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RÉSUMÉ. Nous pŕesentons une nouvelle méthode de classificatioǹa partir d’une distance pour construire des classes et des
partitions d’un ensembleX. La construction repose sur une valeur de densité calcuĺee en chaque sommet d’un grapheG =
(X, E) construità partir de la matrice de distance. Les classes sont des parties connexes deG de forte densit́e.

MOTS-CĹES :Classes, partitions, densité, espace ḿetrique

1. Graph, classes and partitions

Given a distance matrix onX, establishing partitions (all the elements are clustered in disjoint classes) is
generally made optimizing a criterion over the set of all the partitions with a number of classes that must be
indicated. In this paper, we investigate a different approach. From the distance matrix, we first build a valued
graphΓ = (X,E), for each vertex a density functionDe is evaluated and we perform clustering fromΓ andDe.
Our algorithm differs from similar approaches (Fraissex and Kuntz 1991, Matsuda et al. 1999, Rives and Galitsky
2003, Rougemont and Hingamp 2003) in many ways ; the graph is not a threshold graph, we use the valuation of
the edges to measure a density in each vertex and to perform progressive clustering.

Starting from a distance matrix, a threshold graph is generally used, keeping only edges corresponding to
distance values lower than a thresholdσ. The nested family of threshold graphs is obtained from a distance matrix
makingσ vary from 0 toDmax, the largest distance value. But for many metrics, as the Sczekanowski-Dice
distance on graphs, or Manhattan distance on boolean array, choosing a threshold value is a delicate problem. On
sparse graph, most of the distance values are equal to the maximum, and a small threshold gives many singletons.
So we try to keep the same number of edges from any vertex, selecting a graph which generally contains a single
connected component.

1.1. Graph

Given a distance matrix,D : X×X → R, the first operation is to select a degreeδ which works as a threshold.
From any elementx, the distance valuesD(x, y) are ranked in decreasing order and theδ-th value gives theσx

threshold. Then, we take as edges all the pairs(x, y) such thatD(x, y) ≤ σx. Let n = |X|, m = |E| and
Γδ = (X, E) the corresponding graph. It is not a classical threshold graph onD, since the threshold values are not
the same for all the vertices. And it is not really a regular graph with degreeδ, because the edge selection process is
not symmetrical ;y can be one of theδ closest element tox but it can be different forx to y. This directed relation
is symmetrized inΓδ ; consequently, there can be more thanδ vertices incident tox.

When there is no ambiguity on theδ value, the graph will simply be denotedΓ. For any partY of X, let Γ(Y )
be the set of vertices not inY that are adjacent toY . Thus, the neighborhood ofx is denotedΓ(x), the degree of a
vertexx is Dg(x) = |Γ(x)|.



1.2. Density function

For each vertexx, we evaluate a density function denotedDe which would be high when the elements ofΓ(x)
are close tox. We propose a density function computed from the average length of the edges fromx.

De(x) =
Dmax− 1

Dg(x)

∑
y∈Γ(x) D(x, y)

Dmax

The dense classes are by definition connected parts inΓ sharing high density values. Our initial idea was to
search for a density threshold and to consider the partial subgraph whose vertices have a density greater than this
threshold. Classes would have been its connected components. This strategy does not give the expected results.
Enumerating all the possible threshold values, we have observed that often none was satisfying. By decreasing the
threshold, we often obtain only a single growing class, and many singletons. Since there is no straightforward way
to determine a threshold, thelocal maximum valuesof the density function are considered.

1.3. Classes at three levels

We construct classes in three steps :

Kernels

A kernel, denotedK, is a connected part ofΓ, obtained by the following algorithm : we first search for the
local maximum values of the density function and we consider the partial subgraph ofΓ reduced to these vertices.

∀x ∈ K, ∀y ∈ Γ(x) we haveDe(x) ≥ De(y).

The initial kernels are the connected components of this graph. More precisely, if several vertices with maxi-
mum value are in the same kernel, they necessary have the same density value ; otherwise the initial kernels are
singletons. Then, we assign recursively to each kernelK the vertices (i) having a density greater than or equal to
the average density value overX and (ii) that are adjacent to only one kernel. Doing so, we avoid any ambiguity
in the assignment, postponing the decision when several are possible.

The number of kernels is the number of classes and it remains unchanged in the following. So it is not necessary
to indicate first this number, as for all the alternative methods optimizing a criterion. We shall see that it performs
pretty well, when there is a small number of classes, having from 30 to 50 elements.

Extended classes

At the second level, we just assign elements that are connected to a unique kernel, whatever is their density. If
an element not in a kernel is connected to several ones, the decision is again postponed.

Complete classes

Finally, to get partitions, we assign the remaining elements to one class. Forx and any extended classC to
which it is connected, we compute the number of edges betweenx andC, and also its average distance value toC.
Finally there are two candidates, the majority connected classCm and the closest oneCd. If they are identical,x is
connected to it. And if they are different we apply the empiric following rule : if|Cm|

|Cd| > 1.5, classCm is retained,
because the number of links toCm is clearly larger than toCd ; otherwiseCd is retained. When classes are not
necessary disjoint,x can be assigned to both classes.
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1.4. Complexity

To establish graphΓ, it is necessary to order the distance values from anyx. The computation ofσx is in
O(n log n) and the selection of the edges is inO(n). Finally of the graph construction is inO(n2 log n). To
evaluateDe(x) it is sufficient to test the edges in the neighborhood ofx which contains at mostn vertices. The
computation of the density function is thus inO(n2).

Kernel computation is inO(n2) to find the local maximum vertices, and inO(m) = O(n2) to determine the
kernel elements. During the following steps, for anyx we count its connections to the kernels, and then to the
extended classes. Both are also inO(n2). Finally, the complexity of the clustering method isO(n2 log n).

2. Monte Carlo simulation on binary data

In order to show that this method permits to recover existing classes, we have tested it on euclidian, boolean
and graph distances. For all these metric spaces, we have generated distance arrays containing initial classes. The
two main points to assess are the ability to recover the correct number of classes and their quality. Here, we only
detail the results on the symmetrical difference distance on binary tables.

First, we have developed a generator of binary tables (n rows,m columns) in which there arep classes. Each
class is indicated by a specific attribute taking value 1 only for its elements. For them− p other attributes, value 0
or 1 is selected at random, with .5 probability. The attributes are weighted : 1.0 for those characterizing the classes
and a random number between 0 and 1 for the others. At each trial, the symmetrical difference distance between
rows is computed.

2.1. Quality of the classes compared to the initial partition

For the three levels of classes, we would like to estimate the quality of the obtained sets of classes, and so
the efficiency of the clustering process. The initial partition is denotedP = {C1, ..Cp}. Let n′c be the number of
classified vertices at each level. They are distributed inp′ classes denotedC ′1, ..C

′
p′ realizing a partitionP ′ over a

subset ofX for the kernels and the extended classes.

We first aim to map the classes ofP ′ onto those ofP evaluatingni,j = |Ci

⋂
C ′j |. We define thecorresponding

class ofC ′j , denotedΘ(C ′j), as the one inP , that contains the greatest number of elements ofC ′j . Θ(C ′j) = Ck if
and only ifnk,j ≥ ni,j for all i from 1 top.

In order to measure the accuracy of the classes, we evaluate three criteria.

– τc : the percentage of clustered elements inP ′ (τc = n′c
n ).

– τe : the percentage of elements in one of thep′ classes which belong to its corresponding class inP .

τe =
∑

i |Θ(C ′i)
⋂

C ′i|
n′c

– τp : the percentage of pairs in the same class inP ′ which are also joined together inP .
The first criterion measures the efficiency of the clustering process at each level ; if very few elements are

clustered, the method is inefficient. For the second criterion, we must compute, for each class inP ′, the distribution
of the elements of any initial class to define its corresponding class inP . Thus it can be interpreted as a percentage
of ”well classified” elements. The third one estimates the probability for a pair in one class ofP ′ to come from a
single class inP .

Remark : The two last criteria may reach their maximum value (1.0) even when partitionsP andP ′ are not
identical. When a class inP is subdivided in two parts, they will have the same corresponding class ; all their
elements will be considered as well classified, and the rate of pairs will also be equal to 1.
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2.2. Results

We have generated 200 binary tables with 200 elements distributed in 5 classes, setting firstm = 10 and then
m = 20. Table 1 indicates the percentage of trials giving each computed number of classes whenδ varies.

Nb. of classes 2 3 4 5 6 7 8 9
δ = 18 0.0 .01 .04 .41 .36 .12 .04 .01

m=10 δ = 20 0.0 .01 .16 .63 .15 .05 .01 0.0
δ = 22 0.1 .05 .32 .52 .09 .01 .01 0.0

δ = 18 0.0 .04 .14 .29 .25 .19 .09 .01
m=20 δ = 20 0.0 .05 .27 .32 .23 .12 .01 0.0

δ = 22 .02 .11 .30 .33 .19 0.4 .01 0.0

Table 1 : Distribution of the number of classes according to the number of attributesm and the degreeδ.

One can see that form = 10 andδ = 20 the correct number of classes is the most frequently recovered. It
differs at most of one unity in 94% of the trials. It is less promising whenm = 20 but, in that case the 5 partitioning
attributes are hidden by 15 random ones. Now we evaluate the quality of the classes, using the above criteria with
δ = 20, because problems giving a number of classes greater than 5 are compensated by those giving a lower one.

m = 10 m = 20
τc τe τp τc τe τp

Kernels .46 1.0 1.0 .28 .90 .83
Classes .80 .96 .93 .47 .80 .68

Partitions 1.0 .92 .86 1.0 .77 .63

Table 2 - Average results of the quality criteria.

These two tables prove that this clustering method is able to recover classes in binary tables when some attri-
butes possess the partitioning information. And the number of classes can be correctly predicted.

The density clustering method has many advantages over classical partitioning ones.
– It allows both to extract partial classes (that do not cover the complete set of elements) and to built a partition.
– It provides the number of classes, and the correct number can be recovered if the classes have a few ten of

elements.
Finally it is a one parameter method (the initial degree) that can be used for large clustering problems.
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A. GUÉNOCHEClustering by graph density,Proceedings of IFCS’04 conference(2004) to appear.

H. DE FRAISSEX AND P. KUNTZ (1992) Pagination of large scale networks ; embedding a graph inRn for
effective partitioning,Algorithmic review, 2(3), 105-112.

H. MATSUDA, T. ISHIHARA, A. HASHIMOTO (1999) Classifying molecular sequences using a linkage graph
with their pairwise similarities,Theoretical Computer Science, 210, 305-325.

A.W. RIVES AND T. GALITSKI (2003) Modular organization of cellular networks,P.N.A.S., 100, 1128-1133.

J. ROUGEMONT AND P. HINGAMP (2003) DNA microarray data and contextual analysis of correlation graphs,
BMC Bioinformatics, 4 :15, 11p.

Acknowledgements

This work is supported by the ”Origine de l’Homme, des Langages et des Langues” (OHLL) CNRS program.

4


