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Abstract

We prove that for any monoidM , the homology defined by the second author by means of polygraphic resolutions
coincides with the homology classically defined by means of resolutions by freeZM -modules.

1 Introduction

Since the work of Squier and others [Ani86, Squ87, Kob90], we know that monoids presented by a finite, termi-
nating and confluent rewriting system satisfy a homological finiteness condition. This has two consequences:

• the possibility to prove negative results, e.g. examples of monoids having a decidable word problem, but no
presentation satisfying the above conditions;

• on the positive side, the construction of explicit resolutions from such presentations. See for example [DL03]
for a recent application of similar methods to compute the homology of gaussian groups.

Now rewriting systems quite naturally lead ton-categories, as follows. LetM be a monoid presented by a system
(Σ, R) of generators and rewrite rules. IfΣ∗ denotes the set of words on the alphabetΣ, R ⊂ Σ∗ × Σ∗ is a set of
ordered pairs of words. A rewrite ruleζ : x→ y applies to any worduxv with u, v ∈ Σ∗, defining a reduction step
uζv : uxv → uyv. ThusR generates a setR∗ of reduction pathsbetween words, whose elements are composable
sequences of one-step reductions, up to suitable commutation rules (see [Laf07] for a detailed survey). These data
fit together in a2-category

>⇔ Σ∗ ⇔ R∗

where> denotes the singleton. It has a unique object, words as arrows and reduction paths as2-arrows. Here⇔
denotes the source and target maps: all words clearly have the same source and target, namely the single element
of >, and a reduction path fromw tow′ has of course sourcew and targetw′. Words compose by concatenation,
while reduction paths are subject totwosorts of composition, either “parallel” or “sequential”. What we get exactly
is a free2-category generated by acomputad[Str76].
At the next dimension, consider a setP ⊂ R∗ ×R∗ of pairs ofparallel reduction paths, i.e. with the same source
and the same target. The smallest equivalence relation onR∗ containingP and passing to the context is the2-
congruence generatedby P . In case the relation of parallelism itself is generated by a finite setD, we say that
the underlying monoidM is of finite derivation type. It turns out that the latter property holds for all monoids
presented by finite, confluent and terminating rewriting systems [SOK94, Laf95]. Inn-categorical language,P
generates a setP ∗ of 3-arrows extending the above2-category to a3-category:

>⇔ Σ∗ ⇔ R∗ ⇔ P ∗.

Note that there are now three ways of composing the elements ofP ∗. We look here for setsP such that each pair
(x, y) of parallel paths inR∗ can be filled by at least oneu : x→ y in P ∗.
This point of view was systematized by the second author [Mét03]. Objects of study are now arbitraryω-categories,
not just monoids;(>,Σ, R,D) becomes an infinite sequence(S0, S1, . . . , Sn, . . .) definingn-computads[Pow91]
or n-polygraphs[Bur93], a terminology we shall adopt here.
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An ω-polygraph, or simplypolygraphS, generates a freeω-categoryS∗, generalizing the above situation. There
is an abelianization functor taking each polygraphS to a chain complexZS of abelian groups, thus defining a
homology

H∗(S) =def H∗(ZS). (1)

Now let C be anω-category, andS a polygraph. Apolygraphic resolution ofC by S is a morphismS∗ → C
satisfying some lifting properties (see section 2.3). But the homologyH∗(S) only depends onC [Mét03], so that
we may define a “polygraphic homology” ofC by

Hpol
∗ (C) =def H∗(S). (2)

A monoidM can be seen as a particularω-category, with degenerate cells but in dimension 1. Thus, forC = M ,
(2) defines the polygraphic homology ofM , whence an immediate question:

doesHpol
∗ (M) coincide with the usual homology ofM , defined by means of resolutions ofZ by free

ZM -modules?

It turns out that the answer is positive. The goal of the present article is to present a proof of this result, previously
established in the particular case of groups by the first author [Laf05].

The key notion is that of anunfolding, anω-category built upon a polygraphic resolutionS∗ →M and from which
we recover the usual homology ofM by abelianization. This is exposed in Section 3, which contains the core of
the argument. As the properties of these unfoldings are heavily based on the results of [Mét03], the paper starts by
recalling those results (Section 2); they are however significantly revisited in the following aspects:

• the notion of polygraphic resolution now fits in a Quillen model structure on higher categories [LMW07],
generalizing [JT91, Lac04] (see also [Tho80, WHPT07]), whence a new terminology, e.gacyclic fibration;

• the path construction is much simplified (Section 4);

• whereas the results of [Mét03] are sufficient to settle the case of groups, more general statements about
homotopy, and new proofs, are needed in the case of arbitrary monoids (Section 5).

This work is part of a general program aiming at a homotopical theory of computations, whose further develop-
ments include

• a general finiteness conjecture [Laf07]: is it true that a monoidM presented by a finite, terminating and con-
fluent rewriting system always has a polygraphic resolutionS∗ →M whereSi is finite in each dimension?

• the study of other structures expressible by polygraphs, as proof systems [Gui06b], Petri nets [Gui06c] and
term algebras [Mal04]. In the last case, the polygraphic homology is likely to be degenerate; however,
resolutions still bear many relevant informations and could lead to new, refined, invariants;

• potential applications to the theory of directed homotopy. See [Gou03] for a survey.
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2 Polygraphic homology

2.1 Globular sets and higher categories

Definition 1 A globular setis an infinite sequenceS : S0 ⇔ S1 ⇔ S2 · · ·Si ⇔ Si+1 · · · , whereSi ⇔ Si+1

stands for thesource mapSi
σi← Si+1 and thetarget mapSi

τi← Si+1, which satisfies theboundary conditions
σi ◦ σi+1 = σi ◦ τi+1 andτi ◦ σi+1 = τi ◦ τi+1 for all i. The elements ofSi are calledi-cells.

We introduce the following notations:

• if x, y arei-cells, we writex ‖ y wheneveri = 0, or i > 0, σi−1(x) = σi−1(y) andτi−1(x) = τi−1(y);
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• if u is ani+1-cell, we writeu : x→ y wheneverσi(u) = x andτi(u) = y, so thatx, y arei-cells andx ‖ y.

.

x

&&

y

88
�� ��
�� u .

Forj > i, we introduce the following notations, whereσi,j = σi ◦σi+1 ◦· · ·◦σj−1 andτi,j = τi ◦τi+1 ◦· · ·◦τj−1:

• if u is aj-cell, we writeu : x→i y wheneverσi,j(u) = x andτi,j(u) = y, so thatx, y arei-cells andx ‖ y;

• if u, v arej-cells, we writeu .i v wheneverτi,j(u) = σi,j(v).

In particular, ifu is ani-cell with i > 0, we getu : u[ →0 u
], whereu[ stands forσ0,i(u) andx] for τ0,i(u).

Definition 2 If S, T are globular sets, ahomomorphismf : S → T is an infinite sequence of mapsfi : Si → Ti

such that we havefi+1(u) : fi(x)→ fi(y) in T for all i and for anyi+1-cell u : x→ y in S.

Definition 3 A (strict) ω-categoryis a globular setC : C0 ⇔ C1 ⇔ C2 · · ·Ci ⇔ Ci+1 · · · together with
compositionsandunits, satisfying the laws ofassociativity, units, and interchange.

In other words, we get:

• somei+1-cell u ∗i v : x→ z for anyi+1-cellsu : x→ y andv : y → z (so thatu .i v);

.

x

��
�� ��
�� u

y
// BB

z

�� ��
�� v

.

• somej+1-cell u ∗i v : x ∗i y → z ∗i t for all j > i and for anyj+1-cellsu : x→ z andv : y → t such that
u .i v (so thatx .i y andz .i t);

.

x

&&

z

88
�� ��
�� u .

y

&&

t

88
�� ��
�� v .

• somei+1-cell 1x : x→ x for anyi-cell x. We also write1i+1
x for this unit.

By induction onj > i, we define thej+1-cell 1j+1
x : 1j

x → 1j
x by 1j+1

x = 11j
x

for anyi-cell x. The laws are:

• (u ∗i v) ∗i w = u ∗i (v ∗i w) for all j > i and for anyj-cellsu .i v .i w;

• 1j
x ∗i u = u = u ∗i 1j

y for all j > i and for anyj-cell u : x→i y;

• (u ∗j u′) ∗i (v ∗j v′) = (u ∗i v) ∗j (u′ ∗i v′) for all k > j > i and for anyk-cellsu, u′, v, v′ such thatu .i v,
u .j u

′ andv .j v
′ (so thatu′ .i v

′);

. ��
�� ��
�� u // BB�� ��
�� u′

. ��
�� ��
�� v // BB�� ��
�� v′

.

• 1x ∗i 1y = 1x∗iy for all j > i and for anyj-cellsx, y such thatx .i y.

By induction onk > j > i, we also get1k
x ∗i 1k

y = 1k
x∗iy for anyj-cellsx, y such thatx .i y.

By restricting this definition to a finite sequenceC0 ⇔ C1 ⇔ C2 · · ·Cn−1 ⇔ Cn, we get the notion ofn-category.
Conversely, anyn-category is converted into anω-category by concatenating with the infinite stationary sequence
Cn ⇔ Cn ⇔ Cn · · · whereσi = τi = idCn for all i ≥ n.
In particular, we get the following examples, where> stands for the singleton set:

• asetS : S ⇔ S ⇔ S · · ·

• amonoidM : >⇔M ⇔M ⇔M · · ·
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• acategoryC : C0 ⇔ C1 ⇔ C1 ⇔ C1 · · ·

• anabelian monoidA : >⇔ >⇔ A⇔ A⇔ A · · ·

• astrict monoidal categoryC : >⇔ C1 ⇔ C2 ⇔ C2 ⇔ C2 · · ·

• a2-categoryC : C0 ⇔ C1 ⇔ C2 ⇔ C2 ⇔ C2 · · ·

Note that we use the same notation for a monoidM , its underlying set, and its associatedω-category.

An ω-category (respectively ann-category) such thatC0 = > is called anω-monoid(respectively ann-monoid).
In that case,x .0 y holds for anyx, y ∈ Ci with i > 0. So we writexy for x ∗0 y, and1 for the single unit 1-cell.

Definition 4 If C andD are ω-categories, anω-functor f : C → D is a homomorphism such that each map
fi : Ci → Di is compatible with compositions and units. In other words, the following conditions hold:

• fj(x ∗i y) = fj(x) ∗i fj(y) for all j > i and for anyj-cellsx .i y in C;

• fi+1(1x) = 1fi(x) for anyi-cell x in C.

So we get acategory ofω-categories. Note that this category has all limits, which are defined in the obvious way.
In particular, the terminal object is thetrivial ω-category> : >⇔ >⇔ > · · ·

Note also that, in the case whereC is anω-monoid andM is a monoid, anω-functorf : C → M is completely
given by a mapf1 : C1 →M satisfying the following three conditions:

f1(xy) = f1(x)f1(y) for any 1-cellsx, y in C, f1(1) = 1, f1(x) = f1(y) for any 2-cellu : x→ y in C.

Indeed, we havefi = f1 ◦ σ1,i = f1 ◦ τ1,i for all i > 1, and all conditions are consequences of the above three.

2.2 Polygraphs

A graphS0 ⇔ S1 consists of setsS0, S1 and mapsS0
σ0← S1 andS0

τ0← S1. It generates afree categoryS0 ⇔ S∗1 ,
whereS∗1 is the set of paths in the graphS0 ⇔ S1.

Similarly, if n > 0 andC0 ⇔ C1 ⇔ C2 · · ·Cn−1 ⇔ Cn is ann-category, then any graphCn ⇔ Sn+1 satisfying
the boundary conditionsσn−1 ◦ σn = σn−1 ◦ τn andτn−1 ◦ σn = τn−1 ◦ τn freely generatesthen+1-category
C0 ⇔ C1 ⇔ C2 · · ·Cn−1 ⇔ Cn ⇔ S∗n+1, whereS∗n+1 consists of formal compositions of elements ofSn+1.
Hence, the latter are calledn+1-generators. See [Bur93, Mét08] for a detailed construction ofS∗n+1.

Definition 5 [Bur93] The notion ofn-polygraphis defined by induction onn > 0:

• a 1-polygraphis a graphS∗0 ⇔ S1, whereS∗0 is just another notation for the setS0;

• if n > 0, ann+1-polygraphis given by ann-polygraphS∗0 ⇔ S1, S
∗
1 ⇔ S2, . . . , S

∗
n−1 ⇔ Sn together with

a graphS∗n ⇔ Sn+1 satisfying the boundary conditionsσn−1 ◦σn = σn−1 ◦ τn andτn−1 ◦σn = τn−1 ◦ τn.
It generates thefreen+1-categoryS∗ : S∗0 ⇔ S∗1 ⇔ S∗2 · · ·S∗n ⇔ S∗n+1.

Polygraphs are equivalent tocomputads: See [Str76, Pow91]. Here are two basic cases:

• analphabetS1 = {ξ1, ξ2, . . .} yields a graph>⇔ S1 with only one vertex. The free category generated by
this graph is>⇔ S∗1 , whereS∗1 is the free monoid generated byS1;

• a rewriting systemonS∗1 , given by the set of rulesS2 = {x1
ζ1→ y1, x2

ζ2→ y2, . . .}, defines a graphS∗1 ⇔ S2.
We get a 2-polygraph, since the boundary conditions are trivially satisfied, and the free 2-category generated
by this 2-polygraph is the 2-monoid>⇔ S∗1 ⇔ S∗2 , whereS∗2 is the set of reductions modulo interchange.

Therefore, ann-polygraph can be considered as a higher dimensional rewriting system (syntactical interpretation).
It can also be seen as a kind of directed CW-complex (geometric interpretation). Various examples of 3-polygraphs
corresponding to higher dimensional rewriting systems are given in [Laf03]. See also [Gui06a, Gui06b, Gui06c].

Definition 6 [Bur93] A polygraphis an infinite sequenceS∗0 ⇔ S1, S
∗
1 ⇔ S2, . . . , S

∗
i ⇔ Si+1, . . . whose first

items define ani-polygraph for alli > 0. It generates thefreeω-categoryS∗ : S∗0 ⇔ S∗1 ⇔ S∗2 · · ·S∗i ⇔ S∗i+1 · · ·

Note that the trivialω-category> coincides with the freeω-categoryΩ∗, whereΩ0 = > andΩi = ∅ for all i > 0.
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2.3 Polygraphic resolutions

Definition 7 Anω-functorp : C → D is anacyclic fibrationif p0 : C0 → D0 is onto andp has thelifting property:
For anyi-cellsx ‖ y inC and for anyv : pi(x)→ pi(y) inD, there is someu : x→ y inC such thatpi+1(u) = v.

.

x

&&

y

88
�� ��
�� u . .

pi(x)

&&

pi(y)

88
�� ��
�� v .

Note that ifp : C → D is an acyclic fibration, then eachpi : Ci → Di is onto andp has thestretching property:
For anyi-cellsx ‖ y in C such thatpi(x) = pi(y) = z inD, there is someu : x→ y in C such thatpi+1(u) = 1z.

.

x

&&

y

88
�� ��
�� u . . z // .

Conversely, those properties characterize acyclic fibrations: See [Mét03].

Note also that our acyclic fibrations are thetrivial fibrationsof some model structure. See [LMW07].

Definition 8 We say that anω-categoryC is acyclic if the canonicalω-functorπ : C → > is an acyclic fibration.
In other words,C0 is inhabited andC has thefilling property: For any i-cellsx ‖ y in C, there is someu : x→ y.

Proposition 1 [Mét03] For any acyclic fibrationp : C → D and for anyq : S∗ → D, there is somef : S∗ → C
such thatq = p ◦ f .

C

p

��
S∗

f
>>}

}
}

}
q
// D

In other words, freeω-categories arecofibrant. It suffices indeed to define thei-cell fi(ξ) for eachi-generatorξ,
using the fact thatp is an acyclic fibration. In fact, the converse holds: Cofibrantω-categories are free [Mét08].

Proposition 2 [Mét03] For anyp : C → D andf, g : S∗ → C such thatp◦f = p◦g andp has the lifting property,
we get ahomotopyf  g.

The definition of homotopy and the proof of this result are postponed to Section 5.

Definition 9 [Mét03] A polygraphic resolutionofC is an acyclic fibrationp : S∗ → C whereS∗ is free.

Theorem 1 [Mét03]

1. Anyω-categoryC has a polygraphic resolutionp : S∗ → C.

2. If p : S∗ → C andq : T ∗ → C are polygraphic resolutions, there is somef : S∗ → T ∗ such thatp = q ◦ f .

S∗
f //____

p
��6

66
66

6 T ∗

q
����
��
��
�

C

3. For any two suchf, g : S∗ → T ∗, we get a homotopyf  g.

Proof. We buildSi andpi by induction oni, starting fromS0 = C0 andp0 = idC0 : For anyx, y ∈ S∗i with x ‖ y
and for anyi+1-cell v : pi(x)→ pi(y) in C, we introduce somei+1-generatorξ : x→ y such thatpi+1(ξ) = v.
By construction, we get a polygraphic resolutionp : S∗ → C. The rest follows from Propositions 1 and 2. J

Corollary 1 If p : S∗ → C andq : T ∗ → C are polygraphic resolutions, there aref : S∗ → T ∗ andg : T ∗ → S∗

such that the following conditions hold:

p = q ◦ f, q = p ◦ g, g ◦ f  idS∗ , f ◦ g  idT∗ .

In other words, any two polygraphic resolutions ofC arehomotopically equivalent.
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Note also that any monoidM has amonoidal resolution, that is a polygraphic resolution such thatS∗0 = S0 = >.
Such a resolution contains a presentation ofM , whereS1 is the set of generators andS2 is the set of relations.
Moreover, any such presentation ofM is reversible: For any reductionx→∗ y, there is another reductiony →∗ x.
Conversely, any reversible presentation ofM can be extended to a monoidal resolution ofM .

In general, a rewrite system forM is not reversible, but we get a reversible presentation by addinginverse rules.
The following theorem is conjectured in [Laf07]: If we start from somefinite convergent rewrite system, then the
corresponding reversible presentation extends to a monoidal resolutionp : S∗ →M such that allSi are finite.

2.4 Abelianization and homology

Let S∗ : S∗0 ⇔ S∗1 ⇔ S∗2 · · ·S∗i ⇔ S∗i+1 · · · be a freeω-category. Ifξ is ani-generator, we writedξc for the
corresponding generator of the freeZ-moduleZSi, and we extend this notation to all cells ofS∗ as follows:

du ∗i vc = duc+ dvc for anyj-cellsu .i v in S∗ with j > i, d1xc = 0 for anyi-cell x in S∗.

In other words,dxc counts the number of occurrences of eachi-generator in thei-cell x. The fact thatdxc is well
defined follows from the universal property ofS∗i and the definition of some suitablei-category: See appendix A.

Now we defineZ-linear mapsZSi
∂i← ZSi+1 as follows:∂idξc = dyc − dxc for eachi+1-generatorξ : x→ y.

Lemma 1 ∂iduc = dyc − dxc for anyi+1-cell u : x→ y in S∗.

This is easily proved by induction onu. As a consequence, we get∂i ◦ ∂i+1 = 0 for all i.

Definition 10 [Mét03] Theabelianization of the freeω-categoryS∗ : S∗0 ⇔ S∗1 ⇔ S∗2 · · ·S∗i ⇔ S∗i+1 · · · is the
following chain-complex of freeZ-modules:

ZS : ZS0
∂0← ZS1

∂1← ZS2 · · ·ZSi
∂i← ZSi+1 · · ·

For anyf : S∗ → T ∗, we defineZ-linear mapsfab
i : ZSi → ZTi as follows:fab

i dξc = dfi(ξ)c for eachξ ∈ Si.

Lemma 2 fab
i dxc = dfi(x)c for anyx ∈ S∗i .

This is easily proved by induction onx. As a consequence, we get∂i ◦ fab
i+1 = fab

i ◦ ∂i for all i.

Definition 11 [Mét03] Theabelianization of theω-functorf : S∗ → T ∗ is the homomorphism of chain-complex
fab : ZS → ZT given by thefab

i : ZSi → ZTi.

Note that abelianization is defined in terms of polygraphs, but in fact, it only depends on the generatedω-categories.
Obviously, we have(g ◦ f)ab = gab ◦ fab for anyf : R∗ → S∗ andg : S∗ → T ∗, andidab

S∗ = idZS for anyS∗.
Hence, we get a functor from the category of freeω-categories to the category of chain-complexes.

Proposition 3 [Mét03] For anyf, g : S∗ → T ∗ such thatf  g, we get a chain-homotopy betweenfab andgab.

This crucial result is proved in Section 5. By Corollary 1, we get:

Corollary 2 The homology ofZS does not depend on the choice of the polygraphic resolutionp : S∗ → C.

Definition 12 [Mét03] The homology of such aZS is called thepolygraphic homology of theω-categoryC.

Note thatΩ∗ defines a polygraphic resolution of>, and so does any acyclic freeω-category. Hence, we get:

Corollary 3 The following augmented chain-complex is exact wheneverS∗ is an acyclic freeω-category:

0← Z ε← ZS0
∂0← ZS1

∂1← ZS2 · · ·ZSi
∂i← ZSi+1 · · ·

Here,ε stands forπab
0 whereπ : S∗ → Ω∗ = > is the canonicalω-functor. Hence,ε(ξ) = 1 for eachξ ∈ S0.
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3 Unfolding

If M is a monoid andS is a set, we writeM · S for the cartesian productM × S whose elements are writtenλ · x.
Thefree actionof M on the setM · S is defined byλ · (µ · x) = λµ · x for all λ, µ ∈M andx ∈ S. In particular,
we shall identify the setM · > with M , where the action ofM on itself is defined byλ · µ = λµ for all λ, µ ∈M .

Note also thatZ(M ·S) has a structure ofZM -module defined byλ · (µ ·x) = λµ ·x for anyλ, µ ∈M andx ∈ S.
In particular, we getλ · x = λ · (1 · x). Hence, we shall identifyZ(M · S) with the freeZM -moduleZM · S.

3.1 General case

Let f : C → M be anω-functor, whereM is a monoid andC is anω-monoid, so thatM · C0 = M · > = M .
If x is ani-cell inC with i > 0, we writex for fi(x) ∈ M . In particular, we getx = y for any 2-cellu : x → y.
Moreover, we getx = y for all i > 1 and for anyi-cellsx, y such thatx ‖ y.

We define the globular setM · C : M ⇔M · C1 ⇔M · C2 · · ·M · Ci ⇔M · Ci+1 · · · as follows:

• we get the 1-cellλ · x : λ→ λx in M · C for anyλ ∈M and for any 1-cellx in C;

• if i > 1, we get thei-cell λ · u : λ · x→ λ · y in M · C for anyλ ∈M and for anyi-cell u : x→ y in C.

As a consequence, we get the following characterization of‖ in M · C:

• for anyλ, µ ∈M and for any 1-cellsx, y in C, we haveλ · x ‖ µ · y iff λ = µ andλx = λy;

• for anyλ, µ ∈M and for anyi-cellsx, y in C with i > 1, we haveλ · x ‖ µ · y iff λ = µ andx ‖ y.

In particular, for any 2-cellλ · u : λ · x→ λ · y in M ·C, we haveu : x→ y in C, so thatx = y andλ · x ‖ λ · y.
The other boundary conditions forM · C follow directly from the boundary conditions forC.

We also get the following characterization of iterated sources and targets inM · C:

• if i > 0, we getλ · x : λ→0 λx in M · C for anyλ ∈M and for anyi-cell x in C;

• if j > i > 0, we getλ · u : λ · x→i λ · y in M · C for anyλ ∈M and for anyj-cell u : x→i y in C.

As a consequence, we get the following characterization of.i in M · C:

• for anyλ, µ ∈M and for anyi-cellsx, y in C with i > 0, we haveλ · x .0 µ · y iff λx = µ;

• for anyλ, µ ∈M and for anyj-cellsx, y in C with j > i > 0, we haveλ · x .i µ · y iff λ = µ andx .i y.

Using this, we define compositions and units inM · C as follows:

• (λ · x) ∗0 (λx · y) = λ · xy for anyλ ∈M and for anyi-cellsx, y in C with i > 0;

• (λ · x) ∗i (λ · y) = λ · (x ∗i y) for anyλ ∈M and for anyj-cellsx .i y in C with j > i > 0;

• 1λ·x = λ · 1x for anyλ ∈M and for anyi-cell x in C. In particular,1λ = λ · 1 for anyλ ∈M .

It is easy to see that those operations satisfy the laws of associativity, left and right unit, and interchange. Moreover,
we have an obviousω-functor f̃ : M · C → C defined byf̃i(λ · x) = x for anyλ ∈M andx ∈ Ci.

Definition 13 Theω-categoryM · C : M ⇔ M · C1 ⇔ M · C2 · · ·M · Ci ⇔ M · Ci+1 · · · defined as above
is called theunfolding off : C →M , and theω-functor f̃ : M · C → C is called itsfolding ω-functor.

Note that the action ofM onM · C is compatible with this structure ofω-category.
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3.2 Unfolding an acyclic fibration

Proposition 4 If G is a group, then the unfoldingG ·C of an acyclic fibrationp : C → G is an acyclicω-category.

Proof. G is inhabited, and using the fact thatp is an acyclic fibration, we prove the filling property forG · C:

• if λ, µ ∈ G, there is somex ∈ C1 such thatx = λ−1µ, and we getλ · x : λ→ λx = λλ−1µ = µ in G · C;

• if λ ·x ‖ µ · y whereλ, µ ∈ G andx, y ∈ C1, we getλ = µ andλx = λy, so thatx = y by left cancellation.
Hence, there is some 2-cellu : x→ y in C, and we getλ · u : λ · x→ λ · y = µ · y in G · C;

• finally, if i > 1 andλ · x ‖ µ · y whereλ, µ ∈ G andx, y ∈ Ci , we getλ = µ andx ‖ y, so thatx = y.
Hence, there is somei+1-cell u : x→ y in C, and we getλ · u : λ · x→ λ · y = µ · y in G · C. J

In fact, the converse holds: If the unfoldingM · C of f : C →M is an acyclicω-category, thenM is a group and
f is an acyclic fibration. Hence, the above result cannot hold for arbitrary monoids, but we have a weaker result:

Proposition 5 The unfoldingM ·C of an acyclic fibrationp : C →M has the followingrelative filling property:

• for anyµ ∈M , there is some1 · x : 1→ µ in M · C;

• for anyx, y ∈ Ci with i > 0 such that1 · x ‖ 1 · y, there is some1 · u : 1 · x→ 1 · y in M · C.

No extra assumption on the monoidM is needed here, sinceλ = 1 has a right inverse and is left cancelable.

3.3 Free case

Now we considerf : S∗ → M , whereS∗ is a freeω-monoid. Hence,S∗0 = S0 = > andM · S∗0 = M · > = M .
We shall see that the unfoldingM · S∗ : M ⇔M · S∗1 ⇔M · S∗2 · · ·M · S∗i ⇔M · S∗i+1 · · · is a freeω-category.

If n > 0, we have a canonical injection ofM · Sn intoM · S∗n, from which we get a graphM · S∗n−1 ⇔ M · Sn,
and ifn > 1, the boundary conditionsσn−2 ◦ σn−1 = σn−2 ◦ τn−1 andτn−2 ◦ σn−1 = τn−2 ◦ τn−1 are satisfied.
We get then-categoryM ⇔ M · S∗1 ⇔ M · S∗2 · · ·M · S∗n−2 ⇔ M · S∗n−1 ⇔ (M · Sn)∗, and the canonical
injection extends toϕn : (M · Sn)∗ →M · S∗n, which is compatible with sources, targets, compositions and units.

If λ ∈ M andξ ∈ Sn, we getλ · ξ ∈ M · Sn and we write〈λ · ξ〉 for the corresponding element of(M · Sn)∗.
More generally, ifλ ∈M andx ∈ S∗n, we getλ ·x ∈M ·S∗n and we define〈λ ·x〉 ∈ (M ·Sn)∗ by induction onx,
in such a way that〈λ · x〉 has the same source and the same target asλ · x:

• 〈λ · xy〉 = 〈λ · x〉 ∗0 〈λx · y〉 for anyλ ∈M and for anyn-cellsx, y in S∗;

• 〈λ · (x ∗i y)〉 = 〈λ · x〉 ∗i 〈λ · y〉 for anyλ ∈M and for anyn-cellsx .i y in S∗ with n > i > 0;

• 〈λ · 1x〉 = 1λ·x for anyλ ∈M and for anyn−1-cell x in S∗. In particular,〈λ · 1〉 = 1λ ∈ (M · S1)∗.

In other words,〈λ · x〉 is a decomposition of the cellλ · x into elements ofM · Sn. The fact that it is well defined
follows from the universal property ofS∗n and from the definition of some suitablen-category: See appendix B.
Hence, we getψn : M · S∗n → (M · Sn)∗, which is compatible with sources, targets, compositions and units.

By construction, we haveϕn〈λ · ξ〉 = λ · ξ for anyλ ∈M andξ ∈ Sn, so thatψn(ϕn〈λ · ξ〉) = ψn(λ · ξ) = 〈λ · ξ〉.
By the universal property of(M · Sn)∗, the mapψn ◦ ϕn is the identity on(M · Sn)∗.

Lemma 3 ϕn〈λ · x〉 = λ · x for anyλ ∈M andx ∈ S∗n. In other words,ϕn ◦ ψn is the identity onM · S∗n.

This is easily proved by induction onx. So we can identifyM ·S∗n with (M ·Sn)∗ and we get the following result:

Proposition 6 The unfoldingM · S∗ : M ⇔M · S∗1 ⇔M · S∗2 · · ·M · S∗i ⇔M · S∗i+1 · · · can be identified with
a freeω-category(M · S)∗ : M ⇔ (M · S1)∗ ⇔ (M · S2)∗ · · · (M · Si)∗ ⇔ (M · Si+1)∗ · · ·

By abelianization ofM · S∗ = (M · S)∗, we get the following chain-complex of freeZ-modules:

Z(M · S) : ZM ∂0← Z(M · S1)
∂1← Z(M · S2) · · ·Z(M · Si)

∂i← Z(M · Si+1) · · ·

Moreover,Z(M · Si) can be identified with the freeZM -moduleZM · Si.
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Lemma 4 dλ · xc = λ · d1 · xc for anyλ ∈M andx ∈ S∗i .

This is proved by induction onx. As a consequence, we get∂i(λ · ξ) = λ · ∂i(1 · ξ) for anyλ ∈M andξ ∈ Si+1.
In other words,∂i : ZM · Si+1 → ZM · Si is ZM -linear.

We also getf̃ab
i dλ · ξc = dξc for anyλ ∈ M andξ ∈ Si. In other words,f̃ab

i : ZM · Si → ZSi is ZM -linear
if we consider thetrivial action of M onZSi.

To sum up, we get the following result:

Proposition 7 The abelianization of the unfoldingM ·S∗ = (M ·S)∗ yields a chain-complex of freeZM -modules:

ZM · S : ZM ∂0← ZM · S1
∂1← ZM · S2 · · ·ZM · Si

∂i← ZM · Si+1 · · ·

Furthermore, the chain-complexZS is obtained by trivializing the action ofM in ZM · S.

3.4 Unfolding a resolution

Now we can state our main result:

Theorem 2 The unfolding of a monoidal resolutionp : S∗ →M yields is a resolution ofZ by freeZM -modules:

0← Z ε← ZM ∂0← ZM · S1
∂1← ZM · S2 · · ·ZM · Si

∂i← ZM · Si+1 · · ·

Here,ε is defined byε(λ) = 1 for all λ ∈M . It is ZM -linear if we consider the trivial action ofM onZ.

Since the homology ofM is obtained by trivializing the action ofM in such a resolution, we get:

Corollary 4 The homology of a monoidM coincides with its polygraphic homology.

For groups, Theorem 2 follows from Proposition 4 and Corollary 3.

For monoids, we need a little more. First, we consider someω-categoryC and two subsetsX ,Y ⊂ C0.

Definition 14 p : C → D has thelifting property with respect to(X ,Y) if the following conditions hold:

• for anyx ∈ X , y ∈ Y, andv : p0(x)→ p0(y) in D, there is someu : x→ y in C such thatp1(u) = v;

X 3 x u // y ∈ Y p0(x)
v // p0(y)

• for any i-cellsx ‖ y in C with i > 0 such thatx[ ∈ X andx] ∈ Y, and for anyv : pi(x) → pi(y) in D,
there is someu : x→ y in C such thatpi+1(u) = v.

X 3 x[

x ++

y
33

�� ��
�� u x] ∈ Y pi(x[)

pi(x) ++

pi(y)
33

�� ��
�� v pi(x])

If X = Y, we say thatp has thelifting property with respect toX .

Thus the lifting property with respect toX = C0 is just the lifting property of Definition 7.

Note that there is a straightforward generalization of Proposition 1:

Proposition 8 Let p : C → D, q : S∗ → D andX ⊂ C0. If q0(S∗0 ) ⊂ p0(X ) andp has the lifting property with
respect toX , then there is anf : S∗ → C such thatq = p ◦ f .

Using this, the following generalization of Proposition 2 is proved in Section 5:

Proposition 9 For anyp : C → D andf, g : S∗ → C such thatp ◦ f = p ◦ g andp satisfies the lifting property
with respect to(f0(S∗0 ), g0(S∗0 )), we get a homotopyf  g.

Now we consider the unfoldingC = M · S∗ = (M · S)∗ of some monoidal resolution ofM , so thatC0 = M .

In that case, we have two canonicalω-functorsπ : C → >, andι : > → C corresponding to the 0-cell1 ∈ M .
Forf = ι◦π : C → C andg = idC , we getπ◦f = π = π◦g, f0(S∗0 ) = {1} andg0(S∗0 ) = M . By Proposition 5,
π : C → > has the lifting property with respect to({1},M). Hence, we get a homotopyι ◦ π  idC .

By Proposition 3, the augmented chain-complex of Theorem 2 is exact and we are done.
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4 Pathω-category

LetC be anω-category. For any0-cellsx, y in C, we define theω-category[x, y] as follows:

• there is ani-cell [u] in [x, y] for eachi+1-cell u : x→0 y in C;

• we get[w] : [u]→ [v] in [x, y] for anyi+1-cellsu, v : x→0 y and for anyi+2-cellw : u→ v in C;

• compositions are defined by[u] ∗i [v] = [u ∗i+1 v] wheneveru .i+1 v, and units by1[u] = [1u].

If j > i > 0, we writeu ∗0 v for thej-cell 1j
u ∗0 v wheneveru is ani-cell andv is aj-cell such that1j

u .0 v or for
thej-cell u ∗0 1j

v wheneveru is aj-cell andv is ani-cell such thatu .0 1j
v. For any0-cellsx, y, z, we get:

• theprecompositionω-functoru · − : [y, z]→ [x, z] for each 1-cellu : x→ y, defined byu · [v] = [u ∗0 v];

• thepostcompositionω-functor− · v : [x, y]→ [x, z] for each 1-cellv : y → z, defined by[u] · v = [u ∗0 v];

• thecompositionω-bifunctor−~− : [x, y]× [y, z]→ [x, z], defined by[u]~ [v] = [u ∗0 v].

4.1 Cylinders

Definition 15 By induction oni, we define the notion ofi-cylinderU : x y y betweeni-cellsx andy in C:

• a 0-cylinderU : x y y is given by some1-cellU \ : x→ y;

• if i > 0, an i-cylinderU : x y y is given by two 1-cellsU [ : x[ → y[ andU ] : x] → y], together with
somei−1-cylinder[U ] : [x] · U ] y U [ · [y] in theω-category[x[, y]].

If U : x y y is such ani-cylinder, we writeπ1 U for its top cellx andπ2 U for its bottom celly. Finally, we write
U \ for its principal cell, which is inductively defined by

[
U \

]
= [U ]\: It is an i+1-cell inC.

•
y

•
x

��

U \

•
y[

•
x[

��

U [

•
x]x //

•
y]

U ]

��
y

//

U \
��

�

����
�

Definition 16 By induction oni, we define thesourcei-cylinderU : x y x′ and thetargeti-cylinderV : y y y′

of anyi+1-cylinderW : z y z′ betweeni+1-cellsz : x→ y andz′ : x′ → y′ in C:

• if i = 0, thenU \ = W [ andV \ = W ];

• if i > 0, thenU [ = V [ = W [ andU ] = V ] = W ], whereas the twoi−1-cylinders[U ] and [V ] are
respectively defined as the source and the target of thei-cylinder[W ] in [z[, z′]].

In that case, we writeW : U → V or alsoW : U → V | z y z′.

•
y[

•99•
y]

%%

•
x[

��

W [

•
x]%%•99

W ]

��

V \ll

U \

��
W \rr

x
%%LL

L

y
%%

Lemma 5 We getU ‖ V for anyi+1-cylinderW : U → V . In other words, cylinders form a globular set.

Note also that the 0-sourceU and the 0-targetV of anyi+1-cylinderW are given byU \ = W [ andV \ = W ].
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Definition 17 By induction oni, we define thetrivial i-cylinderτ x : x y x for anyi-cell x in C:

• if i = 0, then(τ x)\ = 1x;

• if i > 0, then(τ x)[ = 1x[ and(τ x)] = 1x] , whereas[τ x] is the trivial i−1-cylinderτ [x] : [x] y [x].

Lemma 6 We getτ x ‖ τ y for anyi-cellsx ‖ y in C, andτ z : τ x→ τ y for anyz : x→ y.

Definition 18 An i-cylinder isdegeneratewheneveri = 0 or i > 0 and its source and target are trivial.

Lemma 7 (description of degenerate cylinders)

• For any degeneratei-cylinderU : x y y, we getx ‖ y andU \ : x→ y.

• Conversely, anyi+1-cell u : x→ y yields a unique degeneratei-cylinderU : x y y such thatU \ = u.

For instance, the unit1x : x→ x yields the triviali-cylinderτ x : x y x.
To sum up, we have defined a globular setCI , whosei-cells arei-cylinders inC, together with homomorphisms
π1, π2 : CI → C andτ : C → CI such thatπ1 ◦ τ = idC = π2 ◦ τ .

C
idC

~~}}
}}

}}
}}

τ

��

idC

  A
AA

AA
AA

A

C CI
π1
oo

π2
// C

Theorem 3 There is a structure ofω-category onCI such thatπ1, π2 : CI → C andτ : C → CI areω-functors.
Moreover, this construction is functorial andπ1, π2, τ are natural.

Note that a variant of this construction (reversible cylinders) is needed to define the model structure in [LMW07].

The rest of this section is devoted to the proof of this crucial result.

4.2 Concatenation

If f : C → D is anω-functor andx is ani-cell inC, we shall writef x for thei-cell fi(x) in D.

Lemma 8 (functoriality)

Anyω-functorf : C → D extends to cylinders in a canonical way:

• for anyi-cylinderU : x y y in C, we get somei-cylinderf I U : f x y f y in D;

• we getf I U ‖ f I V wheneverU ‖ V , andf I W : f I U → f I V for anyW : U → V .

Moreover, we get(g ◦ f)I = gI ◦ f I for anyf : C → D andg : D → E, andidI
C = idCI for anyω-categoryC.

In other words, we get a functor fromω-categories to globular sets and the homomorphismsπ1, π2 are natural.

In particular, precomposition and postcomposition extend to cylinders. For any 0-cellsx, y, z, we get:

• thei-cylinderu · V in [x, z], defined for any 1-cellu : x→ y and for anyi-cylinderV in [y, z];

• thei-cylinderU · v in [x, z], defined for any 1-cellv : y → z and for anyi-cylinderU in [x, y].

Those two operations are respectively calledleft andright action. By functoriality, we get the following result:

Lemma 9 (bimodularity)

The following identities hold for any 0-cellsx, y, z, t:

• (u ∗0 v) ·W = u · (v ·W ) for any 1-cellsu : x→ y andv : y → z, and for anyi-cylinderW in [z, t];

• (U · v) · w = U · (v ∗0 w) for any 1-cellsv : y → z andw : z → t, and for anyi-cylinderU in [x, y];

• (u · V ) · w = u · (V · w) for any 1-cellsu : x→ y andw : z → t, and for anyi-cylinderV in [y, z].
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Moreover, we have1x · U = U = U · 1y for any 0-cellsx, y and for anyi-cylinderU in [x, y].

We omit parentheses in such expressions: For instance,u · v ·W stands foru · (v ·W ), andU · v ·w for (U · v) ·w.
Moreover, action will always have precedence over other operations: For instance,u ·V ∗W stands for(u ·V )∗W .

Definition 19 By induction oni, we define thei-cylinderU ∗ V : x y z, called theconcatenationof U with V ,
for anyi-cylindersU : x y y andV : y y z:

• if i = 0, then(U ∗ V )\ = U \ ∗0 V \;

• if i > 0, then(U ∗ V )[ = U [ ∗0 V [ and(U ∗ V )] = U ] ∗0 V ], whereas[U ∗ V ] = [U ] · V ] ∗ U [ · [V ].

In both cases, we say thatU andV areconsecutive, and we writeU . V .

• •99•%%

•

��

•%%•99

��

x
%%LL

L

y
%%

z
%%

:: $$

Lemma 10 We getU ∗ U ′ ‖ V ∗ V ′ for any i-cylindersU ‖ V andU ′ ‖ V ′ such thatU . U ′ andV . V ′, and
W ∗W ′ : U ∗ U ′ → V ∗ V ′ for anyi+1-cylindersW : U → V andW ′ : U ′ → V ′ such thatW . W ′.

Lemma 11 (compatibility off I with ∗ andτ )

The following identities hold anyω-functorf : C → D:

• f I(U ∗ V ) = f I U ∗ f I V for anyi-cylindersU . V in C;

• f I(τ x) = τ(f x) for anyi-cell x in C.

In the cases of precomposition and postcomposition, we get the following result:

Lemma 12 (distributivity over∗ andτ )

The following identities hold for any 0-cellsx, y, z and for any 1-cellu : x→ y:

• u · (V ∗W ) = u · V ∗ u ·W for anyi-cylindersV . W in [y, z];

• u · τ [v] = τ [u ∗0 v] for anyi+1-cell v : y →0 z.

There are similar properties for right action.

Lemma 13 (associativity and units for∗)

• (U ∗ V ) ∗W = U ∗ (V ∗W ) for anyi-cylindersU . V . W ;

• τ x ∗ U = U = U ∗ τ y for anyi-cylinderU : x y y.

Proof. By induction oni. The casei = 0 is obvious.

If i > 0, the first identity is obtained as follows:

[(U ∗ V ) ∗W ] = [U ∗ V ] ·W ] ∗ (U ∗ V )[ · [W ] (definition of∗)
= ([U ] · V ] ∗ U [ · [V ]) ·W ] ∗ (U [ ∗0 V [) · [W ] (definition of∗)
= ([U ] · V ] ·W ] ∗ U [ · [V ] ·W ]) ∗ U [ · V [ · [W ] (distributivity over∗)
= [U ] · V ] ·W ] ∗ (U [ · [V ] ·W ] ∗ U [ · V [ · [W ]) (induction hypothesis)

= [U ] · (V ] ∗0 W ]) ∗ U [ · ([V ] ·W ] ∗ V [ · [W ]) (distributivity over∗)
= [U ] · (V ∗W )] ∗ U [ · [V ∗W ] (definition of∗)
= [U ∗ (V ∗W )]. (definition of∗)
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The second one is obtained as follows, using distributivity overτ and the induction hypothesis:

[τ x ∗ U ] = [τ x] · U ] ∗ (τ x)[ · [U ] = τ [x] · U ] ∗ 1x[ · [U ] = τ
[
x ∗0 U ]

]
∗ [U ] = [U ],

and similarly for the third one. J

From now on, we shall omit parentheses in concatenations.

4.3 Compositions and units

Lemma 14 There are natural isomorphisms(C × D)I ' CI × DI and>I ' >, which satisfy the following
coherence conditions with the canonical isomorphisms(C ×D)×E ' C × (D×E) and>×C ' C ' C ×>:

((C ×D)× E)I //

��

(C × (D × E))I

��
(C ×D)I × EI

��

CI × (D × E)I

��
(CI ×DI)× EI // CI × (DI × EI)

(>× C)I //

��

CI (C ×>)Ioo

��
>I × CI

��

CI ×>I

��
>× CI // CI CI ×>oo

Hence, anyω-bifunctorf : C×D → E extends to cylinders in a canonical way. We can apply this to composition:
For any 0-cellsx, y, z, we get thei-cylinderU ~ V in [x, z], defined for anyi-cylindersU in [x, y] andV in [y, z].

Note also that any 0-cellx in C corresponds to anω-functorιx : > → C, from which we getιIx : > ' >I → CI .
It is easy to see that this homomorphism is given by the sequence of triviali-cylindersτ 1i

x.

In fact, there is also a coherence condition with the symmetryC ×D ' D × C, but we shall not use it explicitly.
By functoriality and coherence with the isomorphism(C ×D)×E ' C × (D ×E), we get the following result:

Lemma 15 (associativity of~)

The following identity holds for any 0-cellsx, y, z, t, and for anyi-cylindersU in [x, y], V in [y, z] andW in [z, t]:

(U ~ V )~W = U ~ (V ~W ).

Note that∗ andτ can be defined pairwise in(C ×D)I ' CI ×DI . By Lemma 11, we get the following result:

Lemma 16 (compatibility of~ with ∗ andτ )

The following identities hold for any 0-cellsx, y, z:

• (U ∗ U ′)~ (V ∗ V ′) = (U ~ V ) ∗ (U ′ ~ V ′) for anyi-cylindersU . U ′ in [x, y] andV . V ′ in [y, z];

• τ [u]~ τ [v] = τ [u ∗0 v] for anyi+1-cellsu : x→0 y andv : y →0 z.

By functoriality and coherence with the isomorphisms>× C ' C ' C ×>, we get the following result:

Lemma 17 (representability)

The following identities hold for any 0-cellsx, y, z:

• u · V = τ 1i
[u] ~ V = τ

[
1i+1

u

]
~ V for any 1-cellu : x→ y and for anyi-cylinderV in [y, z];

• U · v = U ~ τ 1i
[v] = U ~ τ

[
1i+1

v

]
for any 1-cellv : y → z and for anyi-cylinderU in [x, y].

In other words, the (left and right) action of a 1-cellu is represented by thei-cylinderτ
[
1i+1

u

]
.

For any 0-cellsx, y, z, we extend left and right action to higher dimensional cells as follows:

• u · V = τ [u]~ V for anyi+1-cell u : x→ y and for anyi-cylinderV in [y, z];

• U · v = U ~ τ [v] for anyi+1-cell v : y → z and for anyi-cylinderU in [x, y].

In particular, we getu · V = τ
[
1i+1

u

]
~ V = 1i+1

u · V for any 1-cellu : x→ y and for anyi-cylinderV in [y, z],
and similarly for the right action. This means that we have indeed extended the action of 1-cells on cylinders.

By associativity of~ and compatibility of~ with τ , we get the following result:
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Lemma 18 (extended bimodularity)

The first three identities of Lemma 9 extend to higher dimensional cells.

Lemma 19 (extended distributivity)

The identities of Lemma 12 extend to higher dimensional cells.

Proof. The first identity is obtained as follows, using compatibility of~ with ∗:

u · (V ∗W ) = τ [u]~ (V ∗W ) = (τ [u] ∗ τ [u])~ (V ∗W ) = (τ [u]~ V ) ∗ (τ [u]~W ) = u · V ∗ u ·W.

Similarly, the second one follows from compatibility of~ with τ . J

Lemma 20 (commutation)

The following identities hold for any 0-cellsx, y, z, for any i+1-cells u, u′ : x →0 y and v, v′ : y →0 z,
and for anyi-cylindersU : [u] y [u′] in [x, y] andV : [v] y [v′] in [y, z]:

U · v ∗ u′ · V = U ~ V = u · V ∗ U · v′.

Proof. The first identity is obtained as follows, using compatibility of~ with ∗:

U · v ∗ u′ · V = (U ~ τ [v]) ∗ (τ [u′]~ V ) = (U ∗ τ [u′])~ (τ [v] ∗ V ) = U ~ V,

and similarly for the second one. J

From now on, we assume thatj > i.

Definition 20 By induction oni, we define thej-cylinderU ∗i V : R→i T | x ∗i y y x′ ∗i y′ for anyj-cylinders
U : R→i S | x y x′ andV : S →i T | y y y′:

• (U ∗0 V )[ = U [ = R\ and(U ∗0 V )] = V ] = T \, whereas[U ∗0 V ] = x · [V ] ∗ [U ] · y′;

• if i > 0, then(U ∗i V )[ = U [ = V [ and(U ∗i V )] = U ] = V ], whereas[U ∗i V ] = [U ] ∗i−1 [V ].

In both cases, we say thatU andV are i-composable, and we writeU .i V .

The following picture shows the0-composition and1-composition of2-cylinders:

• •99%% •99 %%

• •99%% •99 %%

�� �� ��

x
%%LL

L

x′
%%

y
%%LL

L

y′
%%

ll ll
�� ��
oo oo

• •99 %% //

• •99 %% //

�� ��

��
rr

��

x��/
/

y��/
/

x′ ��

y′ ��

oo oo

Lemma 21 We getU ∗i U ′ ‖ V ∗i V ′ for anyj-cylindersU ‖ V andU ′ ‖ V ′ such thatU .i U
′ (so thatV .i V

′),
andW ∗i W ′ : U ∗i U ′ → V ∗i V ′ for anyj+1-cylindersW : U → V andW ′ : U ′ → V ′.

Definition 21 By induction oni, we define thei+1-cylinder1U : U → U | 1x y 1y for anyi-cylinderU : x y y:

• if i = 0, then(1U )[ = (1U )] = U \, whereas[1U ] = τ
[
U \

]
;

• if i > 0, then(1U )[ = U [ and(1U )] = U ], whereas[1U ] = 1[U ].

We write1i+1
U for 1U , and we inductively define1j+1

U : 1j
U → 1j

U | 1j+1
x y 1j+1

y by1j+1
U = 11j

U
for all j > i.

Lemma 22 (compatibility ofτ with ∗i and units)

• τ(u ∗i v) = τ u ∗i τ v for anyj-cellsu .i v;
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• τ 1x = 1τ x for anyi-cell x.

Proof. By induction oni.

If i = 0, the first identity is obtained as follows, using distributivity overτ :

[τ(u ∗0 v)] = τ [u ∗0 v] = τ [u ∗0 v] ∗ τ [u ∗0 v] = u · τ [v] ∗ τ [u] · v = u · [τ v] ∗ [τ u] · v = [τ u ∗0 τ v].

The second one is obtained as follows:[τ 1x] = τ [1x] = τ
[
(τ x)\

]
= [1τ x].

If i > 0, we apply the induction hypothesis. J

Now, we write1i
x for x wheneverx is ani-cell, so that the following result holds forj = i+1:

Lemma 23 For all j > i and for anyi-cylinderU : x y y, we get the following characterization of1j
U :

• if i = 0, then(1j
U )[ = (1j

U )] = U \, whereas
[
1j

U

]
= τ

[
1j

U\

]
;

• if i > 0, then(1j
U )[ = U [ and(1j

U )] = U ], whereas
[
1j

U

]
= 1j−1

[U ] .

This is easily proved by induction onj, using compatibility ofτ with units.

Lemma 24 (associativity and units for∗i)

• (U ∗i V ) ∗i W = U ∗i (V ∗i W ) for anyj-cylindersU .i V .i W ;

• 1j
U ∗i W = W = W ∗i 1j

V for anyj-cylinderW : U →i V .

Proof. By induction oni.

If i = 0, the first identity is obtained as follows (withU : x y x′, V : y y y′ andW : z y z′):

[(U ∗0 V ) ∗0 W ] = (x ∗0 y) · [W ] ∗ [U ∗0 V ] · z′ (definition of∗0)

= x · y · [W ] ∗ (x · [V ] ∗ [U ] · y′) · z′ (definition of∗0)

= x · y · [W ] ∗ x · [V ] · z′ ∗ [U ] · y′ · z′ (distributivity over∗)
= x · (y · [W ] ∗ [V ] · z′) ∗ [U ] · y′ · z′ (distributivity over∗)
= x · [V ∗W ] ∗ [U ] · (y′ ∗0 z′) (definition of∗0)

= [U ∗0 (V ∗0 W )]. (definition of∗0)

The second one is obtained as follows (withW : x y y andU : x[ y y[), using distributivity overτ :[
1j

U ∗0 W
]

= 1j
x[ · [W ] ∗

[
1j

U

]
· y = 1x[ · [W ] ∗ τ

[
1j

U\

]
· y = [W ] ∗ τ

[
1j

U\ ∗0 y
]

= [W ],

and similarly for the third one.

If i > 0, we apply the induction hypothesis. J

4.4 Interchange

Lemma 25 (compatibility off I with ∗i and units)

The following identities hold anyω-functorf : C → D:

• f I(U ∗i V ) = f I U ∗i f I V for anyj-cylindersU .i V in C;

• f I 1U = 1fI U for anyi-cylinderU in C.

In the cases of precomposition and postcomposition, we get the following result:

Lemma 26 (distributivity over∗i and units)

The following identities hold for any 0-cellsx, y, z and for any 1-cellu : x→ y:
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• u · (V ∗i W ) = u · V ∗i u ·W for anyj-cylindersV .i W in [y, z];

• u · 1V = 1u·V for anyi-cylinderV in [y, z].

There are similar properties for right action.

Lemma 27 (compatibility of∗ with ∗i and units)

• (U ∗i V ) ∗ (U ′ ∗i V ′) = (U ∗ U ′) ∗i (V ∗ V ′) for anyj-cylindersU .i V andU ′ .i V
′ such thatU . U ′

andV . V ′;

• 1U ∗ 1V = 1U∗V for anyi-cylindersU . V .

Proof. By induction oni.

If i = 0, the first identity is obtained as follows (withU : x y x′, U ′ : x′ y x′′, V : y y y′ andV ′ : y′ y y′′):

[(U ∗0 V ) ∗ (U ′ ∗0 V ′)] = [U ∗0 V ] · (U ′ ∗0 V ′)] ∗ (U ∗0 V )[ · [U ′ ∗0 V ′] (definition of∗)
= (x · [V ] ∗ [U ] · y′) · V ′] ∗ U [ · (x′ · [V ′] ∗ [U ′] · y′′) (definition of∗0)

= x · [V ] · V ′] ∗ [U ] · y′ · V ′] ∗ U [ · x′ · [V ′] ∗ U [ · [U ′] · y′′ (distributivity over∗)
= x · [V ] · V ′] ∗ x · V [ · [V ′] ∗ [U ] · U ′] · y′′ ∗ U [ · [U ′] · y′′ (commutation)

= x · ([V ] · V ′] ∗ V [ · [V ′]) ∗ ([U ] · U ′] ∗ U [ · [U ′]) · y′′ (distributivity over∗)
= x · [V ∗ V ′] ∗ [U ∗ U ′] · y′′ (definition of∗)
= [(U ∗ U ′) ∗0 (V ∗ V ′)]. (definition of∗0)

In the commutation step, we use the fact thatU ] = V [ andU ′] = V ′[ sinceU .0 V andU ′ .0 V
′.

The second one is obtained as follows, using distributivity overτ :

[1U ∗ 1V ] = [1U ] · (1V )] ∗ (1U )[ · [1V ] = τ
[
U \

]
· V \ ∗ U \ · τ

[
V \

]
=

τ
[
U \ ∗0 V \

]
∗ τ

[
U \ ∗0 V \

]
= τ

[
U \ ∗0 V \

]
= τ

[
(U ∗ V )\

]
= [1U∗V ].

If i > 0, the first identity is obtained as follows:

[(U ∗i V ) ∗ (U ′ ∗i V ′)] = [U ∗i V ] · (U ′ ∗i V ′)] ∗ (U ∗i V )[ · [U ′ ∗i V ′] (definition of∗)
= ([U ] ∗i−1 [V ]) · U ′] ∗ U [ · ([U ′] ∗i−1 [V ′]) (definition of∗i)
= ([U ] · U ′] ∗i−1 [V ] · U ′]) ∗ (U [ · [U ′] ∗i−1 U

[ · [V ′]) (distributivity over∗i−1)

= ([U ] · U ′] ∗ U [ · [U ′]) ∗i−1 ([V ] · U ′] ∗ U [ · [V ′]) (induction hypothesis)

= [U ∗ U ′] ∗i−1 [V ∗ V ′] (definition of∗)
= [(U ∗ U ′) ∗i (V ∗ V ′)]. (definition of∗i)

In the penultimate step, we use the fact thatU [ = V [ andU ′] = V ′] sinceU .i V andU ′ .i V
′.

The second one is obtained as follows, using distributivity over units and the induction hypothesis:

[1U ∗ 1V ] = [1U ] · (1V )] ∗ (1U )[ · [1V ] = 1[U ] · V ] ∗ U [ · 1[V ] =

1[U ]·V ] ∗ 1U[·[V ] = 1[U ]·V ]∗U[·[V ] = 1[U∗V ] = [1U∗V ]. J
Note that∗i and units can be defined pairwise in(C × D)I ' CI × DI . By Lemma 25, we get the following
result:

Lemma 28 (compatibility of~ with ∗i and units)

The following identities hold for any 0-cellsx, y, z:

• (U ∗i U ′)~ (V ∗i V ′) = (U ~ V ) ∗i (U ′ ~ V ′) for anyj-cylindersU .i U
′ in [x, y] andV .i V

′ in [y, z];

• 1U ~ 1V = 1U~V for anyi-cylindersU in [x, y] andV in [y, z].
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Lemma 29 (compatibility of· with ∗i and units)

The following identities hold for any 0-cellsx, y, z:

• (u ∗i+1 u
′) · (V ∗i V ′) = u · V ∗i u′ · V ′ for anyj+1-cellsu, u′ : x→0 y such thatu .i+1 u

′ and for any
j-cylindersV .i V

′ in [y, z];

• 1u · 1V = 1u·V for anyi+1-cell u : x→0 y and for anyi-cylinderV in [y, z].

There are similar properties for right action.

Proof. The first identity is obtained as follows:

(u ∗i+1 u
′) · (V ∗i V ′) = τ [u ∗i+1 u

′]~ (V ∗i V ′) (definition of·)
= τ([u] ∗i [u′])~ (V ∗i V ′) (definition of∗i in [x, y])
= (τ [u] ∗i τ [u′])~ (V ∗i V ′) (compatibility ofτ with ∗i)
= (τ [u]~ V ) ∗i (τ [u′]~ V ′) (compatibility of~ with ∗i)
= u · V ∗i u′ · V ′. (definition of·)

The second one is obtained as follows, using compatibility ofτ and~ with units:

1u · 1V = τ [1u]~ 1V = τ 1[u] ~ 1V = 1τ [u] ~ 1V = 1τ [u]~V = 1u·V . J

Now we assume thatk > j > i.

Lemma 30 (interchange laws)

• (U ∗j U ′)∗i (V ∗j V ′) = (U ∗i V )∗j (U ′ ∗i V ′) for anyk-cylindersU .j U
′ andV .j V

′ such thatU .i V ;

• 1U ∗i 1V = 1U∗iV for anyj-cylindersU .i V .

Proof. By induction oni.

If i = 0, the first identity is obtained as follows (withU : x y y, U ′ : x′ y y′, V : z y t andV ′ : z′ y t′):

[(U ∗j U ′) ∗0 (V ∗j V ′)] = (x ∗j x′) · [V ∗j V ′] ∗ [U ∗j U ′] · (t ∗j t′) (definition of∗0)

= (x ∗j x′) · ([V ] ∗j−1 [V ′]) ∗ ([U ] ∗j−1 [U ′]) · (t ∗j t′) (definition of∗j)

= (x · [V ] ∗j−1 x
′ · [V ′]) ∗ ([U ] · t ∗j−1 [U ′] · t′) (compatibility of· with ∗j−1)

= (x · [V ] ∗ [U ] · t) ∗j−1 (x′ · [V ′] ∗ [U ′] · t′) (compatibility of∗ with ∗j−1)

= [U ∗0 V ] ∗j−1 [U ′ ∗0 V ′] (definition of∗0)

= [(U ∗0 V ) ∗j (U ′ ∗0 V ′)]. (definition of∗j)

The second one is obtained as follows (withU : x y x′ andV : y y y′), using compatibility of· and∗ with units:

[1U ∗0 1V ] = 1x · [1V ] ∗ [1U ] · 1y′ = 1x · 1[V ] ∗ 1[U ] · 1y′ =

1x·[V ] ∗ 1[U ]·y′ = 1x·[V ]∗[U ]·y′ = 1[U∗0V ] = [1U∗0V ].

If i > 0, we apply the induction hypothesis. J

To sum up, we have the following results:

• CI is anω-category by Lemmas 24 and 30;

• π1, π2 areω-functors by construction andτ by Lemma 22;

• CI is functorial by Lemmas 8 and 25;

• π1, π2 are natural by Lemma 8 andτ by Lemma 11.

Hence, we have proved Theorem 3.
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5 Homotopy

Definition 22 Letf, g : E → C be twoω-functors. A(directed) homotopyfromf tog is anω-functorh : E → CI

such thatπ1
C ◦ h = f andπ2

C ◦ h = g. The existence of such a homotopy is denoted byf  g.

In other words,f  g if and only if there is anh : E → CI such that the following diagram commutes, with
π =

(
π1, π2

)
:

CI

π

��
E

h

>>}
}

}
}

(f,g)
// C2

We first turn to the proof of Proposition 2, Section 2.3 and Proposition 9, Section 3.4, a generalization of the
former. In both cases we are given a polygraphS andω-functorsp : C → D, f, g : S∗ → C, wherep satisfies
some lifting properties, and we need to build anh : S∗ → CI making the following diagram commutative:

CI

π

��
S∗

h

>>|
|

|
|

(f,g)
// C2

Now π is not an acyclic fibration in general: therefore, we need a newω-functorπ/p, restrictingπ to someω-
categories depending onp and having the desired lifting properties.

5.1 Restriction of the projection

In this section, we define the abovementionedω-functorπ/p and establish its lifting properties.

Thus, letp : C → D by anyω-functor, and∆ : D → D2 the diagonal map:x 7→ (x, x). We define a new
ω-categoryC2

/p together withω-functorsa and∆∗p2 by the following pullback square:

C2
/p

a //

∆∗p2

��

C2

p2

��
D

∆
// D2

(3)

Concretely, ani-cell of C2
/p amounts to a pair(x, y) of i-cells inC such thatp(x) = p(y). Likewise, we define

CI
/p, b andτ∗pI by the following pullback:

CI
/p

b //

τ∗pI

��

CI

pI

��
D τ

// DI

(4)

Here ani-cell ofCI
/p amounts to ani-cylinderU of C such thatpI(U) is a trivial i-cylinder ofD.
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Lemma 31 There is a uniqueω-functorπ/p : CI
/p → C2

/p such that the following cube commutes:

CI
/p b //

τ∗pI

��

π/p

@@

��@@

CI

π
??

?

��?
??

pI

��

C2
/p a //

∆∗p2

��

C2

p2

��

D τ //

1D

CC

!!C
C

DI

π
!!

D ∆ // D2

(5)

Proof. The front and back squares are respectively (3) and (4), hence commute, by definition. The righthand
square commutes becauseπ is a natural transformation, and the bottom square commutes becauseπ ◦ τ = ∆.
Therefore

p2 ◦ π ◦ b = ∆ ◦ τ∗pI

and because (3) is a pullback, we get the required connecting morphismπ/p . J

To sum up, we have associated to eachp a uniqueω-functorπ/p making (5) commutative. Precisely, ifU : x y y
is ani-cell ofCI

/p, then(x, y) is ani-cell inC2
/p andπ/p(U) = (x, y).

The following result shows how lifting properties ofp transfer toπ/p. Geometrically speaking, Lemma 32 says
that certain “boxes” consisting of two paralleli-cylinders, with top and bottomi+1-cells, may be filled by ani+1
cylinder.

For anyp : C → D and any0-cellsz, z′ of C, we denote bypz,z′ theω-functor from[z, z′] to [p(z), p(z′)] induced
by p.

Lemma 32 Letp : C → D and suppose that

• U : x y y, U ′ : x′ y y′ are i-cylinders defining paralleli-cells ofCI
/p;

• (u, v) : (x, y)→ (x′, y′) is ani+1-cell ofC2
/p;

• pu[,v] has the lifting property.

Then, we get ani+1-cylinderW : U → U ′ | u y v defining ani+1-cell inCI
/p.

Proof. We proceed by induction oni.

• Suppose thati = 0. In that caseU , U ′ are0-cells ofCI
/p, andu : x → x′, v : y → y′ 1-cells ofC such

that p(u) = p(v). Thusu1 = u ∗0 U ′\, v1 = U \ ∗0 v are parallel1-cells ofC with u1, v1 : u[ → v].
As U , U ′ belong toCI

/p, p(U \) andp(U ′\) are identities, so thatp(u1) = p(u) = p(v) = p(v1). Thus
pu[,v] [u1] = pu[,v] [v1] and becausepu[,v] has the lifting property, we get a1-cell [w] : [u1] → [v1] of
[u[, v]] such thatpu[,v] [w] = 1p[u1].

Hence, there is a1-cylinderW : U → U ′ | u y v given byW [ = U \, W ] = U ′\, W \ = w and defining a
1-cell inCI

/p.

•
y

•
x

��

U \

•
x′u //

•
y′

U ′\

��
v

//

W \ = w
��

�

����
�
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• Suppose thati > 0 and that the property holds in dimensioni−1. Consider now theω-categoriesE =
[u[, v]], F = [p(u[), p(v])], and letq = pu[,v] : E → F . By definition, we get twoi−1-cylinders inE:

[U ] : [x] · U ] y U [ · [y],
[U ′] : [x′] · U ′] y U ′[ · [y′].

Now [U ] ‖ [U ′]; alsoqI([U ]) andqI([U ′]) are trivial cylinders ofF , so that[U ], [U ′] define paralleli−1-cells
of EI

/q. Moreover
(
[u] · U ], U [ · [v]

)
:
(
[x] · U ], U [ · [y]

)
→

(
[x′] · U ], U [ · [y′]

)
is ani-cell ofE2

/q.

As q has the lifting property, so doesqz,z′ for any0-cellsz, z′. Therefore, the induction hypothesis applies
to q and we get ani-cylinderV : [U ] → [U ′] | [x] · U ] y U [ · [y′] defining ani-cell of of EI

/q; whence

an i+1-cylinderW : U → U ′ | u y v given byW [ = U [ = U ′[, W ] = U ] = U ′] and[W ] = V . By
construction,W defines ani+1-cell inCI

/p.

•
v[

•

y′
99•
v]

y
%%

•
u[

��

U [ = U ′[

•
u]x
%%•

x′
99

U ] = U ′]

��

U ′ll

U

��
Wrr

u
%%LL

L

v
%%

J

5.2 Acyclic case

We may now prove Proposition 2:

For anyp : C → D andf, g : S∗ → C such thatp ◦ f = p ◦ g andp has the lifting property, we get a
homotopyf  g.

The crucial point is the following result:

Lemma 33 If p : C → D has the lifting property, thenπ/p is an acyclic fibration.

Proof. Suppose thatp : C → D has the lifting property.

• Let z be a0-cell in C2
/p: it is a pairz = (x, y) of 0-cells inC such thatp(x) = p(y). As p has the lifting

property, there is a1-cell u : x → y such thatp(u) = 1p(x) = 1p(y), hence a0-cylinderU in CI such that
U \ = u andpI(U) = τ(p(x)). ThereforeU is a0-cell ofCI

/p such that(π/p)0(U) = z, and(π/p)0 is onto.

• The fact thatπ/p has the lifting property is an immediate consequence of Lemma 32.

J
Consider nowp : C → D andf, g : S∗ → C such thatp ◦ f = p ◦ g = k. In other words, the following diagram
commutes:

S∗
(f,g) //

k

��

C2

p2

��
D

∆
// D2

Hence the pullback square (3) yields a uniqueω-functor l : S∗ → C2
/p such that(f, g) = a ◦ l. If p has the lifting

property, thenπ/p is an acyclic fibration by Lemma 33, and Proposition 1, Section 2.3 yields anω-functor l̂ such
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thatl = π/p ◦ l̂. Thus, we get a commutative diagram:

CI
/p

π/p

��

b // CI

π

��
S∗

l //

l̂

??��������

(f,g)

66C2
/p

a // C2

By definingh = b ◦ l̂ : S∗ → CI , we getπ ◦ h = (f, g). Hencef  g as expected.

5.3 Relative case

We now adapt the above arguments to the more general situation of Proposition 9:

For anyp : C → D andf, g : S∗ → C such thatp ◦ f = p ◦ g andp satisfies the lifting property with
respect to(f0(S∗0 ), g0(S∗0 )), we get a homotopyf  g.

We first state a generalized version of Lemma 33:

Lemma 34 Let p : C → D, X ,Y ⊂ C0, Z = a−1
0 (X × Y) ⊂ (C2

/p)0 andU = (π/p)−1
0 (Z) ⊂ (CI

/p)0. If p has
the lifting property with respect to(X ,Y), then

1. Z ⊂ (π/p)0(U);

2. π/p has the lifting property with respect toU .

Proof. Suppose thatp has the lifting property with respect to(X ,Y).

• Consider a0-cell z in Z = a−1
0 (X × Y). It is a pairz = (x, y) of 0-cells inC such thatx ∈ X , y ∈ Y

andp(x) = p(y). As p has the lifting property with respect to(X ,Y), there is a1-cell u : x → y such that
p(u) = 1p(x) = 1p(y), hence a0-cylinderU such thatU \ = u andpI(U) = τ(p(x)). ThereforeU is a0-cell
of CI

/p and(π/p)0(U) = z, so thatU ∈ U andz ∈ (π/p)0(U). This proves the first point.

• The second part follows immediately from Lemma 32.

J
If f, g : S∗ → C satisfyp ◦ f = p ◦ g, we get as above a factorization(f, g) = a ◦ l wherel : S∗ → C2

/p.
Suppose now thatp has the lifting property with respect to(X ,Y), whereX = f0(S∗0 ) andY = g0(S∗0 ). Define
Z andU as in Lemma 34:l0(S∗0 ) ⊂ Z by construction ofl. By Lemma 34, Proposition 8 applies and we get an
ω-functor l̂ such thatl = π/p ◦ l̂.
By definingh = b ◦ l̂ we get as above the desired homotopy fromf to g.

5.4 Chain homotopy

In this section, we prove Proposition 3, Section 2.4:

for any polygraphsS, T , andω-functorsf, g : S∗ → T ∗ such thatf  g, the Z-linear maps
fab, gab : ZS → ZT are chain-homotopic.

We first need a few additional results about abelianization and cylinders. Consider the truncation endofunctorT
of the category ofω-categories, defined by(TC)i = Ci+1 for eachω-categoryC andi ≥ 0. For any0-cellsx, y
of C, [x, y] is a full subcategory ofTC. On the other hand, ifS is a polygraph, there are linearization maps:

d.c : S∗i → ZSi (6)

in each dimensioni (see Section 2.4). NowTC is not in general a freeω-category, even ifC = S∗; however, we
may extend the linearization process to allω-categories of the formTkC, for k ≥ 0, by considering anyi-cell x
of TkC, as ani+k-cell ofC. Hence, wheneverC = S∗, we get from (6) linearization maps

d.c : (TkC)i → ZSi+k. (7)

Note that these maps still take compositions inTkC to sums.
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Lemma 35 LetC = S∗ be a freeω-category, andk ≥ 0 an integer. Ifi > 0 andW : U → V | x y y is an
i-cylinder ofTkC, then:

dσiW
\c = dxc+ dV \c, (8)

dτiW \c = dU \c+ dyc. (9)

Proof. We proceed by induction oni ≥ 1.

• Suppose thati = 1, and letW : U → V | x y y be a1-cylinder ofTkC. ThusW \ is a2-cell of TkC, and

W \ : x ∗0 V \ → U \ ∗0 y.

Henceσ1W
\ = x ∗0 V \ andτ1W \ = U \ ∗0 y, which, by linearization, gives (8) and (9).

• Suppose thati > 1, and that (8) and (9) hold fori−1. LetW : U → V | x y y be ani-cylinder ofTkC.
We get ani−1-cylinder[W ] : [U ]→ [V ] | [x] ·V ] y U [ · [y] of [x[, y]]. We may see[W ] as ani−1-cylinder
of Tk+1C, so that the induction hypothesis applies and we get

dσi−1[W ]\c = d[x] · V ]c+ d[V ]\c

dτi−1[W ]\c = d[U ]\c+ dU [ · [y]c.

Now σi−1[W ]\, [x] ·V ] and[V ]\ arei−1-cells ofTk+1C, which can be seen asi-cells inTkC, respectively
σiW

\, x ∗0 V ] andV \. As i > 1, V ] is a unit. ThereforedV ]c = 0, and

dσiW
\c = dx ∗0 V ]c+ dV \c,

= dxc+ dV ]c+ dV \c,
= dxc+ dV \c.

Thus, we get (8), and the same argument applies to (9).

J

Lemma 36 If U , V are j-composable cylinders in a freeω-category, thend(U ∗j V )\c = dU \c+ dV \c.

Proof. One first checks that the corresponding relation holds for concatenation, namely

d(U ∗ V )\c = dU \c+ dV \c.

This proves the casej = 0, after Definition 20, and the general case follows by induction onj. J

Lemma 37 If S, T are polygraphs andh : S∗ → (T ∗)I is anω-functor, then for eachi ≥ 0, there is aZ-linear
mapθi : ZSi → ZTi+1 satisfying

θidxc = dhi(x)\c (10)

wheneverx is ani-cell ofS∗.

Proof. There is a uniqueθi : ZSi → ZTi+1 such thatθidξc = dhi(ξ)\c for eachξ ∈ Si. Let us show (10) by
structural induction onx ∈ S∗i :

• if x is ani-generator, (10) holds by definition;

• if x is a unit, then so ishi(x), becauseh is anω-functor: thereforehi(x)\ is a unit inT ∗
i+1, so that both sides

of (10) vanish;

• if x decomposes asy ∗j z wherey andz satisfy (10), then:

dhi(x)\c = dhi(y ∗j z)\c,
= d(hi(y) ∗j hi(z))\c, (becauseh is anω-functor)

= dhi(y)\c+ dhi(z)\c, (by Lemma 36)

= θidyc+ θidzc, (by the induction hypothesis)

= θi(dyc+ dzc),
= θidy ∗j zc,
= θidxc.
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Let us point out that(T ∗)I is not free in general, so thath cannot be directly abelianized in the sense of Section 2.4.

We now turn to the proof of Proposition 3. Letf, g : S∗ → T ∗ beω-functors, such thatf  g. There is a
homotopyh : S∗ → (T ∗)I from f to g, which, by Lemma 37 determines a family of maps

θi : ZSi → ZTi+1.

It turns out that(θi)i≥0 is a chain homotopy betweenfab and gab. Indeed, ifx ∈ S∗i , we get ani-cylinder
hi(x) : fi(x) y gi(x).

• If i = 0, we geth0(x)\ : f0(x)→ g0(x), so that∂0θ0(dxc) = dg0(x)c − df0(x)c, in other words

gab
0 − fab

0 = ∂0 ◦ θ0; (11)

• if i > 0, we gethi(x) : hi−1(σi−1x)→ hi−1(τi−1x) | fi(x) y gi(x). Lemma 35 applies, so that

dσi(hi(x))\c = dfi(x)c+ d(hi−1(τi−1x))\c,
dτi(hi(x))\c = d(hi−1(σi−1x))\c+ dgi(x)c.

This implies
dgi(x)c − dfi(x)c = A+B

where

A = dτi(hi(x))\c − dσi(hi(x))\c = ∂id(hi(x))\c = ∂iθidxc,
B = d(hi−1(τi−1x))\c − d(hi−1(σi−1x))\c.

By Lemma 37, and the linearity ofθi−1,

B = θi−1(dτi−1xc)− θi−1(dσi−1xc),
= θi−1(dτi−1xc − dσi−1xc),
= θi−1∂i−1dxc.

Hence
gab

i − fab
i = ∂i ◦ θi + θi−1 ◦ ∂i−1. (12)

Equations (11) and (12) exactly mean thatθ is a chain-homotopy fromfab to gab, thus proving the proposition:

ZSi−1

θi−1 ##G
GGGGGGG ZSi

∂i−1oo

θi

##F
FF

FF
FF

FF

gab
i

��
fab

i

��
ZTi ZTi+1

∂i

oo

A Counting generators

If C : C0 ⇔ C1 ⇔ C2 · · ·Cn−1 ⇔ Cn is ann-category andA is an (additive) abelian monoid, we consider the
n+1-categoryC+ : C0 ⇔ C1 ⇔ C2 · · ·Cn−1 ⇔ Cn ⇔ C+

n+1 defined as follows:

• ann+1-cell inC+ is a triple(a, x, y) : x→ y wherea ∈ A andx, y are paralleln-cells inC;

• (a, x, z) ∗i (b, y, t) = (a+ b, x ∗i y, z ∗i t) for i < n andx .i y (so thatz .i t);

• (a, x, y) ∗n (b, y, z) = (a+ b, x, z);

• 1x = (0, x, x) for anyn-cell x in C.
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It is easy to see that those operations satisfy the laws of associativity, units, and interchange.

In particular, ifS∗0 ⇔ S1, S
∗
1 ⇔ S2, . . . , S

∗
n−1 ⇔ Sn, S

∗
n ⇔ Sn+1 is ann+1-polygraph, we get:

• ann-categoryC : S∗0 ⇔ S∗1 ⇔ S∗2 · · ·S∗n−1 ⇔ S∗n and an abelian monoidA = ZSn+1;

• an injection ofSn+1 intoC+
n+1 mapping the generatorξ : x→ y to the triple(dξc, x, y).

By the universal property, we getρn : S∗n+1 → C+
n+1 which is compatible with sources, targets, products and units.

This means thatρn(u) = (duc, x, y) for anyn+1-cell u : x → y in S∗, whereu 7→ duc extends the canonical
injection ofSn+1 into ZSn+1 and satisfies the following properties:

du ∗i vc = duc+ dvc for anyu .i v in S∗n+1 with i ≤ n, d1xc = 0 for anyx ∈ S∗n.

B Decomposition

If M be a monoid andD : M ⇔ D1 is a category, we consider the monoidD̂ defined as follows:

• an element of̂D is a pair(α, (uλ)λ∈M ) whereα ∈M and(uλ)λ∈M is a family of cellsuλ : λ→ λα in D;

• (α, (uλ)λ∈M )(β, (vλ)λ∈M ) = (αβ, (uλ ∗0 vλα)λ∈M ).

It is easy to see that this operation is associative, with unit(1, (1λ)λ∈M ).

In particular, iff : S∗1 →M is a morphism of monoid, we get:

• a categoryD : M ⇔ D1 whereD1 = (M · S1)∗;

• an injection ofS1 into D̂ mapping the generatorξ to the pair(ξ, 〈λ · ξ〉λ∈M ).

By the universal property, we get a morphismρ : S∗1 → D̂. This means thatρ(x) = (x, 〈λ ·x〉λ∈M ) for all x ∈ S∗1 ,
whereλ ·x 7→ 〈λ ·x〉 extends the canonical inclusion ofM ·S1 into (M ·S1)∗ and satisfies the following properties:

• we get〈λ · x〉 : λ→ λx for all λ ∈M andx ∈ S∗1 ;

• 〈λ · xy〉 = 〈λ · x〉 ∗0 〈λx · y〉 for all λ ∈M andx, y ∈ S∗1 ;

• 〈λ · 1〉 = 1λ for all λ ∈M .

Hence, we get the expected properties forS∗1 .

Now, letC : > ⇔ C1 ⇔ C2 · · ·Cn−1 ⇔ Cn be ann-monoid withn > 0 and assume we have ann+1-category
D : M ⇔M ·C1 ⇔M ·C2 · · ·M ·Cn−1 ⇔M ·Cn ⇔ Dn+1 extending the (partial) unfolding off : C →M .
We consider then+1-monoidD̂ : >⇔ C1 ⇔ C2 · · ·Cn−1 ⇔ Cn ⇔ D̂n+1 defined as follows:

• ann+1-cell in D̂ is a triple((uλ)λ∈M , x, y) : x→ y wherex, y are paralleln-cells inC and(uλ)λ∈M is a
family of n+1-cellsuλ : λ · x→ λ · y in D;

• ((uλ)λ∈M , x, z)((vλ)λ∈M , y, t) = ((uλ ∗0 vλx)λ∈M , xy, zt);

• ((uλ)λ∈M , x, z)∗i ((vλ)λ∈M , y, t) = ((uλ ∗i vλ)λ∈M , x∗i y, z∗i t) for 0 < i < n andx .i y (so thatz .i t);

• ((uλ)λ∈M , x, y) ∗n ((vλ)λ∈M , y, z) = ((uλ ∗n vλ)λ∈M , x, z);

• 1x = ((1λ·x)λ∈M , x, x) for anyn-cell x in C.

It is easy to see that those operations satisfy the laws of associativity, units, and interchange.
In particular, if>⇔ S1, S

∗
1 ⇔ S2, . . . , S

∗
n−1 ⇔ Sn, S

∗
n ⇔ Sn+1 is ann+1-polygraph, we get:

• ann-monoidC : >⇔ S∗1 ⇔ S∗2 · · ·S∗n−1 ⇔ S∗n;

• ann+1-categoryD : M ⇔M ·C1 ⇔M ·C2 · · ·M ·Cn−1 ⇔M ·Cn ⇔ Dn+1 whereDn+1 = (M ·Sn+1)∗;

• an injection ofSn+1 into D̂n+1 mapping then+1-generatorξ : x→ y to the triple(〈λ · ξ〉λ∈M , x, y).
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By the universal property, we getρn : S∗n+1 → D̂n+1 which is compatible with sources, targets, products and units.
This means thatρn(u) = (〈λ · u〉λ∈M , x, y) for anyn+1-cell u : x→ y in S∗, whereλ · u 7→ 〈λ · u〉 extends the
canonical injection ofM · Sn+1 into (M · Sn+1)∗ and satisfies the following properties:

• we have〈λ · u〉 : λ · x→ λ · y for all λ ∈M and for anyn+1-cell u : x→ y in S∗;

• 〈λ · uv〉 = 〈λ · u〉 ∗0 〈λu · v〉 for all λ ∈M and for anyn+1-cellsu, v in S∗;

• 〈λ · u ∗i v〉 = 〈λ · u〉 ∗i 〈λ · v〉 for all λ ∈M and for anyn+1-cellsu .i v in S∗ with 0 < i ≤ n;

• 〈λ · 1x〉 = 1λ·x for all λ ∈M and for anyn-cell x in S∗.

Hence, we get the expected properties forS∗n+1 with n > 0.
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