The word problem

Yves Lafont
Institut de Mathématiques de Luminy
Université de la Méditerranée (Aix-Marseille 2) - CNRS

April 2, 2007

Using rewriting techniques, we get a quite simple proof adegidability of the word
problem for groupsNovikov-Boone theorem

*Work partly supported by ANR project INVAUIgvariants algébriques des systémes informatijjues
7163 avenue de Luminy, Case 907 - 13288 Marseille CEDEX 9 -déran



1 Register machines

A (deterministi¢ 2-register machinR is given by a sequencs, ..., r, where each
r; IS an instruction of one of the following two forms:

e increment (orincrementy) and go toj (or stop);

e if x =0 (ory = 0) then go toj (or stop else decrement it and go to(or stop.
For instance, the following machine performs multiplioatby 2 (starting withy = 0):

1. if 2 = 0then stop else decrement it and g&2to

2. incrementy and go to3.

3. incrementy and go tol.
Exercise 1 Build a 2-register machine for quotient and rest modulo 2.
Exercise2 Prove that 3 registers can be simulated by 2 registers.

Indication: Start witl2*3¥57 in the first register and 0 in the second one.

A configurationis a triple (¢, z, y) wherei € {0,...,n} andz,y € N. Here,i = 0
meansstop Each instruction yields one or twmansitionsof the following kinds:

(i,z,y) == Gz +1y),  (hz,y) == (2,9 +1),
(1,0,y) == (5,0,y), (,2,0) == (4, ,0),
(i,x+Ly) —r (k2,y),  (zy+1) —r (k2y).
In particular, our first example of machine corresponds édf¢tiowing transitions:
(1,0,y) == (0,0,9), (Lz+1,9) —r (2,2,9),
(2,2,y) == Bz, y+1),  (B,2,9) =r (Lz,y+1).

We introduce the preordering}, and the equivalence relatien generated by-r,
and we consider the following problem:

Special halting problemgiven (i, z, y), do we havei, x,y) —% (0,0,0)?
Exercise 3 Prove that(i, z,y) <% (0,0,0) if and only if (i, z, y) —7% (0,0,0).
Indication: Use the fact th& is a deterministic machine.

Theorem 1 The special halting problem is undecidable for some 2-tegimachine.

Proof : Encode the halting problem for sommgiversal Turing machine



2 Some decision problems

If S, Ris afinite presentation of a monoid, we consider the following problems:
Unit: givenz € S*, do we haver <7} 1?

Equality. givenz,y € S*, do we haver «7} y?

Commutationgivenz, y € S*, do we havery <7} yx?

Note that unit and commutation are special cases of the iggpedblem.

For any other finite presentatidti, R’ of M, we have a morphism : S* — S"* such
thatx <% yif and only if o(z) <% ¢(y). Hence, the decidability of such a problem
depends only on the monoid .

Proposition 1 The unit problem is undecidable for some finitely presentedaid.

Hence, equality is undecidable for this monoid.

Proof: Given any 2-register machifie we introduce symbols, b, cg, . . . , ¢,,, d, e, and
we encode a configuratigi, «, y) by the word([i, z, y| = ab®c;dYe. Each transition
yields a rule of one of the following kinds:

c; = bcj, ¢ —cjd, ac; — acj, cie—cje, beg — e, cid — cpd.

We add the ruleicpe — 1, and sinceR is deterministic, we get a finite orthogonal
rewrite systemS, R such that(:,z,y) —% (0,0,0) if and only if [i,z,y] —% 1.
Furthermore, we have —7, 1 if and only if u <% 1 by the Church-Rosser property.

To sum up, the special halting problem fRr reduces to the unit problem fd¢t, R.
Hence, we can apply theorem(.

In fact, we could also directly encode the halting problemef@uring machine or for
a2-stack machineThe proof would be essentially the same.

Exercise4 Prove that commutation is undecidable for some finitelygaméesd monoid.

Indication: Reduce the unit problem faf to the commutation problem favl x {a}*.
For groups, the equality problem is equivalent to the urabpgm, since we have = y
if and only if zy~—! = 1. This is called thavord problem

Theorem 2 The word problem is undecidable for some finitely presented

The rest of this chapter is devoted to the proof of this noiartheorem. Indeed, the
proof of proposition 1 cannot be easily extended to the chgeoops, because inverses
interfere with any naive encoding of machines.

3 Partial isomorphisms

We write H < G if H is a subgroup of7. A partial isomorphisnis an isomorphism
¢ : H— K whereH, K < G. If H is finitely generated, we say thatis finitary.
More generally, gartial bijectionis a bijectiony : X — Y whereX,Y C G.



Exercise5 Prove that for any partial affine bijectiop : « + H — v + K in some
additive groupG, there is a partial isomorphisnt : Z(1 + u) + H — Z(1 4+ v) + K
in the additive groufZ @ G such that)(1 + =) = 1 + ¢(z) whenever € u + H.

If @ is a set of partial bijections i¥, we writex — & ¢(z) whenever: € X for some
¢ : X — Y in ®, and we introduce the equivalence relatier§, generated by-.
For anyzo € G, we consider the following problem:

Connectiongivenz € G, do we haver <} x¢?

Proposition 2 The connection problem is undecidable for some finite senibéry
partial isomorphisms in some finitely presented group.

Proof: We encode a configurati¢i «, y) for some 2-register machirfe by the triple
li,z,y] = (i,2%,2Y) in the additive groug3. Each transition yields a partial affine
bijection of one of the following kinds:

{i} XZXxZ—{j} x2ZxZ {i} XZXZ—{j} xZx2Z
(i, 2,y) — (j, 22,y) (i, z,9) = (J, =, 2y)

{i} x {1} xZ — {5} x{1} xZ {i} xZ x {1} = {5} xZ x {1}
(1, 1,9) — (J,1,y) (i,2,1) = (j,2,1)

{i} x2ZXZ —{k} xZXZ {i} XZ x2Z - {k} xZXZ
(i, 22, y) — (k,z,y) (i, 2,2y) = (k,z,y)

We get a finite sed of partial affine bijections which satisfies the followingperties:
o (i,z,y) —r (¢,2',y) ifand only if [i, 2, y] —e [/, 2, ¥/];
e if u —¢ u' andu is of the form[i, z, y|, thenu' is of the form[i’, =’, 3/];
e if u >4 v andu’ is of the form[i, 2/, y'], thenu is of the form[i, z, y].

Hence, we havéi, z,y) <% (0,0,0)ifandonlyif[i, z,y] <} [0,0,0]. By exercise 3,
the special halting problem f@t reduces to the connection problem for

By exercise 5, we can repladeby a finite set of finitary partial isomorphisms #t.
Finally, we can apply theorem L]

4 TheMagnusproblem

If S, Ris a finite presentation of monoid for a groGh we writez* for the class of:
moduloR in S*. If H < G is finitely generated, we consider the following problem:
Magnus problemgivenz € S*, do we haver € H?

Note that forH = {1}, we get the word problem as a special case.

If G < F andu € F, we define theentralizerZg(z) = {x € G| zz =2z} < G.

Proposition 3 If H is a finitely generated subgroup of a finitely presented gréuip
there is an elementin some finitely presented extensiBrof G such thalZ;(z) = H.



In particular, the Magnus problem fé¥ reduces to the commutation problem By
which is a special case of the word problem.

Proof: Choose generatots, . . . , u,, for the subgroug? and defineF" as follows:
F =G« (b)/ % whereR = {(bu;,u;b) |i=1,...,n}.

Using the standard presentation®f we get a presentation df by the symbols:,
(for z € G), b andb, with the following relations:

Azly = Qgy, a1 =1, bb=1, bb=1, ba, = ayb(if ue H).

We choose a representative in each right class maHuyland we writeH - for the set
of all those representatives, so that each G has a unique decompositian= uv
with u € H andv € H+. Moreover, we assume thatc H+.

Now, we can add the superfluous generators: ba,, andc, = ba, for eachv € Ht,
and the following derivable relations:

b=by, b=ci, bic,=a,andeb, =a, (ifve H),
bpay = ayby, andcya, = aycy, (if ve = vw with w € H andv,w € HY).
Then we can remove the following relations, which becomeééble:
bb=1, bb=1, ba,=aub(ifuc H), b,=ba,andc, = ba, (if v € HL).

By removing the superfluous generatérs: b, andb = c;, we get a presention df
by the symbols.,. (for = € G), b, andc, (for v € H') with the following relations:

UpGy = Qgzy, a1 =1, bic, =a, andeib, =a, (if v e HY),
byy = ayby andcya, = aycy (if ve = vw with w € H andv,w € HY).

This presentation is convergent (exercise 8). By the injigtcriterion, the canonical
injection:; : G — G+ (b) induces an injective morphism froGiinto F', and similarly
for 5 : (b) — G * (b). Hence,F' can be seen as an extension of b@tand(b).

Now, consider the two words a,, anda,.b; for x = uv with w € H andv € H*L:
e the reduced form of the first onedsb, (or b, if u = 1);
e the second one is reduced (or its reduced form i§ = = 1).

Hence b a, anda,b; have the same reduced form if and only if 1, thatisx € H.
Therefore H = Zq(b), sinceb; is just another name fdr O

Exercise6 Which extensiod” do we getin casé&l = {1} and in casel{ = G?
Exercise 7 Prove thatF is an extension of botf¥ and (b) without using rewriting.
Indication: Define two projections; : FF — G andns : F' — (b).

Exercise 8 Check that the above presentationfofs noetherian and confluent.
Exercise9 Prove thatG N (LU {b}) = LforanyL < G.

Indication: Choose representativesiinvhen it is possible, and check that if a word
consists of symbols whose indices ardlirso does its reduced form.



5 Higman-Neumann-Neumann extensions

Lety : H — K be a partial isomorphism i&. If z € G is such thatzz=! = ¢(z)
forall z € H, we say that represents. If X C Gissuchthapb(HNX)=KNX,
we say thatX is p-invariant Note that in that casey is alsop ! -invariant.

Proposition 4 If ¢ : H — K is a finitary partial isomorphism in a finitely presented
group G, there is an element in some finitely presented extensibrof G' such that
z represents andG N (L U {z}) = L for anyp-invariant subgroup. of G.

Proof: Choose generatots, . . . , u,, for the subgroug? and defineF as follows:
F =G (b)/—} whereR = {(bu;, o(u;)b) |i =1,...,n}.

We introduce the setd - and K as in the proof of proposition 3. We get a convergent
presention of?" by the symbols:, (for z € G), b, (forv € H*) andc, (forv € K+)
with the following relations:

Azly = gy, 61 =1, bicy, =ay, (fve K1), cib, =a, (if ve HY),

by = Gy )by (if v = uw withu € H andv, w € HY),

Coly = Q1 (y)Co (if v = uw withu € K andv,w € K1),

By the intectivity criterion,F" is an extension of bott¥ and(b). Moreover, ifx € H,
the reduced form o, a..c; is a,(,) (Or 1 if = = 1), which means thai represents.
The second property is proved by the same method as for egeddil

Exercise 10 Prove thatG Nb~1Gb = H andG N bGh~! = K.

This means that, give& < F, the partial isomorphisnp : H — K is completely
determined by € F. This F'is called aHigman-Neumann-Neumann extensiorGof

Let ® be a set of partial isomorphisms @&. If Z C G is such that anyy € ® is
represented by somee Z, we say thatZ representsb. If X C G is such thatX is
p-invariant for anyy € @, we say thatX is ®-invariant

Proposition 5 If @ is a finite set of finitary partial isomorphisms in a finitelyepented
group@, there is a finite subséf of some finitely presented extensiof G such that
Z representsp andG N (L U Z) = L for any ®-invariant subgroup. of G.

Proof: Let® = {¢1,...,pn} With ¢, : H; — K; for eachi. By iterating the previous
construction, we get a chain of finitely presented exterssion- Fy < F1 < --- < F,
andz; € F; which represents; for eachi, so thatZ = {z4, ..., z,,} represent®.

If Lis a®-invariant subgroup off, we definel,;, = (LU{z1,..., z;}) < F; for eachi.
In particular,Lo = L, so thatG N Ly, = G N L = L. More generally, we prove that
G N L; < L by induction or:

If it holds fori < n, thenH;»1 N L; < GNL; < LsothatH;; N L; = H;41 N L.
Similarly, K;+1 N L; = K;+1 N L, and sincel is p,1-invariant, so isL,;. Hence,
Gn Livi<F;NLiy1=F,nN <LZ U {Zi+1}> = L, so thatG' N L1 < GNL; < L.

Finally, GN (LU Z) = GN L,, < L, and the converse inclusion holds trivially.



6 Formal conjugates

For any group, we definei = G x (b). This group is an extension of bothand(b).
Note also that/ = H « (b) = (H U {b}) < G foranyH < G.

We also defingz = zbz~! € G foranyz € G, andX* = #X) < GforanyX c G,
wheretX = {#z |2z € X} C G. Note thatX* < G* < G.

Proposition 6 For any groupG, the family(fz).ecq is free inG.

Proof: Using the standard presentatiorthfive get a presentation i by the symbols
a; (for z € G), b andb, with the following relations:

amay — amyv ap = 1, bb = 1, bb = 1

We add the superfluous generatbys= a,ba,—: andb, = aba,-: for eachz € G,
and the following derivable relations:

b=b, b= 51, b.by =1, boby = 1, agby = byyay, azgy = T)myam.
Then we remove the following relations, which become délea

bb=1, by =azba,—1, by =azba,.

By removing the superfluous generators: b, andb = ¢;, we get a presention o
by the symbols:,, b, andb,, (for z € G) with the following relations:

Az Gy = Qgy, ayp = 17 bmbz = 17 Ezbz = 1, azby = bzyaz, azgy g T)myam.

This presentation is convergent (exercise 11).

Let I’ be the free group generated by the symbglfor z € ). We have a convergent
presentation of’ by the symbol$, andb,. (for z € G) with the following relations:

Sinceb, is just another name fd, the result follows from the injectivity criteriori.]
Exercise 11 Check that the above presentatiorfbfs noetherian and confluent.
Exercise 12 Prove thatiz € X* if and only ifz € X.

Indication: Check that if a word consists of symbols of therfé,, or b, with 2 € X,
so does its reduced form.

Exercise 13 Prove thatd N X# = (H N X)! foranyH < G andX C G.

Indication: Check that if a word consists of symbols whoskdes are inf{, so does
its reduced form.

Any partial isomorphisnp : H — K in G extends tap : H — K in G with p(b) =b.
In particular,@(tz) = fp(z) for anyz € H andp(X*) = o(X)* forany X C H.

Exercise 14 Prove thatifX C G is g-invariant, thenX* < G is g-invariant.



Proposition 7 If @ is a finite set of finitary partial isomorphisms in a finitelyepented
group@, there is a finite subséf of some finitely presented extensiof G such that
foranyz, zo € G, we haver <% ¢ if and only iftx € ({izo} U Z).

Proof: We have a finite sa of finitary partial isomorphisms i, By proposition 5,
we get some finitely presented extensiorof G and a finite subset of I such that
Z represent®. Hence, it is easy to see that € ({#zo} U Z) wheneverr —}% zo.

Letzg € GandXy = {z € G|z <% zo}. ThenX, is ®-invariant by construction.
By exercise 14X/ is ®-invariant, so thal N (X2 U Z) = X2. If fz € ({#zo} U Z),
thentz € G N (X2 U Z) = X!. By exercise 12, we get € X, that isz <}, z. [
Hence, the connection problem fdrreduces to the Magnus problem for soffie< F.

By proposition 2, the Magnus problem is undecidable for séime F', and theorem 2
follows from proposition 3. Note that commutation for greup also undecidable.

Exercise 15 Starting from a 2-register machine with instructions,p of them being
branchings, how many generators and relations do we getigtoup of theorem 2?



