ and:

• α | β if α + β = π, α ` β if α + β < π, andα a β if α + β > π;

• f (α) = π − α, g−(α, β) = α + β, andg+(α, β) = α + β − π;

• h corresponds to the last rule of figure 2.

We considergeneralized orthogonal diagramswith parametersα ∈ P, and the rewrite
systemH of figure 5.

In order to represent calculations on parameters, we also need the following gates for
parametric diagrams:

f

f

g− g+ h

Each gate is interpreted by the corresponding map, which maybe partial: In particular,
the second one is interpreted by the predicateα | β. Since each one has a distinct shape,
we shall omit labels in parametric diagrams.
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Figure 3: Configurations for a unary gate

case one case two

αi−1

A

C1 Cn−1

αk

αi

α2

α1

A

α2

α1

C1 Cn−1

αk

· · ·

· · · · · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

A

Cn−1C1

α1

α2

αk

· · ·

case three

· · ·· · ·

· · ·

· · ·

· · · · · ·

· · ·
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Figure 4: Configurations for a rotation

case one case two

A

αi−1

αk

α2

α1

C1 Cn−1

αi

A

α1

C1 Cn−1

αk

α2

· · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · ·

· · ·· · ·

· · · · · ·

· · ·

A
A

case three case four

C1 Cn−1

α1

α2

αk

· · ·

Cn−1

αk

α2

· · ·
α1

C1

· · · · · · · · ·

· · · · · · · · ·
· · ·

· · · · · ·

· · ·
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Lemma 4 The systemH is noetherian.

Proof: By the same argument as for lemma 2.

Theorem 4 The following statements are equivalent:

1. H is confluent;

2. thecritical peaksof figure 6 are confluent;

3. the four maps satisfy the identities of figure 7.

Proof: Obviously, we have 1⇒ 2.

Conversely, assumeD reduces in one step toD′ and toD′′. If the rules apply to disjoint
subdiagrams ofD, thenD′ andD′′ reduce to a common diagram in one step and we
are done. Otherwise, we have a conflict and there are two cases:

• if one of the rules of the conflict is not ternary, the conflict appears in figure 6;

• if both rules are ternary, we get aglobal conflictof the following form:

· · ·

α

β

γ C

β′

α′

· · ·

Here,C stands for an arbitrary diagram, but in fact, it suffices to consider the cases
whereC is a normal form: See appendix A of [Laf03]. Therefore, we getfour cases:

α′

α

β

γ

β′

α′

γ′

α

β

γ

β′

α′

α

γ

β′

α′

γ′

β

α

β

γ

β′

The first two cases appear in figure 6, whereas the two other ones can be decomposed
into simpler conflicts. Hence, we get 2⇒ 1.

Now, assume that each critical peak of figure 6 is confluent. This means that we have
two reductions leading to a common diagram. Each one yields aparametric diagram
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Figure 5: Rules for generalized orthogonal diagrams

for α a β

→
α f (α) → f (α)α

h2(α, β, γ)→
β

h1(α, β, γ)

h3(α, β, γ)γ

α

→

α

β

→

α

β

α

β

→ →
g+(α, β)

g−(α, β)

for α | β for α ` β

Figure 6: Critical peaks

γ′

α

β

α

α

β

γ

β′

γ′

α

β

γ

β′

γ′

ρβ

γ

α

α α

α

α α
α α α

β
β ββ

β

βγ

γ

γ γ γ

α′
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Figure 7: Parametric identities

=

α β γα β γ

=

α ` β ` γ

α β γα β γ

=

α ` β a γ

=

=

=

=

=

α β γα β γ

=

α a β ` γ

α β γα β γ

=

α ` β ` γ

α β γα β γ

=

α a β a γ

α β γα β γ

=

α ` β a γ

α β γ α β γ

=

α a β a γ

α β γ α β γ

=

α | β ` γ

α β γα β γ

=

α a β ` γ

α β γ α β γ

=

α ` β ` γ

α β γ

=

α β γ

α | β | γ

α β γα β γ

=

α ` β | γ

α β γα β γ

=

α | β a γ

γα β β γα

=

α a β a γ

α β γβ γα

=

α a β | γ

=

=

=

=

=

=

=

= =
=

=

=

=

= = =
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(which is empty in few cases) representing calculation on parameters, and both calcu-
lations must give the same result. Hence, we get an identity between two parametric
diagrams. Three examples are given in figure 8: In each case, calculations have been
drawn over reductions to show how the corresponding parametric diagrams are built.

In fact, some critical peaks of figure 6 yield several identities because there are several
cases to consider according to the conditions satisfied by the parameters. By a careful
analysis, we obtain the list of identities of figure 7. So we get 2⇔ 3 and we are done.

Note that half of the identities of figure 7 do not involve the ternary gate corresponding
to the maph. All those identities are trivially satisfied in the case of orthogonal dia-
grams: For instance, the first one corresponds to the associativity of +. We are mainly
interested in the other identities, which express properties of our maph. The last one
is known as thetetrahedron equation(or Zamolodchikov equation).

5 Conclusion

We used critical peaks to study the properties ofh, for which we obtained a list of 19
identities. However, there are many redundancies in this list. In a future work, we shall
explain how this list can be reduced to a shorter one expressed in terms ofundirected
parametric diagrams.

It is also important to notice that diagram rewriting is morecomplicated than word or
term rewriting. See [Gui06] for a general theory of termination. A general theory of
confluence including the notion of global conflict should also be developed.
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Figure 8: Confluence of 3 critical peaks
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