The word problem*

Yves Lafont Institut de Mathématiques de Luminy[†] Université de la Méditerranée (Aix-Marseille 2) - CNRS

April 2, 2007

Using rewriting techniques, we get a quite simple proof of undecidability of the word problem for groups (Novikov-Boone theorem).

^{*}Work partly supported by ANR project INVAL (*Invariants algébriques des systèmes informatiques*). †163 avenue de Luminy, Case 907 - 13288 Marseille CEDEX 9 - France

1 Register machines

A (*deterministic*) 2-register machine \mathcal{R} is given by a sequence r_1, \ldots, r_n where each r_i is an instruction of one of the following two forms:

- *increment* x (or *increment* y) and go to j (or stop);
- if x = 0 (or y = 0) then go to j (or stop) else decrement it and go to k (or stop).

For instance, the following machine performs multiplication by 2 (starting with y = 0):

- 1. *if* x = 0 *then stop else decrement it and go to* 2;
- 2. increment y and go to 3.
- 3. increment y and go to 1.

Exercise 1 Build a 2-register machine for quotient and rest modulo 2.

Exercise 2 Prove that 3 registers can be simulated by 2 registers.

Indication: Start with $2^x 3^y 5^z$ in the first register and 0 in the second one.

A configuration is a triple (i, x, y) where $i \in \{0, ..., n\}$ and $x, y \in \mathbb{N}$. Here, i = 0 means *stop*. Each instruction yields one or two *transitions* of the following kinds:

$(i, x, y) \to_{\mathcal{R}} (j, x+1, y),$	$(i, x, y) \to_{\mathcal{R}} (j, x, y+1),$
$(i,0,y) \to_{\mathcal{R}} (j,0,y),$	$(i,x,0) \to_{\mathcal{R}} (j,x,0),$
$(i, x+1, y) \to_{\mathcal{R}} (k, x, y),$	$(i, x, y+1) \rightarrow_{\mathcal{R}} (k, x, y).$

In particular, our first example of machine corresponds to the following transitions:

$(1,0,y) \to_{\mathcal{R}} (0,0,y),$	$(1, x+1, y) \rightarrow_{\mathcal{R}} (2, x, y),$
$(2, x, y) \to_{\mathcal{R}} (3, x, y+1),$	$(3, x, y) \to_{\mathcal{R}} (1, x, y+1).$

We introduce the preordering $\rightarrow_{\mathcal{R}}^*$ and the equivalence relation $\leftrightarrow_{\mathcal{R}}^*$ generated by $\rightarrow_{\mathcal{R}}$, and we consider the following problem:

Special halting problem: given (i, x, y), do we have $(i, x, y) \rightarrow_{\mathcal{R}}^{*} (0, 0, 0)$?

Exercise 3 Prove that $(i, x, y) \leftrightarrow_{\mathcal{R}}^{*} (0, 0, 0)$ if and only if $(i, x, y) \rightarrow_{\mathcal{R}}^{*} (0, 0, 0)$.

Indication: Use the fact that \mathcal{R} is a deterministic machine.

Theorem 1 The special halting problem is undecidable for some 2-register machine.

Proof : Encode the halting problem for some *universal Turing machine*.

2 Some decision problems

If S, R is a finite presentation of a monoid M, we consider the following problems:

Unit: given $x \in S^*$, do we have $x \leftrightarrow_R^* 1$?

Equality: given $x, y \in S^*$, do we have $x \leftrightarrow_R^* y$?

Commutation: given $x, y \in S^*$, do we have $xy \leftrightarrow_R^* yx$?

Note that unit and commutation are special cases of the equality problem.

For any other finite presentation S', R' of M, we have a morphism $\varphi : S^* \to S'^*$ such that $x \leftrightarrow_R^* y$ if and only if $\varphi(x) \leftrightarrow_{R'}^* \varphi(y)$. Hence, the decidability of such a problem depends only on the monoid M.

Proposition 1 The unit problem is undecidable for some finitely presented monoid.

Hence, equality is undecidable for this monoid.

Proof: Given any 2-register machine \mathcal{R} , we introduce symbols $a, b, c_0, \ldots, c_n, d, e$, and we encode a configuration (i, x, y) by the word $[i, x, y] = ab^x c_i d^y e$. Each transition yields a rule of one of the following kinds:

 $c_i \to bc_j, \quad c_i \to c_j d, \quad ac_i \to ac_j, \quad c_i e \to c_j e, \quad bc_i \to c_k, \quad c_i d \to c_k d.$

We add the rule $ac_0e \to 1$, and since \mathcal{R} is deterministic, we get a finite orthogonal rewrite system S, R such that $(i, x, y) \to_{\mathcal{R}}^* (0, 0, 0)$ if and only if $[i, x, y] \to_{R}^* 1$. Furthermore, we have $u \to_{R}^* 1$ if and only if $u \leftrightarrow_{R}^* 1$ by the Church-Rosser property.

To sum up, the special halting problem for \mathcal{R} reduces to the unit problem for S, R. Hence, we can apply theorem 1. \Box

In fact, we could also directly encode the halting problem for a Turing machine or for a 2-*stack machine*. The proof would be essentially the same.

Exercise 4 Prove that commutation is undecidable for some finitely presented monoid.

Indication: Reduce the unit problem for M to the commutation problem for $M * \{a\}^*$.

For groups, the equality problem is equivalent to the unit problem, since we have x = y if and only if $xy^{-1} = 1$. This is called the *word problem*.

Theorem 2 The word problem is undecidable for some finitely presented group.

The rest of this chapter is devoted to the proof of this nontrivial theorem. Indeed, the proof of proposition 1 cannot be easily extended to the case of groups, because inverses interfere with any naive encoding of machines.

3 Partial isomorphisms

We write H < G if H is a subgroup of G. A *partial isomorphism* is an isomorphism $\varphi : H \to K$ where H, K < G. If H is finitely generated, we say that φ is *finitary*. More generally, a *partial bijection* is a bijection $\varphi : X \to Y$ where $X, Y \subset G$.

Exercise 5 Prove that for any partial affine bijection $\varphi : u + H \rightarrow v + K$ in some additive group G, there is a partial isomorphism $\psi : \mathbb{Z}(1+u) + H \rightarrow \mathbb{Z}(1+v) + K$ in the additive group $\mathbb{Z} \oplus G$ such that $\psi(1+x) = 1 + \varphi(x)$ whenever $x \in u + H$.

If Φ is a set of partial bijections in G, we write $x \to_{\Phi} \varphi(x)$ whenever $x \in X$ for some $\varphi : X \to Y$ in Φ , and we introduce the equivalence relation \leftrightarrow_{Φ}^* generated by \to_{Φ} . For any $x_0 \in G$, we consider the following problem:

Connection: given $x \in G$, do we have $x \leftrightarrow_{\Phi}^* x_0$?

Proposition 2 The connection problem is undecidable for some finite set of finitary partial isomorphisms in some finitely presented group.

Proof: We encode a configuration (i, x, y) for some 2-register machine \mathcal{R} by the triple $[i, x, y] = (i, 2^x, 2^y)$ in the additive group \mathbb{Z}^3 . Each transition yields a partial affine bijection of one of the following kinds:

$$\begin{split} \{i\} \times \mathbb{Z} \times \mathbb{Z} \to \{j\} \times 2\mathbb{Z} \times \mathbb{Z} & \{i\} \times \mathbb{Z} \times \mathbb{Z} \to \{j\} \times \mathbb{Z} \times 2\mathbb{Z} \\ (i, x, y) &\mapsto (j, 2x, y) & (i, x, y) \mapsto (j, x, 2y) \end{split} \\ \{i\} \times \{1\} \times \mathbb{Z} \to \{j\} \times \{1\} \times \mathbb{Z} & \{i\} \times \mathbb{Z} \times \{1\} \to \{j\} \times \mathbb{Z} \times \{1\} \\ (i, 1, y) \mapsto (j, 1, y) & (i, x, 1) \mapsto (j, x, 1) \end{aligned} \\ \{i\} \times 2\mathbb{Z} \times \mathbb{Z} \to \{k\} \times \mathbb{Z} \times \mathbb{Z} & \{i\} \times \mathbb{Z} \times 2\mathbb{Z} \to \{k\} \times \mathbb{Z} \times \mathbb{Z} \\ (i, 2x, y) \mapsto (k, x, y) & (i, x, 2y) \mapsto (k, x, y) \end{split}$$

We get a finite set Φ of partial affine bijections which satisfies the following properties:

- $(i, x, y) \rightarrow_{\mathcal{R}} (i', x', y')$ if and only if $[i, x, y] \rightarrow_{\Phi} [i', x', y']$;
- if $u \to_{\Phi} u'$ and u is of the form [i, x, y], then u' is of the form [i', x', y'];
- if $u \to_{\Phi} u'$ and u' is of the form [i', x', y'], then u is of the form [i, x, y].

Hence, we have $(i, x, y) \leftrightarrow_{\mathcal{R}}^* (0, 0, 0)$ if and only if $[i, x, y] \leftrightarrow_{\Phi}^* [0, 0, 0]$. By exercise 3, the special halting problem for \mathcal{R} reduces to the connection problem for Φ .

By exercise 5, we can replace Φ by a finite set of finitary partial isomorphisms in \mathbb{Z}^4 . Finally, we can apply theorem 1. \Box

4 The Magnus problem

If S, R is a finite presentation of monoid for a group G, we write x^R for the class of x modulo R in S^* . If H < G is finitely generated, we consider the following problem:

Magnus problem: given $x \in S^*$, do we have $x^R \in H$?

Note that for $H = \{1\}$, we get the word problem as a special case.

If G < F and $u \in F$, we define the *centralizer* $Z_G(z) = \{x \in G \mid zx = xz\} < G$.

Proposition 3 If H is a finitely generated subgroup of a finitely presented group G, there is an element z in some finitely presented extension F of G such that $Z_G(z) = H$.

In particular, the Magnus problem for G reduces to the commutation problem for F, which is a special case of the word problem.

Proof: Choose generators u_1, \ldots, u_n for the subgroup H and define F as follows:

$$F = G * \langle b \rangle / \leftrightarrow_B^*$$
 where $R = \{(bu_i, u_i b) \mid i = 1, \dots, n\}.$

Using the standard presentation of G, we get a presentation of F by the symbols a_x (for $x \in G$), b and \overline{b} , with the following relations:

$$a_x a_y = a_{xy}, \quad a_1 = 1, \quad b\overline{b} = 1, \quad \overline{b}b = 1, \quad ba_u = a_u b \text{ (if } u \in H).$$

We choose a representative in each right class modulo H, and we write H^{\perp} for the set of all those representatives, so that each $x \in G$ has a unique decomposition x = uv with $u \in H$ and $v \in H^{\perp}$. Moreover, we assume that $1 \in H^{\perp}$.

Now, we can add the superfluous generators $b_v = ba_v$ and $c_v = \overline{b}a_v$ for each $v \in H^{\perp}$, and the following derivable relations:

$$b = b_1$$
, $\overline{b} = c_1$, $b_1 c_v = a_v$ and $c_1 b_v = a_v$ (if $v \in H^{\perp}$),

 $b_v a_x = a_u b_w$ and $c_v a_x = a_u c_w$ (if vx = uw with $u \in H$ and $v, w \in H^{\perp}$).

Then we can remove the following relations, which become derivable:

$$b\overline{b} = 1$$
, $\overline{b}b = 1$, $ba_u = a_u b$ (if $u \in H$), $b_v = ba_v$ and $c_v = \overline{b}a_v$ (if $v \in H^{\perp}$).

By removing the superfluous generators $b = b_1$ and $\overline{b} = c_1$, we get a presention of F by the symbols a_x (for $x \in G$), b_v and c_v (for $v \in H^{\perp}$) with the following relations:

$$a_x a_y = a_{xy}, \quad a_1 = 1, \quad b_1 c_v = a_v \text{ and } c_1 b_v = a_v \text{ (if } v \in H^{\perp}),$$

 $b_v a_x = a_u b_w \text{ and } c_v a_x = a_u c_w \text{ (if } vx = uw \text{ with } u \in H \text{ and } v, w \in H^{\perp}).$

This presentation is convergent (exercise 8). By the injectivity criterion, the canonical injection $\iota_1 : G \to G * \langle b \rangle$ induces an injective morphism from G into F, and similarly for $\iota_2 : \langle b \rangle \to G * \langle b \rangle$. Hence, F can be seen as an extension of both G and $\langle b \rangle$.

Now, consider the two words b_1a_x and a_xb_1 for x = uv with $u \in H$ and $v \in H^{\perp}$:

- the reduced form of the first one is $a_u b_v$ (or b_v if u = 1);
- the second one is reduced (or its reduced form is b_1 if x = 1).

Hence, $b_1 a_x$ and $a_x b_1$ have the same reduced form if and only if v = 1, that is $x \in H$. Therefore, $H = Z_G(b)$, since b_1 is just another name for b. \Box

Exercise 6 Which extension F do we get in case $H = \{1\}$ and in case H = G?

Exercise 7 *Prove that F is an extension of both G and* $\langle b \rangle$ *without using rewriting.*

Indication: Define two projections $\pi_1 : F \to G$ and $\pi_2 : F \to \langle b \rangle$.

Exercise 8 Check that the above presentation of F is noetherian and confluent.

Exercise 9 *Prove that* $G \cap \langle L \cup \{b\} \rangle = L$ *for any* L < G.

Indication: Choose representatives in L when it is possible, and check that if a word consists of symbols whose indices are in L, so does its reduced form.

5 Higman-Neumann-Neumann extensions

Let $\varphi : H \to K$ be a partial isomorphism in G. If $z \in G$ is such that $zxz^{-1} = \varphi(x)$ for all $x \in H$, we say that z represents φ . If $X \subset G$ is such that $\varphi(H \cap X) = K \cap X$, we say that X is φ -invariant. Note that in that case, X is also φ^{-1} -invariant.

Proposition 4 If $\varphi : H \to K$ is a finitary partial isomorphism in a finitely presented group G, there is an element z in some finitely presented extension F of G such that z represents φ and $G \cap \langle L \cup \{z\} \rangle = L$ for any φ -invariant subgroup L of G.

Proof: Choose generators u_1, \ldots, u_n for the subgroup H and define F as follows:

 $F = G * \langle b \rangle / \leftrightarrow_R^*$ where $R = \{ (bu_i, \varphi(u_i)b) \mid i = 1, \dots, n \}.$

We introduce the sets H^{\perp} and K^{\perp} as in the proof of proposition 3. We get a convergent presention of F by the symbols a_x (for $x \in G$), b_v (for $v \in H^{\perp}$) and c_v (for $v \in K^{\perp}$) with the following relations:

$$\begin{aligned} a_x a_y &= a_{xy}, \quad a_1 = 1, \quad b_1 c_v = a_v \text{ (if } v \in K^{\perp}), \quad c_1 b_v = a_v \text{ (if } v \in H^{\perp}), \\ b_v a_x &= a_{\varphi(u)} b_w \text{ (if } vx = uw \text{ with } u \in H \text{ and } v, w \in H^{\perp}), \\ c_v a_x &= a_{\varphi^{-1}(u)} c_w \text{ (if } vx = uw \text{ with } u \in K \text{ and } v, w \in K^{\perp}). \end{aligned}$$

By the intectivity criterion, F is an extension of both G and $\langle b \rangle$. Moreover, if $x \in H$, the reduced form of $b_1 a_x c_1$ is $a_{\varphi(x)}$ (or 1 if x = 1), which means that b represents φ . The second property is proved by the same method as for exercise 9. \Box

Exercise 10 *Prove that* $G \cap b^{-1}Gb = H$ *and* $G \cap bGb^{-1} = K$.

This means that, given G < F, the partial isomorphism $\varphi : H \to K$ is completely determined by $b \in F$. This F is called a *Higman-Neumann-Neumann extension of G*.

Let Φ be a set of partial isomorphisms in G. If $Z \subset G$ is such that any $\varphi \in \Phi$ is represented by some $z \in Z$, we say that Z represents Φ . If $X \subset G$ is such that X is φ -invariant for any $\varphi \in \Phi$, we say that X is Φ -invariant.

Proposition 5 If Φ is a finite set of finitary partial isomorphisms in a finitely presented group G, there is a finite subset Z of some finitely presented extension F of G such that Z represents Φ and $G \cap \langle L \cup Z \rangle = L$ for any Φ -invariant subgroup L of G.

Proof: Let $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ with $\varphi_i : H_i \to K_i$ for each *i*. By iterating the previous construction, we get a chain of finitely presented extensions $G = F_0 < F_1 < \cdots < F_n$ and $z_i \in F_i$ which represents φ_i for each *i*, so that $Z = \{z_1, \ldots, z_n\}$ represents Φ .

If L is a Φ -invariant subgroup of G, we define $L_i = \langle L \cup \{z_1, \ldots, z_i\} \rangle < F_i$ for each *i*. In particular, $L_0 = L$, so that $G \cap L_0 = G \cap L = L$. More generally, we prove that $G \cap L_i < L$ by induction on *i*:

If it holds for i < n, then $H_{i+1} \cap L_i < G \cap L_i < L$ so that $H_{i+1} \cap L_i = H_{i+1} \cap L$. Similarly, $K_{i+1} \cap L_i = K_{i+1} \cap L$, and since L is φ_{i+1} -invariant, so is L_i . Hence, $G \cap L_{i+1} < F_i \cap L_{i+1} = F_i \cap \langle L_i \cup \{z_{i+1}\} \rangle = L_i$ so that $G \cap L_{i+1} < G \cap L_i < L$.

Finally, $G \cap \langle L \cup Z \rangle = G \cap L_n < L$, and the converse inclusion holds trivially. \Box

6 Formal conjugates

For any group G, we define $\widehat{G} = G * \langle b \rangle$. This group is an extension of both G and $\langle b \rangle$. Note also that $\widehat{H} = H * \langle b \rangle = \langle H \cup \{b\} \rangle < \widehat{G}$ for any H < G.

We also define $\sharp x = xbx^{-1} \in \widehat{G}$ for any $x \in G$, and $X^{\sharp} = \langle \sharp X \rangle < \widehat{G}$ for any $X \subset G$, where $\sharp X = \{ \sharp x \mid x \in X \} \subset \widehat{G}$. Note that $X^{\sharp} < G^{\sharp} < \widehat{G}$.

Proposition 6 For any group G, the family $(\sharp x)_{x \in G}$ is free in \widehat{G} .

Proof: Using the standard presentation of G, we get a presentation of \widehat{G} by the symbols a_x (for $x \in G$), b and \overline{b} , with the following relations:

$$a_x a_y = a_{xy}, \quad a_1 = 1, \quad b\overline{b} = 1, \quad \overline{b}b = 1.$$

We add the superfluous generators $b_x = a_x b a_{x^{-1}}$ and $\overline{b}_x = a_x \overline{b} a_{x^{-1}}$ for each $x \in G$, and the following derivable relations:

$$b = b_1, \quad \overline{b} = \overline{b}_1, \quad b_x \overline{b}_x = 1, \quad \overline{b}_x b_x = 1, \quad a_x b_y = b_{xy} a_x, \quad a_x \overline{b}_y = \overline{b}_{xy} a_x.$$

Then we remove the following relations, which become derivable:

$$b\overline{b} = 1$$
, $\overline{b}b = 1$, $b_x = a_x b a_{x^{-1}}$, $\overline{b}_x = a_x b a_{x^{-1}}$.

By removing the superfluous generators $b = b_1$ and $\overline{b} = c_1$, we get a presention of \widehat{G} by the symbols a_x , b_x and \overline{b}_x (for $x \in G$) with the following relations:

$$a_x a_y = a_{xy}, \quad a_1 = 1, \quad b_x \overline{b}_x = 1, \quad \overline{b}_x b_x = 1, \quad a_x b_y = b_{xy} a_x, \quad a_x \overline{b}_y = \overline{b}_{xy} a_x.$$

This presentation is convergent (exercise 11).

Let F be the free group generated by the symbols b_x (for $x \in G$). We have a convergent presentation of F by the symbols b_x and \overline{b}_x (for $x \in G$) with the following relations:

$$b_x \overline{b}_x = 1, \quad \overline{b}_x b_x = 1.$$

Since b_x is just another name for $\sharp x$, the result follows from the injectivity criterion. \Box

Exercise 11 Check that the above presentation of \hat{G} is noetherian and confluent.

Exercise 12 *Prove that* $\sharp x \in X^{\sharp}$ *if and only if* $x \in X$ *.*

Indication: Check that if a word consists of symbols of the form b_x or \overline{b}_x with $x \in X$, so does its reduced form.

Exercise 13 *Prove that* $\widehat{H} \cap X^{\sharp} = (H \cap X)^{\sharp}$ *for any* H < G *and* $X \subset G$ *.*

Indication: Check that if a word consists of symbols whose indices are in H, so does its reduced form.

Any partial isomorphism $\varphi : H \to K$ in G extends to $\widehat{\varphi} : \widehat{H} \to \widehat{K}$ in \widehat{G} with $\widehat{\varphi}(b) = b$. In particular, $\widehat{\varphi}(\sharp x) = \sharp \varphi(x)$ for any $x \in H$ and $\widehat{\varphi}(X^{\sharp}) = \varphi(X)^{\sharp}$ for any $X \subset H$.

Exercise 14 Prove that if $X \subset G$ is φ -invariant, then $X^{\sharp} < \widehat{G}$ is $\widehat{\varphi}$ -invariant.

Proposition 7 If Φ is a finite set of finitary partial isomorphisms in a finitely presented group G, there is a finite subset Z of some finitely presented extension F of \widehat{G} such that for any $x, x_0 \in G$, we have $x \leftrightarrow_{\Phi}^* x_0$ if and only if $\sharp x \in \langle \{ \sharp x_0 \} \cup Z \rangle$.

Proof: We have a finite set $\widehat{\Phi}$ of finitary partial isomorphisms in \widehat{G} . By proposition 5, we get some finitely presented extension F of \widehat{G} and a finite subset Z of F such that Z represents $\widehat{\Phi}$. Hence, it is easy to see that $\sharp x \in \langle \{ \sharp x_0 \} \cup Z \rangle$ whenever $x \leftrightarrow_{\widehat{\Phi}}^* x_0$.

Let $x_0 \in G$ and $X_0 = \{x \in G \mid x \leftrightarrow_{\Phi}^* x_0\}$. Then X_0 is Φ -invariant by construction. By exercise 14, X_0^{\sharp} is $\widehat{\Phi}$ -invariant, so that $\widehat{G} \cap \langle X_0^{\sharp} \cup Z \rangle = X_0^{\sharp}$. If $\sharp x \in \langle \{ \sharp x_0 \} \cup Z \rangle$, then $\sharp x \in \widehat{G} \cap \langle X_0^{\sharp} \cup Z \rangle = X_0^{\sharp}$. By exercise 12, we get $x \in X_0$, that is $x \leftrightarrow_{\Phi}^* x_0$. \Box

Hence, the connection problem for Φ reduces to the Magnus problem for some H < F. By proposition 2, the Magnus problem is undecidable for some H < F, and theorem 2 follows from proposition 3. Note that commutation for groups is also undecidable.

Exercise 15 Starting from a 2-register machine with *n* instructions, *p* of them being branchings, how many generators and relations do we get for the group of theorem 2?