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1 Register machines

A (deterministic) 2-register machineR is given by a sequencer1, . . . , rn where each
ri is an instruction of one of the following two forms:

• incrementx (or incrementy) and go toj (or stop);

• if x = 0 (or y = 0) then go toj (or stop) else decrement it and go tok (or stop).

For instance, the following machine performs multiplication by 2 (starting withy = 0):

1. if x = 0 then stop else decrement it and go to2;

2. incrementy and go to3.

3. incrementy and go to1.

Exercise 1 Build a 2-register machine for quotient and rest modulo 2.

Exercise 2 Prove that 3 registers can be simulated by 2 registers.

Indication: Start with2x3y5z in the first register and 0 in the second one.

A configurationis a triple(i, x, y) wherei ∈ {0, . . . , n} andx, y ∈ N. Here,i = 0
meansstop. Each instruction yields one or twotransitionsof the following kinds:

(i, x, y) →R (j, x + 1, y), (i, x, y) →R (j, x, y + 1),

(i, 0, y) →R (j, 0, y), (i, x, 0) →R (j, x, 0),

(i, x+ 1, y) →R (k, x, y), (i, x, y + 1) →R (k, x, y).

In particular, our first example of machine corresponds to the following transitions:

(1, 0, y) →R (0, 0, y), (1, x+ 1, y) →R (2, x, y),

(2, x, y) →R (3, x, y + 1), (3, x, y) →R (1, x, y + 1).

We introduce the preordering→∗
R and the equivalence relation↔∗

R generated by→R,
and we consider the following problem:

Special halting problem: given(i, x, y), do we have(i, x, y) →∗
R (0, 0, 0)?

Exercise 3 Prove that(i, x, y) ↔∗
R

(0, 0, 0) if and only if(i, x, y) →∗
R

(0, 0, 0).

Indication: Use the fact thatR is a deterministic machine.

Theorem 1 The special halting problem is undecidable for some 2-register machine.

Proof : Encode the halting problem for someuniversal Turing machine.
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2 Some decision problems

If S,R is a finite presentation of a monoidM , we consider the following problems:

Unit: givenx ∈ S∗, do we havex↔∗
R 1?

Equality: givenx, y ∈ S∗, do we havex↔∗
R y?

Commutation: givenx, y ∈ S∗, do we havexy ↔∗
R yx?

Note that unit and commutation are special cases of the equality problem.

For any other finite presentationS′, R′ ofM , we have a morphismϕ : S∗ → S′∗ such
thatx↔∗

R y if and only if ϕ(x) ↔∗
R′ ϕ(y). Hence, the decidability of such a problem

depends only on the monoidM .

Proposition 1 The unit problem is undecidable for some finitely presented monoid.

Hence, equality is undecidable for this monoid.

Proof: Given any 2-register machineR, we introduce symbolsa, b, c0, . . . , cn, d, e, and
we encode a configuration(i, x, y) by the word[i, x, y] = abxcid

ye. Each transition
yields a rule of one of the following kinds:

ci → bcj, ci → cjd, aci → acj, cie→ cje, bci → ck, cid→ ckd.

We add the ruleac0e → 1, and sinceR is deterministic, we get a finite orthogonal
rewrite systemS,R such that(i, x, y) →∗

R
(0, 0, 0) if and only if [i, x, y] →∗

R 1.
Furthermore, we haveu→∗

R 1 if and only if u↔∗
R 1 by the Church-Rosser property.

To sum up, the special halting problem forR reduces to the unit problem forS,R.
Hence, we can apply theorem 1.�

In fact, we could also directly encode the halting problem for a Turing machine or for
a 2-stack machine. The proof would be essentially the same.

Exercise 4 Prove that commutation is undecidable for some finitely presented monoid.

Indication: Reduce the unit problem forM to the commutation problem forM ∗ {a}∗.

For groups, the equality problem is equivalent to the unit problem, since we havex = y
if and only if xy−1 = 1. This is called theword problem.

Theorem 2 The word problem is undecidable for some finitely presented group.

The rest of this chapter is devoted to the proof of this nontrivial theorem. Indeed, the
proof of proposition 1 cannot be easily extended to the case of groups, because inverses
interfere with any naive encoding of machines.

3 Partial isomorphisms

We writeH < G if H is a subgroup ofG. A partial isomorphismis an isomorphism
ϕ : H → K whereH,K < G. If H is finitely generated, we say thatϕ is finitary.
More generally, apartial bijectionis a bijectionϕ : X → Y whereX,Y ⊂ G.
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Exercise 5 Prove that for any partial affine bijectionϕ : u + H → v + K in some
additive groupG, there is a partial isomorphismψ : Z(1 + u) +H → Z(1 + v) +K
in the additive groupZ ⊕G such thatψ(1 + x) = 1 + ϕ(x) wheneverx ∈ u+H .

If Φ is a set of partial bijections inG, we writex→Φ ϕ(x) wheneverx ∈ X for some
ϕ : X → Y in Φ, and we introduce the equivalence relation↔∗

Φ generated by→Φ.
For anyx0 ∈ G, we consider the following problem:

Connection: givenx ∈ G, do we havex↔∗
Φ x0?

Proposition 2 The connection problem is undecidable for some finite set of finitary
partial isomorphisms in some finitely presented group.

Proof: We encode a configuration(i, x, y) for some 2-register machineR by the triple
[i, x, y] = (i, 2x, 2y) in the additive groupZ3. Each transition yields a partial affine
bijection of one of the following kinds:

{i} × Z × Z → {j} × 2Z × Z

(i, x, y) 7→ (j, 2x, y)
{i} × Z × Z → {j} × Z × 2Z

(i, x, y) 7→ (j, x, 2y)

{i} × {1} × Z → {j} × {1} × Z

(i, 1, y) 7→ (j, 1, y)
{i} × Z × {1} → {j} × Z × {1}

(i, x, 1) 7→ (j, x, 1)

{i} × 2Z × Z → {k} × Z × Z

(i, 2x, y) 7→ (k, x, y)
{i} × Z × 2Z → {k} × Z × Z

(i, x, 2y) 7→ (k, x, y)

We get a finite setΦ of partial affine bijections which satisfies the following properties:

• (i, x, y) →R (i′, x′, y′) if and only if [i, x, y] →Φ [i′, x′, y′];

• if u→Φ u′ andu is of the form[i, x, y], thenu′ is of the form[i′, x′, y′];

• if u→Φ u′ andu′ is of the form[i′, x′, y′], thenu is of the form[i, x, y].

Hence, we have(i, x, y) ↔∗
R

(0, 0, 0) if and only if [i, x, y] ↔∗
Φ [0, 0, 0]. By exercise 3,

the special halting problem forR reduces to the connection problem forΦ.

By exercise 5, we can replaceΦ by a finite set of finitary partial isomorphisms inZ4.
Finally, we can apply theorem 1.�

4 The Magnus problem

If S,R is a finite presentation of monoid for a groupG, we writexR for the class ofx
moduloR in S∗. If H < G is finitely generated, we consider the following problem:

Magnus problem: givenx ∈ S∗, do we havexR ∈ H?

Note that forH = {1}, we get the word problem as a special case.

If G < F andu ∈ F , we define thecentralizerZG(z) = {x ∈ G | zx = xz} < G.

Proposition 3 If H is a finitely generated subgroup of a finitely presented groupG,
there is an elementz in some finitely presented extensionF ofG such thatZG(z) = H .
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In particular, the Magnus problem forG reduces to the commutation problem forF ,
which is a special case of the word problem.

Proof: Choose generatorsu1, . . . , un for the subgroupH and defineF as follows:

F = G ∗ 〈b〉/↔∗
R whereR = {(bui, uib) | i = 1, . . . , n}.

Using the standard presentation ofG, we get a presentation ofF by the symbolsax

(for x ∈ G), b andb, with the following relations:

axay = axy, a1 = 1, bb = 1, bb = 1, bau = aub (if u ∈ H).

We choose a representative in each right class moduloH , and we writeH⊥ for the set
of all those representatives, so that eachx ∈ G has a unique decompositionx = uv
with u ∈ H andv ∈ H⊥. Moreover, we assume that1 ∈ H⊥.

Now, we can add the superfluous generatorsbv = bav andcv = bav for eachv ∈ H⊥,
and the following derivable relations:

b = b1, b = c1, b1cv = av andc1bv = av (if v ∈ H⊥),

bvax = aubw andcvax = aucw (if vx = uw with u ∈ H andv, w ∈ H⊥).

Then we can remove the following relations, which become derivable:

bb = 1, bb = 1, bau = aub (if u ∈ H), bv = bav andcv = bav (if v ∈ H⊥).

By removing the superfluous generatorsb = b1 andb = c1, we get a presention ofF
by the symbolsax (for x ∈ G), bv andcv (for v ∈ H⊥) with the following relations:

axay = axy, a1 = 1, b1cv = av andc1bv = av (if v ∈ H⊥),

bvax = aubw andcvax = aucw (if vx = uw with u ∈ H andv, w ∈ H⊥).

This presentation is convergent (exercise 8). By the injectivity criterion, the canonical
injectionι1 : G→ G∗ 〈b〉 induces an injective morphism fromG intoF , and similarly
for ι2 : 〈b〉 → G ∗ 〈b〉. Hence,F can be seen as an extension of bothG and〈b〉.

Now, consider the two wordsb1ax andaxb1 for x = uv with u ∈ H andv ∈ H⊥:

• the reduced form of the first one isaubv (or bv if u = 1);

• the second one is reduced (or its reduced form isb1 if x = 1).

Hence,b1ax andaxb1 have the same reduced form if and only ifv = 1, that isx ∈ H .
Therefore,H = ZG(b), sinceb1 is just another name forb. �

Exercise 6 Which extensionF do we get in caseH = {1} and in caseH = G?

Exercise 7 Prove thatF is an extension of bothG and〈b〉 without using rewriting.

Indication: Define two projectionsπ1 : F → G andπ2 : F → 〈b〉.

Exercise 8 Check that the above presentation ofF is noetherian and confluent.

Exercise 9 Prove thatG ∩ 〈L ∪ {b}〉 = L for anyL < G.

Indication: Choose representatives inL when it is possible, and check that if a word
consists of symbols whose indices are inL, so does its reduced form.
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5 Higman-Neumann-Neumann extensions

Let ϕ : H → K be a partial isomorphism inG. If z ∈ G is such thatzxz−1 = ϕ(x)
for all x ∈ H , we say thatz representsϕ. If X ⊂ G is such thatϕ(H ∩X) = K ∩X ,
we say thatX isϕ-invariant. Note that in that case,X is alsoϕ−1-invariant.

Proposition 4 If ϕ : H → K is a finitary partial isomorphism in a finitely presented
groupG, there is an elementz in some finitely presented extensionF of G such that
z representsϕ andG ∩ 〈L ∪ {z}〉 = L for anyϕ-invariant subgroupL ofG.

Proof: Choose generatorsu1, . . . , un for the subgroupH and defineF as follows:

F = G ∗ 〈b〉/↔∗
R whereR = {(bui, ϕ(ui)b) | i = 1, . . . , n}.

We introduce the setsH⊥ andK⊥ as in the proof of proposition 3. We get a convergent
presention ofF by the symbolsax (for x ∈ G), bv (for v ∈ H⊥) andcv (for v ∈ K⊥)
with the following relations:

axay = axy, a1 = 1, b1cv = av (if v ∈ K⊥), c1bv = av (if v ∈ H⊥),

bvax = aϕ(u)bw (if vx = uw with u ∈ H andv, w ∈ H⊥),

cvax = aϕ−1(u)cw (if vx = uw with u ∈ K andv, w ∈ K⊥).

By the intectivity criterion,F is an extension of bothG and〈b〉. Moreover, ifx ∈ H ,
the reduced form ofb1axc1 is aϕ(x) (or 1 if x = 1), which means thatb representsϕ.
The second property is proved by the same method as for exercise 9.�

Exercise 10 Prove thatG ∩ b−1Gb = H andG ∩ bGb−1 = K.

This means that, givenG < F , the partial isomorphismϕ : H → K is completely
determined byb ∈ F . ThisF is called aHigman-Neumann-Neumann extension ofG.

Let Φ be a set of partial isomorphisms inG. If Z ⊂ G is such that anyϕ ∈ Φ is
represented by somez ∈ Z, we say thatZ representsΦ. If X ⊂ G is such thatX is
ϕ-invariant for anyϕ ∈ Φ, we say thatX is Φ-invariant.

Proposition 5 If Φ is a finite set of finitary partial isomorphisms in a finitely presented
groupG, there is a finite subsetZ of some finitely presented extensionF ofG such that
Z representsΦ andG ∩ 〈L ∪ Z〉 = L for anyΦ-invariant subgroupL ofG.

Proof: LetΦ = {ϕ1, . . . , ϕn} with ϕi : Hi → Ki for eachi. By iterating the previous
construction, we get a chain of finitely presented extensionsG = F0 < F1 < · · · < Fn

andzi ∈ Fi which representsϕi for eachi, so thatZ = {z1, . . . , zn} representsΦ.

If L is aΦ-invariant subgroup ofG, we defineLi = 〈L∪{z1, . . . , zi}〉 < Fi for eachi.
In particular,L0 = L, so thatG ∩ L0 = G ∩ L = L. More generally, we prove that
G ∩ Li < L by induction oni:

If it holds for i < n, thenHi+1 ∩ Li < G ∩ Li < L so thatHi+1 ∩ Li = Hi+1 ∩ L.
Similarly, Ki+1 ∩ Li = Ki+1 ∩ L, and sinceL is ϕi+1-invariant, so isLi. Hence,
G ∩ Li+1 < Fi ∩ Li+1 = Fi ∩ 〈Li ∪ {zi+1}〉 = Li so thatG ∩ Li+1 < G ∩ Li < L.

Finally,G ∩ 〈L ∪ Z〉 = G ∩ Ln < L, and the converse inclusion holds trivially.�
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6 Formal conjugates

For any groupG, we defineĜ = G∗ 〈b〉. This group is an extension of bothG and〈b〉.
Note also that̂H = H ∗ 〈b〉 = 〈H ∪ {b}〉 < Ĝ for anyH < G.

We also define♯x = xbx−1 ∈ Ĝ for anyx ∈ G, andX♯ = 〈♯X〉 < Ĝ for anyX ⊂ G,
where♯X = {♯x |x ∈ X} ⊂ Ĝ. Note thatX♯ < G♯ < Ĝ.

Proposition 6 For any groupG, the family(♯x)x∈G is free inĜ.

Proof: Using the standard presentation ofG, we get a presentation of̂G by the symbols
ax (for x ∈ G), b andb, with the following relations:

axay = axy, a1 = 1, bb = 1, bb = 1.

We add the superfluous generatorsbx = axbax−1 andbx = axbax−1 for eachx ∈ G,
and the following derivable relations:

b = b1, b = b1, bxbx = 1, bxbx = 1, axby = bxyax, axby = bxyax.

Then we remove the following relations, which become derivable:

bb = 1, bb = 1, bx = axbax−1 , bx = axbax−1.

By removing the superfluous generatorsb = b1 andb = c1, we get a presention of̂G
by the symbolsax, bx andbx (for x ∈ G) with the following relations:

axay = axy, a1 = 1, bxbx = 1, bxbx = 1, axby = bxyax, axby = bxyax.

This presentation is convergent (exercise 11).

LetF be the free group generated by the symbolsbx (for x ∈ G). We have a convergent
presentation ofF by the symbolsbx andbx (for x ∈ G) with the following relations:

bxbx = 1, bxbx = 1.

Sincebx is just another name for♯x, the result follows from the injectivity criterion.�

Exercise 11 Check that the above presentation ofĜ is noetherian and confluent.

Exercise 12 Prove that♯x ∈ X♯ if and only ifx ∈ X .

Indication: Check that if a word consists of symbols of the form bx or bx with x ∈ X ,
so does its reduced form.

Exercise 13 Prove thatĤ ∩X♯ = (H ∩X)♯ for anyH < G andX ⊂ G.

Indication: Check that if a word consists of symbols whose indices are inH , so does
its reduced form.

Any partial isomorphismϕ : H → K inG extends tôϕ : Ĥ → K̂ in Ĝ with ϕ̂(b) = b.
In particular,ϕ̂(♯x) = ♯ϕ(x) for anyx ∈ H andϕ̂(X♯) = ϕ(X)♯ for anyX ⊂ H .

Exercise 14 Prove that ifX ⊂ G isϕ-invariant, thenX♯ < Ĝ is ϕ̂-invariant.
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Proposition 7 If Φ is a finite set of finitary partial isomorphisms in a finitely presented
groupG, there is a finite subsetZ of some finitely presented extensionF of Ĝ such that
for anyx, x0 ∈ G, we havex↔∗

Φ x0 if and only if♯x ∈ 〈{♯x0} ∪ Z〉.

Proof: We have a finite set̂Φ of finitary partial isomorphisms in̂G. By proposition 5,
we get some finitely presented extensionF of Ĝ and a finite subsetZ of F such that
Z representŝΦ. Hence, it is easy to see that♯x ∈ 〈{♯x0} ∪ Z〉 wheneverx↔∗

Φ x0.

Let x0 ∈ G andX0 = {x ∈ G |x ↔∗
Φ x0}. ThenX0 is Φ-invariant by construction.

By exercise 14,X♯
0 is Φ̂-invariant, so that̂G ∩ 〈X♯

0 ∪ Z〉 = X♯
0. If ♯x ∈ 〈{♯x0} ∪ Z〉,

then♯x ∈ Ĝ ∩ 〈X♯
0 ∪ Z〉 = X♯

0. By exercise 12, we getx ∈ X0, that isx↔∗
Φ x0. �

Hence, the connection problem forΦ reduces to the Magnus problem for someH < F .
By proposition 2, the Magnus problem is undecidable for someH < F , and theorem 2
follows from proposition 3. Note that commutation for groups is also undecidable.

Exercise 15 Starting from a 2-register machine withn instructions,p of them being
branchings, how many generators and relations do we get for the group of theorem 2?
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