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Résumé

Soit E/F une courbe elliptique sur un corps de nombres. Le groupe absolu de Galois
de F agit sur les points de m-torsion de la courbe, donnant une représentation ga-
loisienne ρE,m du groupe absolu de Galois dans GL2(Z/mZ). Le groupe de Galois de
l’extension F (E[m])/F , engendrée par les coordonnées des points d’ordre m de la courbe,
est isomorphe à l’image de ρE,m. Un résultat de Serre de 1972 et d’autres plus récents
montrent que cette représentation est surjective pour presque toutes les courbes elliptiques
définies sur F . Dans cette thèse, on travaille sur l’enchevêtrement des corps de division,
autrement dit sur la non-surjectivité des représentations ρE,m, lorsque m n’est pas premier.

D’une part, on questionne la possibilité d’avoir la coïncidence de deux corps de divi-
sion F (E[m]) = F (E[n]) pour des entiers m,n distincts. Cette question a déjà été traitée
pour F étant le corps des rationnels. Dans cette thèse, on donne des résultats sur les corps
de nombres.

D’autre part, dans le cadre du problème inverse de Galois, on souhaite une méthode
pour construire des polynômes avec corps de décomposition F (E[m]). Cette question a
déjà été traitée pour m = p un premier et ρE,p surjective. Dans cette thèse, on généralise
le résultat à tous les entiers m et à toutes les images de ρE,m possibles. De plus, on donne
un minorant pour les valuations des coefficients des polynômes obtenus.

Mots-clés: Géométrie arithmétique, Problème inverse de Galois, Théorie des représen-
tations, Courbes elliptiques, Enchevêtrement de représentations, Théorie algorithmique
des nombres.
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Abstract

Let E/F be an elliptic curve over a number field. The absolute Galois group of F acts
on the m-torsion points of the curve, giving rise to a Galois representation ρE,m from the
absolute Galois group into GL2(Z/mZ). The Galois group of the extension F (E[m])/F ,
generated by the coordinates of the points of order m of the curve, is isomorphic to
the image of ρE,m. A result by Serre from 1972, along with more recent results, show
that this representation is surjective for almost all elliptic curves defined over F . In this
thesis, we focus on the entanglement of division fields, i.e. the non-surjectivity of the
representations ρE,m, when m is not prime.

On the one hand, we examine the possibility of having the coincidence of two division
fields F (E[m]) = F (E[n]) for distinct integers m,n. This question has already been
studied for F being the field of rationals. In this thesis, we provide results over number
fields.

On the other hand, within the framework of the inverse Galois problem, we seek a
method to construct polynomials whose splitting fields is F (E[m]). This question has
already been addressed for m = p a prime and ρE,p surjective. In this thesis, we generalize
the result to all integers m and to all possible images of ρE,m. Moreover, we give a lower
bound for the valuations of the coefficients of the polynomials obtained.

Keywords: Arithmetic Geometry, Inverse Galois problem, Representation theory, El-
liptic curves, Entanglement of representations, Algorithmic number theory.
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Introduction

In this thesis we approach the study of images of Galois representations of elliptic curves
from two different contexts. The first involves the entanglement of Galois representations,
and asks whether two division fields of an elliptic curve do coincide. The second concerns
the inverse Galois problem, and more specifically, the construction of explicit polynomials
realizing the images of Galois representations.

Galois theory and the inverse Galois problem: motivation
Galois theory is the study of algebraic numbers, which are roots of polynomials with co-
efficients in Q. It arose from the question of finding formulas for roots of polynomials.
Let f ∈ Q[X] be a monic and irreducible polynomial, with roots αi in Q. To the poly-
nomial f we associate a unique field Q(f) which consists of all the numbers which are
arithmetic combinations of the αi’s over Q. The field Q(f) is called the splitting field of f .
Such an extension of Q is said to be Galois. Let us remark that the associate polynomial
is not unique: there are infinitely many irreducible and monic polynomials g ∈ Q[X] such
that Q(f) = Q(g).

For a finite extension L/Q, i.e. a field generated by finitely many algebraic numbers,
we consider the Q-automorphism group of L, that is

Aut(L/Q) := {σ : L→ L | σ is a isomorphism and σ|Q = id}.

When L/Q is Galois, this group is called the Galois group of L and is denoted by Gal(L/Q).
Therefore, to a polynomial, we associate a group: its Galois group.

All the structure of the reasoning and the results above are valid replacing the ground
field Q by any number field, i.e. any finite extension of Q, and even any field, namely F .
We obtain the following diagram:

{polynomials with coefficients in F} {finite Galois extensions of F}

{finite groups}

The finite inverse Galois problem consists of determining the image of the arrows to
{finite groups}, and in particular whether they are surjective. If the ground field is F = Q,
it is conjectured that the answer is yes. For other ground fields, almost nothing is known.

We obtain extensions of the ground field F by adding algebraic numbers over F . Above,
we considered finite extensions. We can also build extensions generated by infinitely many
algebraic numbers. In general, Galois extensions of F are algebraic extensions L/F such
that, for all α ∈ L such that α is the root of an irreducible polynomial fα with coefficients
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in F , all the roots of fα are in L. In this case, the Galois group of L/F is infinite, and
has a structure of a profinite group: it is a topological group which is the inverse limit of
finite discrete groups, see Section 1.4. In particular, a finite group is profinite. Thus, we
have an arrow:

{Galois extensions of F} {profinite groups}

The general inverse Galois problem consists of determining the image of this map.
We highlight that if the inverse limit of finite groups Gi, i ∈ I, where I is a countable
set, is in the image then all the Gi’s are in the image. In this thesis, we study Galois
representations ρ : GF → G where G is a subgroup of the group GL2(Ẑ) of invertible
matrices with coefficients in the profinite limit Ẑ = lim←−Z/mZ. Let L/F be the fixed field
of the kernel of ρ, then the image of ρ is isomorphic to the Galois group of L/F .

Galois representations of elliptic curves
An elliptic curve is a non-singular projective curve of genus 1 with a fixed base point. This
base point determines a group law, making the elliptic curve into an abelian variety of
dimension 1. For any integer m, the group E[m] of m-torsion points of an elliptic curve E
defined over a number field F is isomorphic to (Z/mZ)2. Moreover, the absolute Galois
group GF = Gal(F/F ) acts on the points of order m, giving rise to a mod m Galois
representation

ρE,m : GF → GL2(Z/mZ),

whose kernel is fixed by the division field F (E[m]), and furthermore, for any prime p, to
a p-adic and an adelic Galois representation

ρE,p∞ : GF → GL2(Zp) and ρE : GF → GL2(Ẑ).

We denote by F (E[p∞]) the fixed field of the kernel of ρE,p∞ .
In 1972, Serre proved that, for non-CM elliptic curves - which is the generic case - the

index of the image of the adelic Galois representation in GL2(Ẑ) is finite, and called the
adelic index. Equivalently, for every non-CM elliptic curve, the p-adic Galois representa-
tion is non surjective only for finitely many primes p, called the exceptional primes. There
is a rich literature on the topic. In particular, various authors investigated the question of
finding upper bounds for exceptional primes. Algorithms by Zywina [Zyw15] and Suther-
land [Sut16] compute exceptional primes and their corresponding mod p and p-adic Galois
images. Jones [Jon10], for F = Q, and Zywina [Zyw10], for F ∩ Qcyc = Q and F 6= Q,
show that almost all elliptic curves have surjective p-adic Galois representations for all
primes p.

Beyond local constraints, the failure of the adelic representation ρE to be surjective is
due to the non-surjectivity of the injective morphism

ρE(GF )→
∏

p prime
ρE,p∞(GF ),

which corresponds to the non-linear disjointness over F of the family of division fields
(F (E[p∞])). In this case, we say that the family (F (E[p∞])) is entangled. Serre first
raised the problem of entanglement, in 1972, observing that, for an elliptic curve over
Q, the division field Q(E[2]) has a non-trivial intersection with a cyclotomic field. This
forces the adelic index to be even for every elliptic curve, even though the p-adic Galois
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representations can be surjective for all p. In this latter case, the field Q(E[2∞]) is en-
tangled with another division field. It was not until 2010 that this issue was addressed
again, by Jones, Greicius and Zywina, and later, from 2016 onwards, also by Brau, Daniels,
Lozano-Robledo, Morrow, Campagna, Pengo, Stevenhagen et al. The terminology of ver-
tical entanglement for the non-surjectivity of ρE,p∞(GF ) for some p, and of horizontal
entanglement for the non-surjectivity in the product, has been first introduced by Daniels,
Lozano-Robledo and Morrow in 2021.

The case where the ground field F is a general number field is very different from
the case F = Q. Indeed, on the one hand, the Kronecker-Weber theorem is only valid
over Q. On the other hand, the possible non-trivial intersection F ∩ Qcyc gives rise to
the non surjectivity of the composition of ρE with the determinant map GL2(Ẑ) → Ẑ∗.
As a consequence, we distinguish the properties of ρE(GF ) resulting from the intersection
F ∩Qcyc.

Contributions to entanglement

Let E/F be an elliptic curve. An extreme case of both vertical and horizontal entanglement
is the equality of two division fields F (E[m]) = F (E[n]), in which case we say that E/F
has an (m,n)-coincidence. Previous results have been proved for elliptic curves defined
over the rationals, by Rouse and Zureick-Brown, Jones and Brau, and Daniel and Lozano-
Robledo.

In this thesis, we study the question of coincidence for elliptic curves over an arbi-
trary number field. As for entanglement, we distinguish (pk, pk+1)-coincidences where p
is a prime, called vertical coincidences, and (m,mpk)-coincidences where p ∤ m, called
horizontal coincidences.

We prove that if E/F has an (m,n)-coincidence and p is a prime not dividing m and n
with the same exponent, then p is either even, or ramified in F/Q, or a prime of bad
reduction for E, see Theorem 4.42.

In addition to refining the set of possible prime divisors of m and n, we give constraints
on the possible exponents on the prime divisors in case of horizontal coincidence, using the
obstructions given by the inclusion F (ζm) ⊆ F (E[m]). Combining previous results on the
relation between the ramification of F (E[m])/F and the type of reduction of the elliptic
curve, we obtain Table 4.21 giving necessary conditions for F (E[m]) to contain the pk-th
cyclotomic field F (ζpk), where p is a prime, and so to have an (m,mpk)-coincidence.

Concerning vertical coincidences, we use that the group ρE,pk(GF ) is the image of
ρE,pk+1(GF ) in GL2(Z/pkZ). We show that the sequence (ik+1/ik), where ik denotes the
index of ρE,pk(GF ) in GL2(Z/pkZ), is non-increasing from k ≥ 1 if p is odd and k ≥ 2

if p = 2, then constant. In particular, if a (pk, pk+1)-coincidence occurs, then it occurs
from the beginning. Moreover, in this case, the adelic index is divisible by p4k if p is odd
and max

{
24, 24(k−1)

}
if p = 2.

Furthermore, if m divides n, then an (m,n)-coincidence implies that the reduction
map ρE,n(GF )→ ρE,m(GF ) is an isomorphism. This motivates the study of coincidences
in chains

F (E[m]) = F (E[pm]) = · · · = F (E[pkm]),

and the associated problem of splittings of the surjections ρE,pm(GF )→ ρE,m(GF ) intro-
duced in Subsection 4.5.4. In the case of (pk, pk+1)-coincidences, with k ≥ 2 for p = 2, 3,

then the mod pk image does not contain a conjugates of
(
1 1
0 1

)
, see Theorem 4.67.
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If F = Q, a (pk, pk+1)-coincidence is possible only for p = 2, see [DLR23]. We prove
that, more generally, this is true if F ∩Q(ζpk) = Q, this is Corollary 4.39. If E has CM by a
quadratic field K and F ⊆ K(j(E)), then Proposition 4.70 gives a more precise statement:
a (pk, pk+1)-coincidence is not possible for p odd and k ≥ 2.

In addition, if the mod m image is large, i.e. contains SL2(Z/mZ), we give further
constraints for a coincidence in Section 4.6, resulting from the study of the abelianization
of the image of ρE,m.

Up to this point, we have only examined necessary conditions for having a coincidence.
We conclude the presentation of the results on coincidences with the statement of sufficient
conditions. Over Q, the only possible vertical coincidence is a (2, 4)-coincidence. It is
even expected that the known (2, 4), (2, 3), (2, 6) and (3, 6)-coincidences are the only
possible coincidences over Q. For any elliptic curve E/F , we can construct an (m,mpk)-
coincidence with a base change from F to F (E[mpk]), but such a base change provides
a trivial construction. We prove the existence of a (4, 8)-coincidence with a base change
from Q to an extension linearly disjoint from Q(E[4]), see Theorem 4.27. Together with
this theorem, in Subsection 4.5.1 we define the notion of a minimal base change and give
necessary and sufficient condition to construct an (m,mpk)-coincidence by a minimal base
change of the ground field.

Contributions to the inverse Galois problem
As we previously described, the inverse Galois problem of a group G over a field F consists
of determining whether G is isomorphic to the Galois group of an extension of F . In
the context of elliptic curves, images of mod m Galois representations are realizable as
the Galois group over F of the mod m division field. As we saw, finite Galois groups
correspond to splitting fields of polynomials. The explicit inverse Galois problem for G
over F consists of determining a (family of) polynomial(s) in F [X] whose splitting field has
Galois group G. In the case of surjective image of mod p Galois representations for elliptic
curves, with p a prime, Reverter and Vila provide a solution for this problem, considering
a short Weierstrass equation for E, and using the function x + y ∈ F (E). In this thesis,
we generalize their result for any equation for E, any image of ρE,m, with m an integer
not necessarily prime, and we consider a broader choice of functions in F (E) than x+ y.
Since m is not necessarily prime, in Subsection 5.1.1 we define the m-th primitive division
polynomial ψ̃m, which is a factor of the m-th division polynomial corresponding to the
points of exact order m.

Theorem. (Theorems 5.11, 5.22 and 5.34) Let E/F be an elliptic curve with Weierstrass
equation wE(x, y) = 0. Let m ≥ 3 and u ∈ F (E) with degree 1 in x and y satisfying
F (u, [−1]∗u) = F (x, y).

1. The m-th primitive division polynomial ψ̃m has Galois group isomorphic to the quo-
tient ρE,m(GF )/{± id}. If the action of GF on the points of order m is transitive,
then ψ̃m is irreducible.

2. The characteristic polynomial χu,m of multiplication by u in the ring F [X,Y ]/(wE , ψ̃m)
has Galois group isomorphic to ρE,m(GF ). Moreover, χu,m is irreducible if and only
if GF acts transitively on the points of order m.

The degree of χu,m is 2 deg ψ̃m which is less than or equal to m2 − 1. Hence this
theorem gives a way to construct polynomials of high degree with known Galois groups,
which are subgroups of GL2(Z/mZ), for an arbitrary integer m.
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We conclude with the determination of a lower bound for the valuations of the coeffi-
cients of the polynomials arising in our construction.

Structure of the manuscript
The general structure is as follows: we motivate the study of adelic Galois representations
of elliptic curves by the inverse Galois problem, then describe their images, starting from
local conditions and moving to entanglement. This motivates the study of the extreme case:
coincidences. We then return to the inverse Galois problem with an explicit construction.

Chapter 1 is an introduction to the inverse Galois problem, and its relation to the
study of Galois representations. We introduce the concepts of linearly disjoint extensions
and of profinite groups.

In Chapter 2, we give some preliminaries on elliptic curves and their associated Galois
representations, with a particular focus on the possible non-surjectivity of the cyclotomic
character for a general ground field. Then we describe the current state of knowledge on
images of p-adic Galois representations.

In Chapter 3, we describe the phenomena of horizontal entanglement, which leads to
the presentation of results concerning the adelic index and the adelic level.

Chapter 4 is about coincidence of division fields. We describe the question, then give
the known results over Q, and then move our attention to number fields. We analyse
horizontal coincidences, vertical coincidences, and the case of large images. This chapter
essentially follows [Yvo24].

In Chapter 5, we discuss the explicit inverse Galois problem for the image of mod m
Galois representations of elliptic curves over F . This chapter follows [Yvo23].

In Chapter 6, we briefly gives some ideas for future works: one consists of constructing
entanglement using modular curve, and the second concerns coincidences of division fields
of abelian varieties.

In Appendix A, we treat the derived group of general linear group GL2(Z/mZ) and
the special linear group SL2(Z/mZ) with detailed proof, which are used in Chapter 4.

In Appendix B, we give background on the theory of modular curves, which is referred
to occasionally in the manuscript, with examples specific to entanglement.
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Notations

Throughout this manuscript, we will use the following notation.

− For a finite set S, we denote by #S its cardinality.

− For a ring R, we denote by R∗ its unit group.

− P denotes the set of prime numbers;

− We denote by φ : Z→ N the Euler totient function;

− Form,n two integers, gcd(n,m) denotes their greatest common divisor, and lcm(n,m)
denotes their lowest common multiple, and write m | n when m divides n;

− For p a prime, Zp = lim←−
k

Z/pkZ denotes the ring of p-adic integers and Ẑ = lim←−
m

Z/mZ

denotes the ring of profinite integers;

− For m a positive integer, we set GL2(m) = GL2(Z/mZ) and SL2(m) = SL2(Z/mZ).

We fix an algebraic closure Q of Q and let F be a field.

− We fix (ζm)m≥1 a compatible system of roots of unity in Q, that is ζkkm = ζm for k,m
positive integers. We denote by µm the group of m-th roots of unity for some fixed
m and µp∞ the multiplicative group of pk-th roots of unity for all k;

− For finite extensions of number fields K ⊆ L ⊆ M such that M/L is Galois, and a
prime ideal p of OL, we denote by ep(M/K) the ramification index of M/K at p;

− We fix F an algebraic closure of F and by GF = Gal(F/F ) its Galois group;

− For a prime p, F (µp∞) denotes the extension of F generated by elements of µp∞ and
F cyc is the extension of F generated by the roots of unity. We note that Qcyc = Qab.

− For f ∈ F [X], we denote by F (f) ⊆ F the splitting field of f in F and Gal(f) the
Galois group of F (f)/F ;

− For (Li)i∈I a family of (algebraic) extensions of F , we denote by
∏
(Li) the composi-

tum of the Li inside F ;

− For α ∈ F ,
√
α denotes a root of X2 − α.

− If F is a number field, OF denotes its ring of integers and ∆F its discriminant.

Given an elliptic curve E defined over F (abbreviated as E/F ), a rational function
u ∈ F (E) and a subset A ⊆ E(F ), we use the following notations:

u(A) = {u(P ), P ∈ A}, F (u(A)) := F ({u(P ), P ∈ A}) and F (A) = F (x(A), y(A))

21
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Chapter 1

Galois theory and the inverse
Galois problem

1.1 Definition and overview

Now, let us define properly what is the inverse Galois problem and give some basic results
in this area.

Definition 1.1. We say that an algebraic extension L/F is Galois if it is normal and
separable. In this case, we denote by Gal(L/F ) its F -automorphism group.

Definition 1.2. Let G be a group and F be a field. We say that G is realizable as a
Galois group over F if there exists a Galois extension L/F such that Gal(L/F ) ' G.

Problem 1.3. The inverse Galois problem (IGP) for G over F consists in determining
whether G is realizable as a Galois group over F .

If G is finite, the extension L/F must be finite and then corresponds to the splitting
field of a polynomial in F [X].

Definition 1.4. We say that a polynomial f ∈ F [X] realizes G if G ' Gal(f).

We define four variations on solving the IGP:

Problem 1.5. Let G be a group and F be a field. Here are a hierarchy of problems for
solving the IGP for G over F :

1. Classical IGP1: existence of a field extension of F with Galois group G,

2. Effective IGP: method of construction of such a field extension,

3. Explicit/Parametric IGP2: method of construction of explicit polynomials matching
this extension.

For each of the above IGP’s, we also define an IGP with ramification: construction of such
an extension with some prescribed ramification properties.

1In [JLY02], it is referred as General existence problem, and classical IGP denotes the inverse Galois
problem in the case F = Q.

2In [JLY02], Explicit IGP is referred as Actual construction, and this book focus on parametric polyno-
mials.

23
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Example 1.6. Let d be a squarefree integer. We have Gal(Q(
√
d)/Q) ' Z/2Z. In particular

Z/2Z is realizable over Q, by the irreducible polynomial X2− d. The extension Q(
√
d)/Q

is ramified (with ramification index 2) at primes dividing d if d ≡ 1 (mod 4) and 4d if
d ≡ 2, 3 (mod 4). We analyse further this example in Example 1.26.
Example 1.7. Let n be a positive integer. We have Gal(Q(ζn)/Q) ' (Z/nZ)∗. In particular
(Z/nZ)∗ is realizable over Q, by the (reducible) polynomial Xn−1. The extension Q(ζn)/Q
is ramified at primes p dividing n, with ramification index φ(pvp(n)). We examine further
this example in Example 1.24.
Remark 1.8. Suppose that G is realizable over F by an extension M/F . Let H be a
subgroup of G. The fundamental theorem of Galois theory says that there exists a inter-
mediate extension F ⊆ L ⊆ M such that H ' Gal(M/L). Moreover, if H is normal, we
have G/H ' Gal(L/F ). Then any quotient of a realizable group by a normal subgroup is
realizable over the same base field F .

Theorem 1.9. Every finite abelian group is realizable over Q, by a subextension of a
cyclotomic extension.

Proof. Let G be a finite abelian group. Then, by the fundamental structure theorem of
abelian groups, there exist a1, . . . , an such that G '

∏
Z/aiZ. Dirichlet’s theorem on

arithmetic progression tells us that, for any a ∈ Z, there exist infinitely many primes
congruent to 1 modulo a. Then, let us take p1, . . . , pn distinct such that ai | pi−1 for each
i. It follows that Z/aiZ is a quotient of (Z/piZ)∗, and so G a quotient of∏

(Z/piZ)∗ ' (Z/nZ)∗ ' Gal(Q(ζn)/Q),

where n =
∏
pi. Therefore, by Remark 1.8, the group G is realizable over Q by a subex-

tension of Q(ζn).

Theorem 1.10 ([SD08, Section 4.4, Remark 2 on Example]). For all n, the symmetric
group Sn is realizable as a Galois group over Q, by the irreducible polynomial Xn−X − 1.

Remark 1.11. Cayley’s Theorem [Jac12, Chapter I.10, Corollary of Theorem 1] specifies
that every finite group of order n is a subgroup of the symmetric group Sn and so is
isomorphic to Gal(Q(Xn −X − 1)/L) for some intermediate extension Q ⊆ L ⊆ Q(Xn −
X−1). In particular, every finite group is realizable as a Galois group over a number field.

There is a classic specialization of the third point of Problem 1.5 called the tame inverse
Galois problem.

Definition 1.12. Let L/F be an finite field extension, p be a prime and p be a prime
ideal of OF above p. We say that L/F is

• tamely ramified at p if p ∤ ep(L/F ),

• tamely ramified at p if L/F is tamely ramified at every prime ideal above p,

• tamely ramified if L/F is tamely ramified at every prime.

The tame IGP over F ask whether a given group is realizable by a tamely ramified
extension of F . This question has an affirmative answer over Q for solvable groups, together
with the groups Sn and An for any n, see [KM04], [Pla03], [PV03].

Generically, a random irreducible polynomial of degree n has Galois group Sn. In other
words, it has maximal Galois group.
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Theorem 1.13 ([Coh79, Theorem 1]). The proportion of irreducible polynomials of de-
gree n which have Galois group Sn is 1.

Nevertheless, the IGP is conjectured to have a solution for every finite group:

Conjecture 1.14 ([SD08, Conjecture 4.1.1]). All finite groups are realizable as a Galois
group over Q.

A generic method to deal with the IGP is through continuous representations. Let G
be a group that we want to realize over F . It suffices to find a surjective continuous
representation ρ : GF → G, which is a non-trivial problem. Then, the kernel of the
representation ρ is Gal(F/L) for some extension L/F which is Galois since the kernel of
a homomorphism is a normal subgroup. The fundamental theorem of Galois theory says
that Gal(L/F ) ' G. In Section 1.3, we explore this approach through representations on
torsion subgroups of elliptic curves.

1.2 Linear disjoint extensions: realization of direct products
In order to realize direct products of realizable groups, we are interested in the concept of
linear disjoint extensions. This concept is at the heart of the phenomena of entanglement,
introduced in Section 3. Let I be a countable set. For a family (Li)i∈I of subfields of F ,
the compositum of the extensions Li is denoted by

∏
(Li) = Im(⊗FLi → F ).

Definition 1.15. Let (Li)i∈I be a family of extensions of F . We say that (Li)i∈I is a
family of linear disjoint, or linearly independant, extensions over F if one of the following
equivalent conditions is satisfied:

1. The canonical surjective morphism of F -algebra
⊗

FLi →
∏
(Li) is an isomorphism.

2. The F -algebra
⊗

FLi is a field.

The equivalence of these two statements is given in [Coh12, Section 11.6].

Proposition 1.16. Two extensions L/F and M/F , with L/F finite, are linearly disjoint
if and only if [LM :M ] = [L : F ].

Proof. See [Bou81, A.V.13, Proposition 5].

Corollary 1.17. A family (Li) of finite extensions is linearly disjoint over F if and only
if for any finite subset J ⊆ I, [∏

i∈J
(Li) : F

]
=
∏
i∈J

[Li : F ].

In particular, this condition is automatically satisfied if the degrees [Li : F ] are coprime.

Proof. Two extensions L/F and M/F are linearly disjoint if and only if

[LM : F ] = [LM : L][L : F ] = [M : F ][L : F ],

the second equality coming from Proposition 1.16. The result follows by induction.

When an extension is Galois, we have a simpler characterization of linear disjointness:



26 CHAPTER 1. GALOIS THEORY AND THE INVERSE GALOIS PROBLEM

Proposition 1.18. If L/F is Galois, then L/F and M/F are lineary disjoint over F if
and only if L ∩M = F .

Proof. See [Coh12, Theorem 11.6.5].

The proposition below is sometimes considered as a definition for linearly disjoint
Galois extensions (see for example [CP22a]):

Proposition 1.19. If the extensions Li/F are Galois, then the family (Li) is linearly
disjoint over F if and only if the following restriction morphism is an isomorphism:

Gal
(∏

(Li)/F
)
→
∏

Gal(Li/F ).

Proof. It follows from Proposition 1.18 and [Bou81, A.V.66, Corollary 6].

Proposition 1.20. Set A = (Li)i∈I and suppose that the Li are Galois. There exists a
subset SA ⊆ I such that a subset S ⊆ I satisfies

Gal

(∏
i∈I

(Li)/F

)
' Gal

(∏
i∈S

(Li)/F

)
×
∏
i/∈S

Gal(Li/F )

if and only if SA ⊆ S. Moreover, for all j ∈ SA,

Lj ∩
∏
i∈SA
i ̸=j

(Li) 6= F.

Proof. We set SA = I and M =
∏
i∈SA

(Li). While there exists j such that Lj∩
∏
i∈SA
i ̸=j

(Li) = F

i.e.

Gal(M/F ) ' Gal(Lj/F )×Gal

∏
i∈SA
i ̸=j

(Li)/F


then remove j from SA. When the loop stops, then we have the desired set SA.

Remark 1.21. Let (Li)i∈I be a family of linear disjoint extensions of F and K/F be a
subfield of

∏
i∈I
Li. Suppose that K =

∏
i∈I

(Ki) with Ki ⊆ Li for all i ∈ I. For all i ∈ I, we

have Ki ⊆ K ∩ Li and, since
∏
i∈I

(Ki) =
⊗
i∈I
Ki,

⊗
i∈I

Ki ⊆
⊗
i∈I

(K ∩ Li) ⊆ K =
⊗
i∈I

Ki.

Hence Ki = K ∩ Li.
Remark 1.22. If L/F and M/F are finite Galois extensions, then the restriction morphism

Gal(LM/M)→ Gal(L/L ∩M)

is an isomorphism. We deduce that

[LM : F ] =
[L : F ][M : F ]

[L ∩M : F ]
.

This agrees with Corollary 1.17 and Proposition 1.18.
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From Proposition 1.19, if we find a realization of groups Gi by respectively the exten-
sions Li/F such that the Li are linearly disjoint over F , then we obtain a realization of
the direct product of the Gi’s as the Galois group of

∏
(Li)/F .

Example 1.23. Let f(x) = x3+x2−77x−289. The extension Q(f)/Q has Galois group S3.
Let ∆f be the discriminant of the polynomial f . We know that

√
∆f ∈ Q(f). Here, we

have
Q(
√
∆f ) = Q(

√
−11) ⊆ Q(ζ11)

by [Neu99, Chapter I, Proof of Proposition 10.5]. Then Q(
√
−11) ⊆ Q(f) ∩ Q(ζ11). It

follows that Q(f) and Q(ζ11) are not linearly disjoint over Q. We say that there is Serre
entanglement, see Section 3. However, the extensions Q(f) and Q(ζ11) are linearly disjoint
over F = Q(

√
−11). Indeed, the degree of Q(f) over F is 6/2 = 3 and the degree of Q(ζ11)

over F is (11 − 1)/2 = 5. Then we use Corollary 1.17. The extension Q(f)(ζ11)/F has
Galois group Z/3Z×Z/5Z by Proposition 1.19. We have obtained a realization of Z/15Z
over F taking the compositum of a cubic and a quintic extension.
Example 1.24. We continue Example 1.7. We saw that Q(ζpk)/Q with p prime is Galois
and is only ramified at p. Since the only unramified extension of Q is Q itself, then the
family (Q(ζpkp ))p∈P is linearly disjoint over Q for any family (kp)p∈P . More generally, the
family (Q(µp∞))p∈P is linearly disjoint over Q.

The conjecture that every finite group is realizable as a Galois group over Q has a
stronger version:

Conjecture 1.25 ([SD08, Conjecture 4.1.1]). For any finite group G, there are infinitely
many linearly disjoint Galois extensions over Q with Galois group G.

Example 1.26. We continue Example 1.6. For two squarefree integers d 6= d′, we have
Q(
√
d) 6= Q(

√
d′). Since two quadratic extension are either equal or with trivial intersec-

tion, then two different quadratic extension are linearly disjoint by Proposition 1.18. How-
ever, the family of quadratic extensions is not linearly disjoint: we have

√
2 ·
√
−1 =

√
−2

and so

Gal(Q(
√
2,
√
−2,
√
−1)/Q) = Gal(Q(

√
2,
√
−1)/Q) ' Gal(Q(

√
2)/Q)×Gal(Q(

√
−1)/Q).

Thus the family (Q(
√
2),Q(

√
−2),Q(

√
−1)) is not linearly disjoint over Q. Neverthe-

less, the extension Q(
√
d)/Q is ramified at every prime dividing d, and so the exten-

sions Q(
√
d)/Q with d squarefree and positive are all differently ramified, and so are

linearly disjoint over Q. This proves the above conjecture for G = Z/2Z.

1.3 Representations coming from elliptic curves
In the context of elliptic curves, we focus on subgroups of GL2(m). Let us take a number
field F , an elliptic curve E/F and a positive integer m. The group E[m] of m-torsion
points of E(F ) is isomorphic to Z/mZ×Z/mZ and the absolute Galois group GF acts on
E[m]. Then, we obtain a Galois representation

ρE,m : GF → Aut(E[m]) ' GL2(m).

It follows that the image of ρE,m is realizable as a Galois group over F . This is the
Galois group of the fixed field of ker(ρE,m): the extension of F obtained by adjoining the
coordinates of the m-torsion points and denoted by F (E[m]). We also define, for a prime
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p, the group E[p∞] to be the group of pk-torsion of E for all k and Etors to be the group
of all the torsion points of E.

Serre’s open image theorem tells that, if E/F does not have CM, then ρE,m(GF ) is
surjective for all m coprime to the adelic level ME of ρE , see Section 2.4. Hence, GL2(m)
is realizable as a Galois group for all m coprime to ME . Going further, we obtain the
following:

Theorem 1.27. The group GL2(m) is realizable as a Galois group over Q for any odd
positive integer m.

Proof. The elliptic curve E/Q with LMFDB label 37.a1 has adelic level 2·37 and surjective
mod 2 and mod 37 Galois representation. Thus, E/Q satisfies ρE,m(GQ) = GL2(m) for
all m not divisible by 2 · 37. In particular, it is surjective for all odd m.

Proposition 1.28. The group GL2(2
k) is realizable as a Galois group over Q for all k ≥ 1.

Proof. The elliptic curve E/Q with LMFDB label 11.a1 has surjective 2-adic Galois rep-
resentation i.e. surjective 2k Galois representation for any k ≥ 1.

For GL2(m) with m even (but not a power of 2), the difficulty comes from the Serre
entanglement, described in Section 3.

In Chapter 2 and 3, we give more information about the image of ρE,m.
Remark 1.29. We cannot realize all subgroups of GL2(m) over Q in this way. Indeed, if E
is defined over a number field F , we have det(Im(ρE,m)) ' Gal(F (ζm)/F ) by Proposi-
tion 2.13. In particular, the subgroups of GL2(m) with non-surjective determinant cannot
be realized as ρE,m(GQ) for any elliptic curve E/Q.

In Section 1.1, we recalled that polynomials of degree n generically have Galois group Sn,
in other words maximal Galois group. The same was expected for Galois representation of
elliptic curves, which was finally proved in 2010: the mod m representation of a random
elliptic curve is generically maximal. Maximal image means that it contains SL2(m), since
the image of the cyclotomic representation in GL2(m)/SL2(m) only depends on F , as we
will see in Section 2.3. In the following theorem, for each case F 6= Q and F = Q, we
consider the density respectively given in Theorem 3.20 and in Theorem 3.23. We have:

Theorem 1.30. Let m be an integer. Then almost all elliptic curves E/F with F 6= Q
satisfy SL2(m) ≤ Gal(F (E[m])/F ). If m is odd, then almost all elliptic curves E/Q satisfy
Gal(Q(E[m])/Q) = GL2(m).

Proof. For elliptic curves over F with F 6= Q, we use Theorem 3.20. Now, by Theorem 3.41,
a Serre curve E/Q satisfies ρE,m(GQ) ' GL2(m) for all m not divisible by M∆sf (E), which
is even. In particular, the isomorphism occurs for every odd m. But, by Theorem 3.23
almost all elliptic curves over Q are Serre curves.

We also have information about the ramification of F (E[m])/F . Arias-de-Reyna and
Vila provided an affirmative answer to the tame IGP for GL2(p) over Q, see [AdRV09,
Theorem 1.2]. More generally, for elliptic curves defined over a number field F , Table 4.21
gives upper bounds on the ramification index of F (E[m])/F at primes not dividing m,
depending on the reduction of the curve (see Definition 2.8). In particular:

Theorem 1.31. Suppose that E/F is semistable, with good or split multiplicative reduction
at 2 if m is odd. Then F (E[m])/F is tamely ramified outside of the set of prime divisors
of m.

https://www.lmfdb.org/EllipticCurve/Q/37/a/1
https://www.lmfdb.org/EllipticCurve/Q/11/a/1
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We say that an elliptic curve defined over a finite field of caracteristic p is supersingular
if it does not have non-trivial p-torsion points. Serre proved that:

Theorem 1.32 ([Ser72, Proposition 12]). Let p be a prime. If E/F has good supersingular
reduction at p, then F (E[p])/F is tamely ramified at p.

However, the field F (E[m]) contains Q(ζpvp(m)), which has ramification index at p
over Q equal to pvp(m)−1(p− 1). Then, if vp(m) ≥ 2 and F/Q has ramification index at p
with valuation smaller than vp(m)− 1, then F (E[m])/F will be wildly ramified at p, from
Table 4.22.

Finally, about explicit IGP, the construction of explicit polynomial with Galois group
ρE,m(GF ) is the topic of Chapter 5.

Other groups can be realize with methods of arithmetic geometry, for example:

Theorem 1.33. For all positive integers m, the normalizer of the Cartan subgroup

N−1,0(m) =

〈(
−1 0
0 1

)
,

(
a b
−b a

)
| a2 + b2 ∈ (Z/mZ)∗

〉
⊆ GL2(m)

is realizable as a Galois group over Q.

Proof. By [LR22, Theorem 1.2.(1)], for every imaginary quadratic field K, every integer f
and every m ≥ 3, there exists an elliptic curve E with CM by an order of K of conductor f
such that ρE,m(GQ(j(E))) = Nδ,ϕ(m) (see Section 2.4.2). Taking K = Q(

√
−1) and f = 1,

we have δ = −1 and ϕ = 0. Moreover, using the notation of [LR22] and [Sil94, Appendix
A.3], we have Q(jK,f ) = Q(2633) = Q. The result follows.

We call such realizations geometric, because it uses a geometric object: an elliptic
curve. More generally, we talk about geometric realization when we use abelian varieties to
realize groups as Galois groups. Let A be an abelian variety of dimension g, defined over F .
The group GF acts on the m-torsion points of A, giving rise to a Galois representation
GF → GSp2g(Z/mZ) where GSp2g(Z/mZ) denoted the general symplectic group over
Z/mZ. We denote by F (A[m]) the extension of F generated by the coordinates of m-
torsion points of A. For example, we can take for A the jacobian of a curve of genus g.

Theorem 1.34 ([AD20]). Let p be a prime. Suppose that there exist q1, q2, q3, q4, q5 ∈ P
such that {q1, q2} 6= {q4, q5}, q1, q2, q4, q5 < q3 < 2g + 2 and 2g + 2 = q1 + q2 = q4 + q5.
Then, there exist explicit hyperelliptic curves of genus g such that their jacobian J satisfies

Gal(Q(J [p])/Q) ' GSp2g(Z/pZ).

This method makes it possible to tabulate extensions of number fields with fixed Galois
group and specified ramification. As already pointed out for the elliptic curves, which are
abelian varieties of dimension 1, the ramification of F (A[m])/F is controlled by m and the
conductor of A, see [ST68, Theorem 1, and Corollary 2 of Theorem 2].

1.4 The profinite perspective of the inverse Galois problem
The absolute Galois group GF is a profinite group. Hence every realizable group is profi-
nite.
Example 1.35. The additive group Z is not realizable as a Galois group.

We recall the definition of a profinite group. Let C be the category of groups or rings.
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Definition 1.36. An inverse system on C is a set of the following data:

1. A partially ordered set (I,≤) such that for all i, j ∈ I there exists k ∈ I such that
i ≤ k and j ≤ k,

2. For each i ∈ I, an object Gi of C,

3. For each pair (i, j) ∈ I2 with i ≤ j, a morphism ϕij : Gj → Gi of C such that

(a) ϕii = idGi ,
(b) For each triple (i, j, k) ∈ I3 with i ≤ j ≤ k, the equality ϕik = ϕij ◦ ϕjk holds.

The inverse limit is the unique object G = lim←−
i

Gi of C such that

1. G is equipped with morphism ϕi : G→ Gi such that for all i ≤ j we have ϕi = ϕij◦ϕj ,

2. G is universal for the property.

When the morphisms ϕij are understood, we simply denote by (Gi)i∈I the inverse
system.

Remark 1.37. The inverse limit of an inverse system ((Gi), (ϕij)) is isomorphic to

G = {(gi)i∈I | ∀i ∈ I gi ∈ Gi and ∀i ≤ j ϕij(gj) = gi} ⊆
∏

Gi ∈ C.

Moreover, if (Ri)i∈I is an inverse system of rings, then R∗ = R ∩
∏
R∗
i = lim←−R

∗
i .

Definition 1.38. A profinite group is a topological group which is the inverse limit of an
inverse system of finite groups equipped with the discrete topology.

Remark 1.39. Let (Gi) be an inverse system of finite groups equipped with discrete topol-
ogy. The topology on lim←−Gi is the minimal topology such that the associated morphism
ϕi are continuous. It is induced by the product topology on

∏
Gi.

Remark 1.40. Let H be a subgroup of a profinite group G. If H is open with finite index,
then it is closed. Indeed, in this case G is the finite disjoint union of the equivalence classes
modulo H, which are all open in G since H is, and so H is the complementary of an open
subset.

Moreover, if G and H are both compact, then H has finite index if and only if it
is closed. This is for example the case for G = GL2(Ẑ) and H = ρE(GF ) with E/F a
non-CM elliptic curve, where ρE is defined later in this section.
Example 1.41. For a prime p, the ring Zp of p-adic integers is a profinite group defined as
the inverse limit of the inverse system of rings (Z/pkZ)k≥1 where the morphism Z/pkZ→
Z/prZ with r ≤ k is the morphism of reduction mod pr. The induced product topology
is the same as the topology given by the p-adic valuation. The group Ẑ is profinite by
definition: it is the inverse limit of the inverse system (Z/mZ)m≥2. From the Chinese
remainder theorem we have Ẑ '

∏
p∈P

Zp.

Let M/F be an infinite Galois extensions. Then Gal(M/F ) has a structure of profinite
group. The system (Gal(L/F ))L∈T with T = {L ⊆ M | L/F finite Galois} is an inverse
system: T is partially order by inclusion and for L ⊆ M the morphism Gal(M/F ) →
Gal(L/F ) is the restriction morphism. Then

Gal(M/F ) = lim←−
L⊆M

L/F Galois

Gal(L/F ).
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We equip Gal(L/F ) with the Krull topology, see [DS05, Section 9.3]. In particular, the
absolute Galois group GF is a profinite group obtained as the projective limit of all finite
Galois extensions of F .

Proposition 1.42. Let (Gi)i∈I be an inverse system of finite groups such that all the
morphisms Gj → Gi are surjective. Let G = lim←−Gi. The two following conditions are
equivalent:

1. G is realizable as the Galois group of L/F .

2. For all i ∈ I, Gi are realizable as the Galois group of Li/F such that Li ⊆ Lj for all
i ≤ j.

In this case, L =
∏
(Li).

Proof. (1) =⇒ (2): If Gal(L/F ) ' G, then there are surjective morphism

ϕi : Gal(L/F )→ Gi

such that for all i ≤ j, ϕi = ϕij ◦ ϕj . In particular, kerϕj ⊆ kerϕi for all i ≤ j. For i ∈ I,
let Li be the fixed field of kerϕi. Then Gi ' Gal(Li/F ) and Li ⊆ Lj . It follows that∏
(Li) ⊆ L. Since G is universal, then we have L =

∏
(Li). (2) =⇒ (1): For the other

direction, if Gi ' Gal(Li/F ) such that Li ⊆ Lj for all i ≤ j, then (Gal(Li/F ))i∈I form a
projective system with the restriction morphisms Gal(Lj/F )→ Gal(Li/F ) and its inverse
limit is Gal(

∏
(Li)/F ).

Knowing the structure of GF provides a solving of the IGP over F for any group.

Cyclotomic character

An automorphism σ ∈ GF acts on ζm as σ(ζm) = ζ
a(σ)
m for some a(σ) unique modulo m.

Thus, we obtain a Galois representation of dimension 1, called the mod m cyclotomic
character :

χm : GF → (Z/mZ)∗ σ 7→ a(σ).

This character does not depend on the choice of ζm. The kernel of this representation
is Gal(F/F (ζm)) and so χm(GF ) ' Gal(F (ζm)/F ). The families (χpk(GF ))k≥1 and
(χm(GF ))m≥2 form inverse systems, whose inverse limit are respectively subgroups of
Z∗
p and Ẑ∗. They give rise to the p-adic cyclotomic character and the adelic cyclotomic

character:
χp∞ : GF → Z∗

p and χcyc : GF → Ẑ∗.

By Proposition 1.42, we have

χp∞(GF ) ' Gal(F (µp∞)/F ) and χcyc(GF ) ' Gal(F cyc/F ).

For F = Q, the representation χm is surjective for all m, and so are χp∞ and χcyc. It
follows that, for F 6= Q, the image of χcyc only depends on the intersection F ∩ Qcyc.
If F ∩ Qcyc = Q, then χcyc and χp∞ are surjective, which gives a realization of Z∗

p and
Ẑ over F . Since Ẑ =

∏
Zp and F cyc =

∏
p∈P

F (µp∞), it follows from Section 1.2 that the

family (F (µp∞))p∈P is linearly disjoint over F . For F = Q, this also follows from the
ramification of cyclotomic fields, see Example 1.24. However, this is not the case for all
number fields F , as the following example shows:
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Example 1.43. Since φ(7) = 6 and φ(13) = 12, the field Q(ζ7) and Q(ζ13) each have a
subfied of degree 3 over Q, say K7 and K13. Since Q(ζ7) and Q(ζ13) are linearly disjoint
over Q, then so are K7 and K13. Set K := K7K13. Then Gal(K/Q) ' Z/3Z × Z/3Z by
Proposition 1.19, and so K/Q has a subextension F , linearly disjoint from K7 and K13

such that Gal(F/Q) ' Z/3Z. Therefore, we have

F 6= K = FK7 = FK13 ⊆ F (ζ7) ∩ F (ζ13),

which shows that the family (F (µp∞))p∈P is not linearly disjoint over F .

Definition 1.44. Let a, b positive integers and d = gcd(a, b). We say that F has a
cyclotomic (a, b)-entanglement if F (ζa) ∩ F (ζb) 6= F (ζd).

If F ∩ Qcyc = Q, then F does not have any cyclotomic entanglement. On the other
hand, the field F in Example 1.43 has a (7, 13)-entanglement.

The end of this section follows from Section 2.2. In the context of elliptic curves,
the families (E[pk])k≥1 with p prime, and (E[m])m≥1 form inverse systems, giving rise
to profinite groups Tp(E) and T (E) called the p-adic Tate module and the Tate module.
Then, the Galois representations ρE,m give rise to (continuous) p-adic and global Galois
representation

ρE,p∞ : GF → GL2(Zp) ' lim←−
k

GL2(p
k)

and
ρE : GF → GL2(Ẑ) ' lim←−

m

GL2(m).

We have:
ρE,p∞(GF ) = lim←−

k

ρE,pk(GF ) and ρE(GF ) = lim←−
m

ρE,m(GF ).

The study of the representations ρE,m for each m is equivalent to the study of ρE .

Theorem 1.45. Suppose that F ∩ Qcyc = Q and F 6= Q. The profinite group GL2(Ẑ) is
realizable over F as the Galois group of F (Etors)/F for some elliptic curve E/F .

Proof. See [Zyw10, Theorem 1.2].

In fact, the loc.cit. theorem says that this is the case for almost all elliptic curves E/F
and this is what we use for Theorem 1.30. From the previous theorem and the fundamental
theorem of Galois theory, we obtain:

Corollary 1.46. Every open subgroup of GL2(Ẑ) occurs as ρE(GF ) for some number
field F and some elliptic curve E/F .

Theorem 1.47. Suppose that F ∩Qcyc = Q. The profinite group
∏
p ̸=2

GL2(Zp) is realizable

over F , as the Galois group of
∏
p ̸=2

(F (E[p∞]))/F , for some elliptic curve E/F . More-

over, GL2(Z2) is realizable over F , as the Galois group of F (E[2∞])/F , for some elliptic
curve E/F .

Proof. For F 6= Q, this is previous theorem, since GL2(Ẑ) '
∏
p∈P

GL2(Zp). For F = Q, we

use the elliptic curve E/Q, with LMFDB label 37.a1, of the proof of Theorem 1.27 for the
realization of

∏
p ̸=2

GL2(Zp), and the elliptic curve E/Q, with LMFDB label 11.a1, of the

proof of Proposition 1.28 for GL2(Z2).

https://www.lmfdb.org/EllipticCurve/Q/37/a/1
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Chapter 2

Elliptic curves and Galois
representations

Elliptic curves are both geometric and arithmetic objects and are one of the main objects
of study of this thesis. They are projective curves of genus 1, provided with a composition
law making the points of the curve into an abelian group, in other words an elliptic curve
is also an abelian variety of dimension 1. This gives rise to Galois representations. As
shown in Section 1.3, the study of these Galois representations brings answers to certain
instances of the inverse Galois problem. In this chapter, we present some preliminaries
on elliptic curves and a state-of-the-art on the images of the p-adic Galois representations
associated to their Tate modules. We will present the theory briefly, focusing mostly on
what is relevant in the next chapters. For more details on the theory of elliptic curves, see
[Sil09], specifically Chapter III and VII.

2.1 Elliptic curves and associated equations
An elliptic curve E defined over a field F is a smooth projective curve of genus 1 defined
over F provided with a point O ∈ E(F ), called the point at infinity. Every elliptic curve
E/F admits an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a2, a3, a4, a6 ∈ F, (2.1)

using the Riemann-Roch theorem. Such an equation is called a Weierstrass equation for E.
On the projective plane the equation becomes

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, a1, a2, a3, a4, a6 ∈ F

and O = [0 : 1 : 0] is the point at infinity. We also define the following quantities, which
will be useful to define the discriminant, the j-invariant and, in Chapter 5, the division
polynomials:

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

The points of E are the points of the affine curve (2.1), together with the point at infinity.
If F does not have characteristic 2 or 3 then, after a change of variables, the elliptic curve

33
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E has an equation of the form

E : y2 = x3 +Ax+B, A,B ∈ F,

called a short Weiertrass equation for E. In this case

b2 = 0, b4 = 2A, b6 = 4B, b8 = −A2.

Remark 2.1. A change of variables defined over F between two short Weierstrass equations
maps y2 = x3 +Ax+B to

y2 = x3 + u4Ax+ u6B

for some u ∈ F ∗. Hence, every elliptic curve E/Q has a unique short Weierstrass equation
E : y2 = x3 + Ax + B such that vp(gcd(|A|3, |B|2)) < 12 for all prime p. We define the
naive height of E as max(|A|3, |B|2).
Remark 2.2. Let d ∈ F ∗\F ∗2 and let E/F be an elliptic curve with Weierstrass equation
y2 = x3 + Ax + B. The elliptic curve E(d) : dy2 = x3 + Ax + B is isomorphic to E over
F (
√
d), but not over F , and is called the quadratic twist of E by d.

Definition 2.3. For an elliptic curve E/F with Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a2, a3, a4, a6 ∈ F,

we define the discriminant ∆E ∈ F of E and the j-invariant j(E) ∈ F of E as

∆E = −b22b8 − 8b34 − 27b26 + 9b2b4b6, and j(E) =
(b22 − 24b4)

3

∆E
.

A Weierstrass equation defines a non-singular curve if and only if ∆E is non-zero.
Thus, j(E) is well-defined.

If E/F has a short Weiertrass equation E : y2 = x3 +Ax+B, then

∆E = −16(4A3 + 27B2) and j(E) = −1728(4A)
3

∆E
.

Proposition 2.4 ([Sil09, Chapter 3, Proposition 1.4.(b)]). The j-invariant of E does only
depend on the isomorphism class of E over F .

Bézout theorem says that a projective curve of degree n cuts every line in n points
counted with multiplicities. In the case of elliptic curves, a line intersects the elliptic curve
in exactly three points P,Q,R with multiplicity. Then, we equip the elliptic curve with a
composition law + which satisfies P +Q+R = O.

Proposition 2.5 ([Sil09, Proposition III.2.2]). For all L ⊆ F , the pair (E(L),+) forms
an abelian group with identity O.

There are explicit formulas to compute the addition of points, which are rational
functions over F . They are given in [Sil09, Group law Algorithm III.2.3]. Let us remark
that the structure of E(L) does not depend on the choice of a Weierstrass equation for E.

Proposition 2.6 ([Sil09, Group law Algorithm III.2.3.(a)]). Let E/F be an elliptic curve
with Weierstrass equation y2 = f(x). Let α1, α2, α3 be the distinct roots of f . Then the
points of order 2 of E(F ) have coordinates (x, y) = (αi, 0), i = 1, 2, 3.
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Elliptic curves over number fields

From now on, let F be a number field. Let p be a prime, and p be an ideal of OF above
p. For a ∈ F , we define vp(a) the p-adic valuation of a as the greatest integer k such that
aOF ⊆ pk. For an elliptic curve E/F , we can choose a Weiertrass equation with coefficients
in OF , whose discriminant ∆E has minimal p-adic valuation. Such an equation is called a
minimal equation for E at p and its discriminant is called the minimal discriminant of E
at p. An equation which is minimal at every prime is called a global minimal Weierstrass
equation.

Proposition 2.7 ([Sil09, Chapter VIII, Corollary 8.3]). If F has class number 1, then
every elliptic curve E/F has a global minimal Weierstrass equation.

Once we have a minimal equation for E at p, we can take the image of its coefficients
in OF /p, say ãi, and we obtain a curve over OF /p with Weiertrass equation

Ep : y
2 + ã1xy + ã3y = x3 + ã2x

2 + ã4x+ ã6.

Definition 2.8. Let E/F be an elliptic curve and Ep be the reduction modulo p of a
minimal equation for E at p.

1. E has good reduction at p if Ep is non-singular,

2. E has split (respectively non-split) multiplicative reduction at p if Ep has a node
with slopes of the tangent lines in OF /p (respectively not in OF /p),

3. E has additive reduction at p if Ep has a cusp.

In the cases (2) and (3) we say that E has bad reduction at p. If at each prime p, E has
good or multiplicative reduction, we say that E/F is semistable.

Definition 2.9. With same notations as in the previous definition, we define the quantity

ap(E) = p+ 1− Ep(Fp).

Definition 2.10. Let PF be the set of prime ideals of OF . We define the conductor of
E/F as fE =

∏
p∈PF

pfp(E) where

fp(E) =


0 if E/F has good reduction at p
1 if E/F has multiplicative reduction at p
2 + δp if E/F has additive reduction at p

where δp ≥ 0 is defined in [Sil94, Chapter 10, IV.10, Definition]. If F = Q, we also called
conductor of E the integer fE satisfying fE = fEZ.

In this manuscript, when we talk about an elliptic curve E/F , we refer to
the isomorphism class of the elliptic curve E up to a change of variables defined
over F . Sometimes, we will talk about ∆E without fixing a Weiertrass equation: it is
when we are interested in F (

√
∆E)/F for example, and this extension does not depend on

the choice of the Weiertrass equation.
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2.2 Galois representations of elliptic curves
Every definition and assumption in this section is up to a change of variables over F .

As said in the previous section, the points of E(F ) form a group. For m ∈ Z, we define
the endomorphism [m] : E → E which maps P to [m]P = P + · · ·+ P︸ ︷︷ ︸

m times

. For m 6= n, we

have [m] 6= [n]. Therefore, after an identification between m and [m], we have the ring
inclusion Z ⊆ End(E).

Definition 2.11. We say that E/F has complex multiplication (CM ) if End(E) 6= Z.

There are only finitely many j-invariant defined over F corresponding to elliptic curves
having complex multiplication, see [Sil09, Appendix C, Corollary 11.1.1] and [BFGR06].

We denote by E[m] the group of m-torsion points of E, i.e.

E[m] := ker
(
[m] : E(F )→ E(F )

)
= {P ∈ E(F ) | [m]P = O}.

The group E[m] is a Z/mZ-module. More precisely:

Proposition 2.12 ([Sil09, Chapter III, Corollary 6.4]). Over any field of characteristic 0,
we have the group isomorphism

E[m] ' Z/mZ× Z/mZ.

The p-adic Tate module of E is the Zp-module

Tp(E) := lim←−
k

E[pk],

the inverse limit being taken with respect to the natural maps [p] : E[pn+1] −→ E[pn]. We
also define the Tate module of E as the Ẑ-module

T (E) := lim←−
m

E[m],

the inverse limit being taken with respect to the natural maps [n] : E[mn] −→ E[m]. For
every integer m, let (Pm, Qm) be a compatible basis of E[m] over Z/mZ i.e. for m,n ≥ 2,

(nPmn, nQmn) = (Pm, Qm).

Since E[m] ' Z/mZ×Z/mZ, we deduce that Tp(E) ' Z2
p and T (E) ' Ẑ2. It follows that

Aut(E[m]) ' GL2(m), Aut(Tp(E)) ' GL2(Zp), Aut(T (E)) ' GL2(Ẑ).

Let Etors be the group of torsion points of E and, for a prime p, E[p∞] be the group
of pk-torsion points of E for k ≥ 1, i.e.

Etors =
⋃
m≥2

E[m] ' lim−→
m≥2

E[m] and E[p∞] =
⋃
k≥1

E[pk] ' lim−→
k≥1

E[pk].

One can check that
Aut(lim−→E[m]) ' Aut(lim←−E[m])

i.e.
Aut(Etors) ' Aut(T (E)) ' GL2(Ẑ).1 (2.2)

1In [Mor19], Etors is the notation used for T (E) and in [BJ16], Brau and Jones talk about a Ẑ-basis for
Etors.



2.2. GALOIS REPRESENTATIONS OF ELLIPTIC CURVES 37

We also have
Aut(E[p∞]) ' Aut(Tp(E)) ' GL2(Zp).

Thus, we will consider indifferently ρE,p∞ with image in Aut(Tp(E)) or Aut(E[p∞]) and
ρE with image in Aut(T (E)) or Aut(Etors).

Let P ∈ E(F ). For σ ∈ GF , we define σ(P ) to be the point of E(F ) such that, if P
has coordinates (xP , yP ), then σ(P ) has coordinates (σ(xP ), σ(yP )). The Galois group GF
acts on E[m] as follows

GF × E[m]→ E[m] (σ, P ) 7→ σ(P ),

giving the representations

ρE,m : GF → Aut(E[m]) ' GL2(Z/mZ).

called the mod m Galois representation of E/F ,

ρE,p∞ : GF → Aut(Tp(E)) ' GL2(Zp)

called the p-adic Galois representation of E/F and

ρE : GF → Aut(T (E)) ' GL2(Ẑ)

called the adelic (or global) Galois representation of E/F . By definition, the image of
ρE(GF ) in GL2(m) is ρE,m(GF ), the image of ρE(GF ) in GL2(Zp) is ρE,p∞(GF ) and the
image of ρE,p∞(GF ) in GL2(p

k) is ρE,pk(GF ). The following diagramm is commutative:

GL2(Ẑ) GL2(Zp)

GL2(p
k)

The isomorphism GL2(Ẑ) '
∏
p∈P

GL2(Zp) gives an injective morphism:

ρE(GF )→
∏
p∈P

ρE,p∞(GF ). (2.3)

In particular, for integers a, b,m such that m = lcm(a, b), there are injective morphisms:

ρE,m(GF )→
∏
p∈P

ρE,pvp(m)(GF ) and ρE,m(GF )→ ρE,a(GF )× ρE,b(GF ) (2.4)

The kernel of the Galois representation ρE,m is the set of σ ∈ GF such that σ acts
trivially on the m-torsion points. In other words, σ ∈ ker ρE,m fixes the extension of F
generated by the coordinates of the m-torsion points, denoted by F (E[m]), and called the
m-division field of E. We note that this extension does not depend on the choice of a
Weierstrass equation for E. Therefore kerρE,m = Gal(F/F (E[m])) is a normal subgroup
of GF , the extension F (E[m])/F is Galois and

Gal(F (E[m])/F ) ' ρE,m(GF ).
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This provides a solution for the IGP over F for subgroups of GL2(Z/mZ) which are
images of such representations, see Chapter 1 for more information about the inverse
Galois problem.

Similarly, the kernel of ρE,p∞ and ρE are respectively the subgroups Gal(F/F (E[p∞]))
and Gal(F/F (Etors)) and so

Gal(F (E[p∞])/F ) ' ρE,p∞(GF )

and
Gal(F (Etors)/F ) ' ρE(GF ).

In this manuscript, we consider the image of ρE (respectively ρE,p∞, ρE,m)
in GL2(Ẑ) (respectively GL2(Zp), GL2(m)) without precising the choice of the
basis. It is understood that the image is not necessarily equal but conjugate
to the given group. This choice is motivated by the fact that this does not change the
properties that interest us. In other words, we only consider the equivalence class of the
Galois representations of E.

2.3 Weil pairing and maximal image
Let det : GL2(m)→ (Z/mZ)∗ be the determinant map. The Galois representation ρE,m :
GF → GL2(m) gives rise to a Galois representation of dimension 1:

det ◦ρE,m : GF → (Z/mZ)∗.

The determinant being stable under conjugation, the representation det ◦ρE,m does not
depend on the choice of the Z/mZ-basis for E[m].

Proposition 2.13. We have χm = det ◦ρE,m. In particular, F (ζm) is contained in F (E[m])
and we have the isomorphisms

Gal(F (ζm)/F ) ' det ◦ρE,m(GF ) and Gal(F (E[m])/F (ζm)) ' SL2(m) ∩ ρE,m(GF ).

This result is due to the existence and the properties of the Weil pairing (definition
given in [Sil09, III.8])

em : E[m]× E[m]→ µm.

where µm is the group of m-th roots of unity.

Proposition 2.14 ([Sil09, III.Proposition 8.1]). The Weil pairing is bilinear, alternating,
non-degenerate, Galois invariant and compatible with the projective limit.

Proof of Proposition 2.13. The Weil pairing being non-degenerate, we can choose P,Q ∈
E[m] such that em(P,Q) = ζm (see [Sil09, III, Corollary 8.1.1]). The pair (P,Q) is
a Z/mZ-basis of E[m], otherwise P and Q would be on the same line and, since the Weil
pairing is bilinear and alternating, we would have em(P,Q) = 1. Let σ ∈ GF such that

ρE,m(σ) =

(
a b
c d

)
in the basis (P,Q). Then

σ(ζm) = σ(em(P,Q)) = em(σ(P ), σ(Q) (Galois invariance)
= em(aP + cQ, bP + dQ)

= em(P,Q)ad−bc (bilinear and alternating)

= ζad−bcm = ζ
det ◦ρE,m(σ)
m
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This shows that the action of GF by det ◦ρE,m and χm is the same. Then the kernel
of det ◦ρE,m is Gal(F/F (ζm)) and contains the kernel of ρE,m which is Gal(F/F (E[m])).

Corollary 2.15. We have χcyc = det ◦ρE and χp∞ = det ◦ρE,p∞.

As a consequence of Proposition 2.13, if F ∩ Q(ζm) 6= Q, then ρE,m cannot be sur-
jective, since its composition with the determinant map is not. The possible images have
determinant χm(GF ), and the largest possible image is the largest subgroup of GL2(m)
with determinant χm(GF ), which is equivalent to have ρE,m(GF ) containing SL2(m).

Definition 2.16. Let E/F be a non-CM elliptic curve. We say that the image of ρE,m,
respectively ρE,p∞ , ρE , is maximal if it contains SL2(m), respectively SL2(Zp), SL2(Ẑ).

As we will see in Section 2.4, the image of ρE has finite index in GL2(Ẑ) if E does not
have CM and infinite index otherwise. Thus, we define differently maximal image in the
CM case, see Section 2.4.2.

We denote by GF,m, respectively GF,p∞ , GF , the largest subgroup of GL2(m), respec-
tively GL2(Zp), GL2(Ẑ) with determinant χm(GF ), respectively χp∞(GF ), χ∞(GF ). We
have GQ,p∞ = GL2(Zp) and GQ = GL2(Ẑ).

To illustrate the three previous sections, we end it by an example:
Example 2.17. The elliptic curve with LMFDB label 11.a1 and minimal Weierstrass equa-
tion

E : y2 + y = x3 − x2 − 7820x− 263580

has discriminant ∆E = −11 and j-invariant j(E) = −212 · 11−1 · 293 · 8093. It has good
reduction at every prime but 11, for which it has split multiplicative reduction. In particu-
lar, E/F is semistable. The conductor of E is fE = 11. The p-adic Galois representations
ρE,p∞ are surjective for all primes p but 5, and even surjective for all n coprime to 550.
More precisely we have ρE(GQ) = π−1(ρE,550(GQ)) where π is the natural projection
GL2(Ẑ)→ GL2(550). We obtain, for n coprime to 550,

Gal(Q(E[n])/Q) ' GL2(n)

and for primes p 6= 5:
Gal(Q(E[p∞])/Q) ' GL2(Zp).

For p = 5, the image of ρE,5 has index 24 in GL2(5), and

Gal(Q(E[5])/Q) '
〈(

1 2
0 1

)
,

(
−2 −1
0 1

)〉
⊆ GL2(5).

The image of ρE,25 has index 120 in GL2(25) and

Gal(Q(E[25])/Q) '
〈(
−9 12
0 11

)
,

(
−2 9
0 11

)〉
⊆ GL2(25).

Moreover, ρE,5∞(GF ) is the full inverse image of ρE,25(GF ) in GL2(Z5). In particular, it
has index 120. For n = 22, the image of ρE,22 has index 2 in GL2(22). For n = 550,
the image of ρE,550 has index 1200 = 120 · 2 · 5 in GL2(550). As we will see later, that
corresponds to (2, 11) and (11, 25)-entanglement: Q(E[11]) ∩ Q(E[2]) is a quadratic field
and Q(E[25]) ∩Q(E[11]) is a Z/5Z-extension of Q.

https://www.lmfdb.org/EllipticCurve/Q/11/a/1
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2.4 Image of the p-adic representations
In this section, we summarize the state-of-the-art concerning the images of the mod p and
p-adic representations ρE,p and ρE,p∞ . We have to distinguish the CM and the non-CM
cases (see Definition 2.11), because the behaviour of the curve and its Galois representa-
tions are generically really different, as we will see.

2.4.1 Elliptic curves without complex multiplication

Serre’s open image theorem

The starting result, which is a major advance forward in the study of non-CM elliptic
curves, is the following:

Theorem 2.18 (Serre’s open image theorem, global version). Let E/F be a non-CM
elliptic curve. Then ρE(GF ) has finite index in GL2(Ẑ).

Proof. It follows from [Ser72, Section 4.2, Théorème 2] and [Ser89, IV.19, Proposition].

Roughly, the image of ρE in GL2(Ẑ) is large: there exists an integer m such that
ρE(GF ) is the full inverse image in GL2(Ẑ) of ρE,m(GF ). We recall that ρE(GF ) ⊆ GF
and ρE,p∞(GF ) ⊆ GF,p∞ .

Definition 2.19. Let E/F be a non-CM elliptic curve. The adelic level of ρE , denoted
by ME , is the smallest integer m such that ρE(GF ) is the full inverse image of ρE,m(GF )
in GF . The adelic index of ρE is the finite index [GF : ρE(GF )].

In particular, the representation ρE,m is maximal for all m coprime to ME and the
radical of ME is the smallest integer sastisfying this condition. Therefore, a prime p such
that ρE,p is non maximal is called an exceptional prime for E/F . This terminology was
introduced by Jones for elliptic curves over Q in [Jon10, Definition 1].
Remark 2.20. In [RSZB22] the terminology exceptional images is used for images ρE,m(GF )
which occur for only finitely many non-CM j-invariants. On the other hand, we talk about
exceptional subgroups for subgroups of GL2(p) having projective image in PGL2(Z/pZ)
isomorphic to A4, A5 or S4. But these three notions of exceptional primes, exceptional
images and exceptional groups have no link, except for the fact that an exceptional image
occurs only at an exceptional prime. However, in [Sut16], the terminology exceptional
images has been used for images of non-surjective Galois representation.

In the database [LMF24], the adelic level is given for elliptic curves over Q, together
with the p-adic level for all p, defined as follow:

Definition 2.21. Let E/F be a non-CM elliptic curve and p be a prime. The p-adic
level of ρE is the smallest prime power pk such that ρE,p∞(GF ) is the full inverse image
of ρE,pk(GF ) in GF,p∞ . The power k is called the p-adic depth of ρE .

The exceptional primes are those for which the p-adic depth is positive. For every
prime p, the p-adic level divides the adelic level. Indeed, since the inverse image of
ρE,ME

(GF ) in GL2(Ẑ) is ρE(GF ), then the inverse image of ρE,pvp(ME)(GF ) in GL2(Zp)
is ρE,p∞(GF ). For the other divisors of ME , these are those which are involved in an
horizontal entanglement, which is the topic of Section 3.
Remark 2.22. In the same way, we define the p-adic depth of χ∞ as the smallest integer r
such that one of the following equivalent conditions holds:
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1. χp∞(GF ) is the full inverse image of χpr(GF ) in Z∗
p.

2. F ∩Q(µp∞) ⊆ Q(ζpr).

We observe that, if the p-adic depth k of ρE is greater than the p-adic depth of χ∞, then
it comes down to the same to take the inverse image of ρE,pk(GF ) in GF,p∞ or in GL2(Zp).

As stated in [Ser89, IV.19, Proposition]2, Serre’s open image theorem is equivalent to
the following:

Theorem 2.23 (Serre’s open image theorem, local version). Let E/F be a non-CM elliptic
curve. Then ρE,p is surjective for almost all primes p.

Serre proved the local version in order to prove the global version. He proceeded by
contraposition, proving that if E/F has infinitely many exceptional primes, then it must
have CM. His method, which is a recurrent method for the results of this section, is based
on the classification of subgroups of GL2(p), see [Ser72, Section 2], and a deep study of
the link between the reduction type of the curve and the image through ρE,p of the inertia
subgroups of GF attached to p.

Exceptional primes

By Serre’s open image theorem, every non-CM elliptic curve has surjective mod p Galois
representation for almost all prime p. Duke proved in 1997 that, in terms of arithmetic
statistics, almost all elliptic curves over Q have surjective mod p Galois representation for
any prime p:

Theorem 2.24 ([Duk97]). If we order elliptic curves over Q by their naive height, then
the proportion of elliptic curves over Q with exceptional primes is 0.

This shows that an elliptic curve over Q has generically surjective mod p Galois rep-
resentation for any prime p. Later, Jones and Zywina proved stronger results, as we will
see in Chapter 3, which are summerized in Theorem 1.30.

Now, for which prime p the representation ρE,p is not surjective, and what is the image
in these cases? We can reformulate this question in the following general program, set by
Mazur in [Maz06, Maz-3]:

Mazur’s Program B. Given a number field F and a subgroup H of GL2(Ẑ), classify all
elliptic curves defined over F whose adelic Galois representation maps GF into H.

This program is equivalent to the following:

Problem 2.25. Given a number field F and a subgroup H of GL2(Ẑ), determine XH(F )
where XH is the modular curve associated to H.

For information about modular curves, see Appendix B. From the classification of
subgroups of GL2(p) (see [Sut16, Section 3], or [Ser72, Section 2]), the image of ρE,p
contains SL2(p) or is contained in one of the following subgroups:

• a Borel subgroup, in this case E/Q has a p-rational isogeny i.e. there exists P ∈
E[p]\{O} such that GF acts on the group generated by P ,

• the normalizer of a (split or non-split) Cartan subgroup,
2The reference [Ser89] was first published in 1968, so before [Ser72], and was reprinted in 1989.
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• an exceptional group, i.e. with image in PGL2(Z/pZ) (the quotient of GL2(p) by
diagonal matrices) isomorphic to A4, S4 or A5.

Hence, to study mod p images of Galois representation of elliptic curves, one can look for
the rational points on the modular curves associated to each of these groups.

Serre’s open image theorem says that, for every elliptic curve E/F without CM, there
exists an integer cE such that, for all prime p greater than cE , the representation ρE,p
is surjective. In 1978, Mazur proved the Mordell-Weil theorem which gives the exact list
of possible group structure for Etors(Q), see [Maz78, Theorem 2]. As a consequence, he
showed that, if E is defined over Q and semistable, then cE = 7 works:

Theorem 2.26 ([Maz78, Theorem 4]). Let E/Q be a semistable elliptic curve. Then ρE,p
is surjective for all p ≥ 11.

Serre asked whether there exists a constant cE independent of E/Q. It is known as
Serre’s uniformity question. He formulated an even more precise question:

Question 2.27 ([Ser81b, Questions, p.399]). Let E/Q be an elliptic curve without complex
multiplication. Is ρE,p surjective for all p > 37?

We expect that this question has an affirmative answer, which is commonly referred as
the Serre’s Uniformity Bound, but for now, we do not even know if the Serre’s uniformity
question has a positive answer. More recently, Zywina made a more precise conjecture:

Conjecture 2.28 ([Zyw15, Conjecture 1.12]). Let E/Q be a non-CM elliptic curve and
p > 13 be a prime such that (p, j(E)) /∈ S where

S =

{(
17,
−172 · 1013

2

)
,

(
17,
−17 · 3733

217

)
,
(
37,−7 · 113

)
,
(
37,−7 · 1373 · 20833

)}
.

Then ρE,p is surjective.

The conjecture is "optimal" in the sense that there exists a CM elliptic curve with
j-invariant j and ρE,p non-surjective for all (p, j) ∈ S and infinitely many j-invariant such
that ρE,p non-surjective and p ≤ 13 from [SZ17, Corollary 1.6] and [RSZB22, Theorem
1.6]. In the hypotheses of Conjecture 2.28, the image ρE,p(GQ) is maximal or contained
in the normalizer of a non-split Cartan subgroup, see [Zyw15, Theorem 1.11]. In the
same paper, Zywina gives an algorithm to compute all possible images ρE,p(GF ) assuming
Conjecture 2.28. Hence, it gives at least all possible images ρE,p(GF ) for p ≤ 13. He
determined the list of possible images mod p for each prime p, and for each subgroup H in
this list, the (one-parameter) family of elliptic curves E such that ρE,p(GQ) is conjugate
to H. His method is based on the theory of modular curves and modular functions,
specifically the j-map corresponding to these modular curves. The same year, he gives an
algorithm [Zyw22a, Section 1.1] to compute, for a given non-CM elliptic curve, a finite set
containing the exceptional primes, using the reduction of the curve. He gives explicit upper
bounds for the exceptional primes. In particular, if E/Q is an elliptic curve without CM
and without primes of multiplicative reduction, then one can take cE = max{37,

√
N(fE)},

by [Zyw22a, Theorem 1.10]. If E/Q has multiplicative reduction at p, then one can take
cE ≤ max{17, (p+ 1)/2}. This improves bounds given in 2005 by Cojocaru in [CK05].

For elliptic curves defined over number field, Larson and Vaintrob [LV13] give, under
the Generalized Riemann Hypothesis, many upper bounds for the exceptional primes,
depending on the conductor of the elliptic curve. In particular,
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Theorem 2.29 ([LV13, Theorem 23]). We assume GRH. Let E/F be a non-CM elliptic
curve and p be an exceptional prime for E. Then there are effectively computable constant
A,B depending only on F such that

p ≤ A · log(N(fE)) · (loglog(N(fE)))3 +B.

Lombardo [Lom16, Theorem 1.4] also gives a bound for exceptional primes, depending
on the degree of F and the Falting heights of the non-CM elliptic curve E/F . Moreover,
Sutherland [Sut16] gives two probabilistic algorithms to compute images mod p, for p
prime3. They determine ρE,p(GF ) up to local conjugacy (defined in op.cit.), which is
a relatively weaker notion than conjugacy. Both Larson and Vaitrob, and Sutherland,
used the image of Frobenius elements of GF in their method. Coming back to the Serre
uniformity question, Zywina gives an analogue over number field:

Conjecture 2.30 ([Zyw24b, Conjecture 2.11]). For any number field F , the following
equivalent conditions hold:

1. There is a constant cF such that for any prime p > cF and any non-CM elliptic
curves E/F , the image ρE,p(GF ) is maximal.

2. There is a finite set JF ⊆ F such that for any prime p > 19 and any non-CM elliptic
curve E/F with j(E) /∈ JF , the image ρE,p(GF ) is maximal.

In op.cit., Zywina gives a preliminary description of the possibility for the indexes and
the image ρE(GF ) ⊆ GL2(Ẑ) for any number field F .

There are many other works on images of mod p Galois representations of elliptic
curves as [RV01], [BP11], [BPR13], [BDM+19], [BDM+23].

p-adic images

Now we have an overview of the current knowledge about images of mod p Galois rep-
resentations, we turn to images of mod pk and p-adic representations, in particular the
p-adic depth. If ρE,p∞(GF ) is maximal, or when F = Q, we have quite precise answers to
this question. In [Ser89, IV, 3.4, Lemme 3], Serre observed that if p ≥ 5 and G is an open
subgroup of GL2(Zp) with image in GL2(p) containing SL2(p), then G contains SL2(Zp).
This is not valid for p = 2, 3, but there are similar results in this case. We obtain:

Theorem 2.31 ([KS09, Lemma 1 and following paragraph]). Let E/F be an non-CM
elliptic curve. For p ≥ 5, the representation ρE,p∞ has maximal image if and only if ρE,p
has maximal image. Moreover, ρE,3∞ has maximal image if and only if ρE,9 has maximal
image, and ρE,2∞ has maximal image if and only if ρE,8 has maximal image.

In other words, if ρE,p(GF ) is maximal, then the p-adic depth is 0 if p ≥ 5, at most 2 if
p = 3 and at most 3 if p = 2. For elliptic curves over Q, the two following points complete
Theorem 2.31 about caracterisation for the surjectivity of p-adic Galois representations:

• [Elk06] shows that there are infinitely many j-invariant in Q for which the associated
elliptic curves have surjective mod 3 Galois representation but not mod 9. They are
parameterized by the modular curve X9 = X(9)/G where G is a split lifting of SL2(3)
in SL2(9): it is a subgroup of SL2(9) which maps isomorphically onto SL2(3). The
existence of such G was observed by [Ser89, IV, 3.4, Exercice 3]. For now, we do not
know if the modular curve X9 parametrized all elliptic curves with this property.

3The mod p Galois images data in LMFDB was computed using the algorithm given by [Sut16].
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Figure 2.1: Table of possible p-adic depth
Prime p Possible Example or comments

p-adic depth
0 37.a1
1 69.a1

2 2 33.a1
3 15.a2
4 15.a1
5 15.a4
0 37.a1

3 1 26.a2
2 14.a1
3 19.a1
0 37.a1

5 1 11.a2
2 11.a1
0 37.a1

7, 11 1 26.b1, 121.a1
2 In the database [LMF24],

there are only elliptic curve over Q
with a p-adic level 0 or 1

13, 17, 37 0 37.a1
1 147.b1, 14450.b1, 1225.b1

19, 23, 29, 0 37.a1
31, p ≥ 41 1 Conjecture 2.28 implies that

the p-adic depth is always 0

• Dokchitser and Dokchitser [DD11] give necessary and sufficient conditions on ∆E

and j(E) for the surjectivity of ρE,2, ρE,4 and ρE,8 for E defined over Q.

Few years later, Rouse and Zureick-Brown classify all possible images ρE,2∞(GQ)
4 and

their index in GL2(Z2). In particular, they showed that the 2-adic depth is at most 5:

Theorem 2.32 ([RZB15, Corollary 1.3]). Let E/Q be a non-CM elliptic curve. The image
of ρE,2∞ is the full inverse image of ρE,32(GQ) in GL2(Z2).

Recently, Sutherland and Zywina classified all possible images ρE,p∞(GQ) except for a
finite set of j-invariant:

Theorem 2.33 ([SZ17, Corollary 1.6]). For p = 2, 3, 5, 7, 11, 13 there are respectively
1201, 47, 23, 15, 2, 11 subgroups of GL2(Zp) arising as ρE,p∞(GQ) for infinitely many elliptic
curves E/Q with distinct j-invariant; for p > 13 the only such subgroup is GL2(Zp).

Following this work, Rouse, Sutherland and Zureick-Brown dealt with exceptional
images, that are subgroups which arise as ρE,p∞(GQ) for finitely many elliptic curves E/Q
with distinct j-invariant. Their main result [RSZB22, Theorem 1.6] gives us information
about the p-adic depth for non-CM elliptic curve over Q, summerized in Table 2.1. An
algorithm given in [RSZB22, Section 11] return, for a given non-CM elliptic curve E/Q,
the list of non-maximal images ρE,p∞(GQ)

5.
Finally, there are elliptic curves such that ρE,p∞ is surjective for all p, as the following

example shows:
4The 2-adic Galois images data in LMFDB was computed using the algorithm given by [RZB15].
5The p-adic Galois images data in LMFDB was computed using the algorithm given by [RSZB22].

https://www.lmfdb.org/EllipticCurve/Q/37/a/1
https://www.lmfdb.org/EllipticCurve/Q/69/a/1
https://www.lmfdb.org/EllipticCurve/Q/33/a/1
https://www.lmfdb.org/EllipticCurve/Q/15/a/2
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/EllipticCurve/Q/15/a/4
https://www.lmfdb.org/EllipticCurve/Q/37/a/1
https://www.lmfdb.org/EllipticCurve/Q/26/a/2
https://www.lmfdb.org/EllipticCurve/Q/14/a/1
https://www.lmfdb.org/EllipticCurve/Q/19/a/1
https://www.lmfdb.org/EllipticCurve/Q/37/a/1
https://www.lmfdb.org/EllipticCurve/Q/11/a/2
https://www.lmfdb.org/EllipticCurve/Q/11/a/1
https://www.lmfdb.org/EllipticCurve/Q/37/a/1
https://www.lmfdb.org/EllipticCurve/Q/26/b/1
https://www.lmfdb.org/EllipticCurve/Q/121/a/1
https://www.lmfdb.org/EllipticCurve/Q/37/a/1
https://www.lmfdb.org/EllipticCurve/Q/147/b/1
https://www.lmfdb.org/EllipticCurve/Q/14450/b/1
https://www.lmfdb.org/EllipticCurve/Q/1225/b/1
https://www.lmfdb.org/EllipticCurve/Q/37/a/1
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Example 2.34. The elliptic curve E : y2+y = x3−x with LMFDB label 37.a1 has surjective
p-adic representation for all p.

Example 2.35 ([Gre10, Theorem 1.5]). Let α be the real root of x3 + x+1 and F = Q(α).
The elliptic curve E : y2 + 2xy + αy = x3 − x2 has surjective p-adic representation for all
p. It has even surjective adelic representation.

In fact, this is the case for almost all elliptic curves:

Theorem 2.36. Almost all elliptic curves over F have maximal p-adic Galois represen-
tation for any p.

Proof. For F 6= Q, it follows from Theorem 3.20. Suppose that F = Q. From Theorem 3.24
and Theorem 2.31, if E/Q is an elliptic curve with adelic index 2, then ρE,pk(GQ) is
surjective except eventually when 8 | pk. In this case [GL2(8) : ρE,8(GQ)] = 2 and,
by [Jon10, Lemma 28], this is the case only for a proportion of elliptic curves equal to 0.
Otherwise, if ρE,8 is surjective then so is ρE,2∞ , by Theorem 2.31. Moreover, the proportion
of elliptic curve with adelic index 2 is equal to 1, see Theorem 3.23.

However, for E defined over Q, the Galois representation ρE is never surjective in
GL2(Ẑ). There are other obstructions to the surjectivity of ρE,m when m is not a prime
power, due to entanglement of division fields. This topic is covered in Section 3.

2.4.2 Elliptic curves with complex multiplication.

Let E/F be an elliptic curve, O := End(E) and K be the field of fraction of O. Then
Etors is an O-module. We have O = Z and K = Q if E/F does not have CM and O is an
order in the imaginary quadratic field K otherwise. Suppose that E/F has CM i.e. that
O is not Z. In this case O is an order in a imaginary quadratic field, i.e. O ' Z+fOK for
some positive integer f , called the conductor of O, and some imaginary quadratic field K,
called the CM field of E. By [ST68, Theorem 5] and (2.2), we have

AutO(Etors) ' (O ⊗Z Ẑ)∗.

In the CM case, we have K(x(Etors)) ⊆ Kab, by [Sil94, Chapter II, Corollary 5.7]. But,
for m 6= 2, the extension K(E[m]) has index 2 over K(x(E[m])), see Theorem 5.11 and
GL2(m) does not have any abelian subgroups of index 2. Thus ρE(GF ) has infinite index
in GL2(Ẑ). Nevertherless, Campagna and Pengo [CP22b] give a generalisation of Serre’s
open image theorem to CM elliptic curves. If K 6⊆ F , let τ ∈ GF such that its restriction
to FK generates Gal(FK/F ). We recall that Aut(Etors) ' GL2(Ẑ) and AutO(Etors) ≤
Aut(Etors). We define by G(E/F ) the largest subgroup of{

AutO(Etors) if K ⊆ F
〈AutO(Etors), ρE(τ)〉 otherwise.

whose image in GL2(Ẑ) has determinant χcyc(GF ). We also define, for a prime p, the
group G(E/F, p∞) as the image of G(E/F ) in GL2(Zp) and, for an integer m, the group
G(E/F,m) as its image in GL2(m). If E/F does not have CM, then G(E/F,m) = GF,m
for any integer m, G(E/F, p∞) = GF,p∞ for any prime p and G(E/F ) = GF .

Theorem 2.37 ([CP22b, Lemma 2.2]). Let E/F be an elliptic curve. Then ρE(GF ) has
finite index in G(E/F ).

https://www.lmfdb.org/EllipticCurve/Q/37/a/1
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Definition 2.38. With the same notation as in previous theorem, we say that the image
of ρE,m (respectively of ρE,p∞ , of ρE) is maximal if it is equal to G(E/F,m) (respectively
to G(E/F, p∞), to G(E/F )).

The algorithm of Sutherland and Zywina to compute images of mod p representations,
mentioned in Section 2.4.1, assume that the elliptic curve is non CM.
Example 2.39. The elliptic curve E : y2 = x3− 11x− 14 with LMFDB label 32.a1 has CM
by K = Q(i), with endomorphism ring O = Z[2i] where i =

√
−1. The conductor f of O

is 2 and ∆K = −4. Since E is defined over Q, then K 6⊊ Q(j(E). Thus

G(E/Q) = AutZ[2i](Etors),⋉〈ρE(τ)〉

where τ ∈ GQ satisfies τ(i) = −i. If we consider E defined over K, then

G(E/K) = AutZ[2i](Etors).

From LMFDB, ρE,p∞ has maximal image for all p but 2. From Theorem 3.27, ρE(GQ) has
index 2 in G(E/Q). We deduce that ρE,2∞(GQ) has index 2 in G(E/Q, 2∞).

On the other hand, Lozano-Robledo [LR22] defines a subgroup of GL2(Ẑ), depending
on the CM field and on the conductor of End(E), such that the image of ρE is contained
with finite index in this group and can be equal to it.

Definition 2.40. Let O be an order in an imaginary quadratic field K and let f be the
conductor of End(E). For a positive integer m, we define δ and ϕ as follows

• If ∆Kf
2 ≡ 0 (mod 4) let δ = ∆Kf

2/4, and ϕ = 0,

• If ∆Kf
2 ≡ 1 (mod 4), let δ = (∆K−1)f2

4 and ϕ = f .

We set Nδ,ϕ(m) :=

〈
Cδ,ϕ(m),

(
−1 0
ϕ 1

)〉
with

Cδ,ϕ(m) :=

{(
a+ bϕ b
δb a

) ∣∣ a, b ∈ Z/mZ, a2 + abϕ− δb2 ∈ (Z/mZ)∗
}
.

Moreover, we define, for p prime, Nδ,ϕ(p
∞) = lim←−

k

Nδ,ϕ(p
k) and Nδ,ϕ(Ẑ) = lim←−

m

Nδ,ϕ(m).

Theorem 2.41. Let E/F be a CM elliptic curve. Then, for all integers m, there exists a
basis of E[m] such that the image of ρE,m is contained in Nδ,ϕ(m) and a compatible system
of bases of E[m] for all m ≥ 2 such that the image of ρE is contained in Nδ,ϕ(Ẑ).

Proof. This follows from Theorem [LR22, Theorem 1.2.(1)], since the inclusion Q(j(E)) ⊆
F implies ρE(GF ) ≤ ρE(GQ(j(E))).

If we define the p-adic depth of ρE to be the smallest integer k such that ρE,p∞(GF ) is
the full inverse image of ρE,pk(GF ) in Nδ,ϕ(p

∞), then the p-adic depth of an elliptic curve
with CM is equal to 0 or 1 for all p but 2, 3. For p = 2, we know that the p-adic depth is
less or equal to 5 from [RZB15].

Theorem 2.42 ([LR22, Theorem 1.2.(2)]). Let F = Q(j(E)). For p ≥ 5, the group
ρE,p∞(GF ) is the full inverse image of ρE,p(GF ) via the reduction map Nδ,ϕ(p

∞)→ Nδ,ϕ(p).

https://www.lmfdb.org/EllipticCurve/Q/32/a/1
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In op.cit., Lozano-Robledo also gives additional results concerning the 2-adic and 3-adic
images.
Example 2.43. For the elliptic curve E : y2 = x3 − 11x − 14 with LMFDB label 32.a1 of
Example 2.39, we have ∆Kf

2 = −16 ≡ 0 (mod 4). Then δ = −4 and ϕ = 0 for any m.
We have:

C−4,0(m) :=

{(
a b
−4b a

)
, a, b ∈ Z/mZ, a2 + 4b2 ∈ (Z/mZ)∗

}
and N−4,0(m) :=

〈
C−4,0(m),

(
−1 0
0 1

)〉
. Its image modulo 2 is N−4,0(2) =

〈(
1 1
0 1

)〉
.

By [LR22, Theorem 1.2.(1)], the index of ρE(GQ) in Nδ,ϕ(GQ) divides 2 and so ρE,2∞(GQ)
has index 2 in Nδ,ϕ(2

∞).

https://www.lmfdb.org/EllipticCurve/Q/32/a/1


48 CHAPTER 2. ELLIPTIC CURVES AND GALOIS REPRESENTATIONS



Chapter 3

Entanglements and adelic
representations

3.1 Entanglement: definitions
Throughout the chapter, F is a number field. The previous chapter concerned local Galois
representations at a prime p. In this chapter, we are interested in mod m Galois represen-
tation where m is not a prime power. The natural projection GL2(Ẑ) → GL2(Zp) gives
a surjective morphism ρE(GF ) → ρE,p∞(GF ). Hence, knowing ρE(GF ), we can deduce
ρE,p∞(GF ) for all p. Conversely, knowing the image of ρE,p∞ for all prime p, we would like
to deduce the image of ρE , but entanglements give obstructions to determining the global
representation from local data.

For an integer m, the natural morphism

ρE,m(GF ) −→
∏
p∈P

ρE,pvp(m)(GF ).

is injective but it is not necessary surjective. Equivalently, we have an injective morphism

Gal(F (E[m])/F ) −→
∏
p∈P

Gal(F (E[pvp(m)])/F )

σ 7−→
(
σ|F (E[pvp(m)])

)
.

(3.1)

By Section 1.2, this morphism is surjective if and only if F (E[a]) ∩ F (E[b]) = F for all
coprime divisors a, b of m.
Example 3.1. The elliptic curve E : y2 = x3 − 36x + 84 with LMFDB label 1944.c1 has
surjective mod 2 and mod 3 representation, but not mod 6. Thus, the morphism

ρE,6(GF )→ ρE,2(GF )× ρE,3(GF ) ' GL2(6)

is not surjective. The index of the mod 6 image in GL2(6) is 6, which is the cardinality of

ρE,2(GF ) ' GL2(2) ' S3.

This implies that #ρE,6(GQ) = #ρE,3(GQ), which is equivalent to having the equality
Q(E[6]) = Q(E[3]), or, equivalently, the inclusion Q(E[2]) ⊆ Q(E[3]). We say that we
have a (2, 3)-entanglement of non-abelian type S3, with entanglement field Q(E[2]) =
Q(E[2])∩Q(E[3]). The curve also has a (4, 3)-entanglement of index 24 (see Definition 3.2).
In particular, the field Q(E[3]) is quadratic over the entanglement field Q(E[3])∩Q(E[4]).

49
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In general, the failure of ρE,m to be surjective is explained by two phenomena:

1. Local conditions: The non-surjectivity of the p-adic image for some p | m.

2. Entanglement: The non-surjectivity of ρE(GF ) on
∏
p|m
ρE,p∞(GF ).

We speak of vertical entanglement in the first case. In [DLRM23], this is referred to by
vertical collapsing or vertical tanglement. The latter case is called horizontal entanglement,
or simply entanglement in the literature. We refer to a failure of surjectivity of the injective
homomorphism:

Gal(F cyc/F ) ' det(ρE(GF ))→
∏
p∈P

det(ρE,p∞(GF )) '
∏
p∈P

Gal(F (ζµp∞ )/F )

as an arithmetic or cyclotomic contribution to the horizontal entanglement. This cyclo-
tomic entanglement is independent of the curve E/F and concerns the failure of the fields
F (ζp∞) to be linearly disjoint over F (see Definition 1.44).

We further define the notion of an (a, b)-entanglement. For m a positive integer, we
set Fm := F (E[m]). Let a, b two integers with gcd(a, b) = d and lcm(a, b) = m. We have
the following graph of inclusions:

Fm

Fa Fb

Fd

We set
ϕa,b : ρE,m(GFd

)→ ρE,a(GFd
)× ρE,b(GFd

)

to be the natural map induced by the injective morphism GL2(m) → GL2(a) × GL2(b),
which gives rise to an injective map

Gal(Fm/Fd)→ Gal(Fa/Fd)×Gal(Fb/Fd)

giving Fm = FaFb and, from Section 1.2, to an isomorphism

Gal(Fm/Fa ∩ Fb)→ Gal(Fa/Fa ∩ Fb)×Gal(Fb/Fa ∩ Fb).

This leads to the following definition:

Definition 3.2. We say that E has an (a, b)-entanglement if one of the following equivalent
conditions is satisfied:

• ϕa,b is not an isomorphism.

• Fa ∩ Fb 6= Fd.

In this case, Fa ∩Fb is called the entanglement field and the degree [Fa ∩Fb : Fd] is called
the index (or degree) of the (a, b)-entanglement. The extension (F (ζa) ∩ F (ζb))Fd/Fd is
called the arithmetic contribution to the (a, b)-entanglement.
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Remark 3.3. Let E/F be an elliptic curve with an (a, b)-entanglement. This entanglement
has an arithmetic contribution if and only if F has an (a, b)-cyclotomic entanglement, and
F (ζa) ∩ F (ζb) 6⊆ F (E[d]).
Remark 3.4. An (a, b)-entanglement for E/F is an obstruction for ρE,m to be surjective
but not necessarily an obstruction to have maximal images. For example, if a and b are
coprime, ρE,a and ρE,b have maximal images, and F (E[a])∩F (E[b]) = F (ζa)∩F (ζb) 6= F ,
then ρE,m has maximal image.

In particular, when d = 1 we have an (a, b)-entanglement if and only if Fa ∩ Fb 6= F .
Remark 3.5. By Remark 1.22, we have

[Fa ∩ Fb : Fd] =
[Fa : Fd][Fb : Fd]

[Fm : Fd]
=

#ρE,a(GFd
) ·#ρE,b(GFd

)

#ρE,m(GFd
)

·

In particular, if d = 1 and L := F (ζa) ∩ F (ζb) then GL,ab ' GL,a × GL,b and if E/F does
not have CM:

[Fa ∩ Fb : L] =
[GL,ab : ρE,ab(GL)]

[GL,a : ρE,a(GL)] · [GL,b : ρE,b(GL)]
·

The Serre entanglement

Before describing the most common cause of entanglement, we gives a property of 2-torsion
fields and set some notations.

Proposition 3.6. Let E/F be an elliptic curve. We have F (
√
∆E) ⊆ F (E[2]).

Proof. Let y2 = f(x) be a Weierstrass equation for E and let α1, α2, α3 be the roots of f .
Then

∆E = (α1 − α2)
2(α2 − α3)

2(α3 − α1)
2.

In particular F (
√
∆E) ⊆ F (α1, α2, α3). The latter is equal to F (E[2]) by Proposition 2.6.

Definition 3.7. Let E/Q be an elliptic curve and ∆E its discriminant. We denote
by ∆sf(E) the squarefree part of ∆E .

Let E/Q be an elliptic curve. Since Q(
√
∆E)/Q is abelian, the Kronecker-Weber

theorem (see [Neu99, V, Theorem 1.10]) implies that there exists n such that Q(
√
∆E) ⊆

Q(ζn). If ∆sf(E) 6= 1, Proposition 3.6 gives that the intersection Q(E[2]) ∩ Q(ζn) is non-
trivial and we say that E/Q has a Serre entanglement, because this non-trivial intersection
is involved in the proof of Theorem 3.16 by Serre. If ∆sf(E) ∈ {±1,±2}, then ρE,2∞

is not surjective by [DD11]: if ∆sf(E) = 1 the ρE,2 is not surjective, if ∆sf(E) = −1
then ρE,4 is not surjective, if ∆sf(E) = ±2, then ρE,8 is not surjective. Suppose that
∆sf(E) /∈ {±1,±2}. Then the Serre entanglement gives rise to a non-trivial intersection
Q(E[2∞]) ∩Q(E[m]) for some odd integer m, as we will show now. By assumption, there
exists p1, . . . , pt odd primes such that

∆sf(E) = 2∗p∗1 . . . p
∗
t

with

2∗ =


1 if ∆sf(E) ≡ 1 (mod 4),
−1 if ∆sf(E) ≡ −1 (mod 4),
2 if ∆sf(E) ≡ 2 (mod 8)
−2 if ∆sf(E) ≡ −2 (mod 8).
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and for p an odd prime, p∗ = (−1)
p−1
2 p. We set m = p∗1 . . . p

∗
t . We will show that E has

a (2k,m)-entanglement for some k ≤ 3. By [Neu99, Chapter I, proof of Proposition 10.5],
we know that

Q(
√
p∗) ⊆ Q(ζp) ⊆ Q(E[p])

and so Q(
√
m) ⊆ Q(E[m]). Now, we have three cases:

• If ∆sf(E) = p∗1 . . . p
∗
t , i.e. ∆sf(E) ≡ 1 (mod 4), then

Q(
√

∆E) ⊆ Q(E[2]) ∩Q(E[m])

and so E/Q has a (2,m)-entanglement.

• If ∆sf(E) = −p∗1 . . . p∗t , i.e. ∆sf(E) ≡ −1 (mod 4), since
√
−1 ∈ Q(E[4]) by Weil

pairing, we have
Q(
√
−∆E) ⊆ Q(E[4]) ∩Q(E[m])

and so E/Q has a (4,m)-entanglement.

• If ∆sf(E) = ±2p∗1 . . . p∗t , i.e. ∆sf(E) ≡ 2 (mod 4), since
√
±2 ∈ Q(ζ8) ⊆ Q(E[8]) by

Weil pairing, we have

Q

(√
±∆E

2

)
⊆ Q(E[8]) ∩Q(E[m])

and so E/Q has a (8,m)-entanglement.

We have proved that:

Theorem 3.8. Let E/Q be an elliptic curve.

• Suppose that ∆sf(E) ≡ 1 (mod 4). If ∆sf(E) = 1, then ρE,2 is not surjective. Oth-
erwise, E/Q has a (2,∆sf(E))-entanglement.

• Suppose that ∆sf(E) ≡ −1 (mod 4). If ∆sf(E) = −1, then ρE,4 is not surjective.
Otherwise, E/Q has a (4,∆sf(E))-entanglement.

• Suppose that ∆sf(E) ≡ 2 (mod 4). If ∆sf(E) = ±2, then ρE,8 is not surjective.
Otherwise, E/Q has a

(
8, ∆sf (E)

2

)
-entanglement.

In particular, ρE is not surjective. For the listed (2k,m)-entanglement, the entanglement
field contains Q(

√
m).

Almost all elliptic curves over Q have a horizontal entanglement from the list of The-
orem 3.8. Indeed, we saw at the end of Section 2.4.1 that almost all elliptic curves over Q
have surjective p-adic Galois representation for all primes p.
Remark 3.9. The degree of the entanglement field Q(E[2∞]) ∩ Q(E[m]) can be greater
than 2, as Example 3.1 shows.
Example 3.10. The elliptic curve E : y2 = x3 − 36x + 84 with LMFDB label 1944.c1 has
surjective 2-adic representation. Its discriminant ∆E = −28 × 35 satisfies

Q(
√

∆E) = Q(
√
−3) = Q(ζ3) ⊆ Q(E[3])

and this causes a (2, 3)-entanglement, which is detailed in Example 3.1.

https://www.lmfdb.org/EllipticCurve/Q/1944/c/1
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Example 3.11. The elliptic curve with LMFDB label 11.a1 has minimal Weierstrass equa-
tion

E : y2 + y = x3 − x2 − 7820x− 263580

and discriminant ∆E = −11. Since 11∗ = −11, then E/Q has a (2, 11)-entanglement with
entanglement field Q(

√
−11). On the other hand, ρE,p∞ is surjective for all p but 5, and

the 5-adic depth of ρE is 2. The database LMFDB gives that 2 · 52 · 11 is the adelic level
of ρE .

Example 3.12. The elliptic curve E/Q with LMFDB label 53.a1 has discriminant −53.
Since 53∗ = 53, then E/Q has a (4, 53)-entanglement with entanglement field containing
Q(
√
53). In fact, ρE has adelic index 2, and so

Q(E[4]) ∩Q(E[53]) = Q(
√
53).

Example 3.13. Let f(x) = x3 + x2 − 77x − 289 as in Example 1.23. The elliptic curve
E : y2 = f(x) has LMFDB label 44.a1 and discriminant ∆E = −28 · 113. There is only
one exceptional prime, which is 3, and a (2, 11)-entanglement of type Z/2Z, corresponding
to the Serre entanglement, with entanglement field Q(

√
−11). Over F = Q(

√
−11), the

elliptic curve E/F has no entanglement. However, it has one more exceptional prime,
which is 2. The representation ρE,11 is non-surjective for E/F , but has maximal image
GF , which has index 2 in GL2(Ẑ).

The CM entanglement

If E/F has CM by the imaginary quadratic field K, then the inclusion K ⊆ F (E[m])
holds for any integer m ≥ 3, by [BCS17, Lemma 3.15]. In particular, if K 6⊆ F , then for
any coprime a, b ≥ 3, the elliptic curve E/F has an (a, b)-entanglement. By Remark 3.5,
we have, for a, b, c ≥ 3 pairwise coprime:

[Fab ∩ Fc : F ][Fa ∩ Fb : F ] =
#ρE,a(GF ) ·#ρE,b(GF ) ·#ρE,c(GF )

#ρE,abc(GF )

which divides the index of the image of ρE(GF ) in
∏
p∈P

ρE,p∞(GF ). By induction, we

obtain that the index of ρE(GF ) in
∏
ρE,p∞(GF ) is infinite. But ρE(GF ) has finite index

in Nδ,ϕ(GF ) and in G(E/F ). It follows that the injective maps

Nδ,ϕ(Ẑ)→
∏

Nδ,ϕ(p
∞) and G(E/F )→

∏
G(E/F, p∞)

are not surjective. This is the reason why Daniels, Lozano-Robledo and Morrow [DLRM23]
define an horizontal CM entanglement as the non surjectivity of ρE,m(GF ) in Nδ,ϕ(m)
which is not explained by the non-surjectivity in Nδ,ϕ(p

vp(m)) for any p | m. The case
K ⊆ F is studied in Section 3.3.

3.2 Adelic index

Serre’s open image theorem says that, for a non-CM elliptic curve, the adelic index [GF :
ρE(GF )] is finite. For CM elliptic curves, this index is infinite, but we have defined in
Section 2.4.2 the adelic index for CM elliptic curves: it is [G(E/F ) : ρE(GF )], and it is
also finite.

https://www.lmfdb.org/EllipticCurve/Q/11/a/1
https://beta.lmfdb.org/EllipticCurve/Q/53/a/1
https://www.lmfdb.org/EllipticCurve/Q/44/a/1
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Lemma 3.14. Let E/F be a non-CM elliptic curve. The adelic index is divisible by
[GF,m : ρE,m(GF )] for any m ≥ 1. In particular, it is divisible by [GF,p∞ : ρE,p∞(GF )] for
any prime p and by [Fa ∩ Fb : F (ζa) ∩ F (ζb)] for any coprime integers a, b.

Proof. Let p be a prime. Then we have a natural surjective morphism GF → GF,m/ρE,m(GF )
whose kernel contains ρE(GF ). Thus, the morphism

GF /ρE(GF )→ GF,m/ρE,m(GF )

is surjective, and the divisibility

[GF,m : ρE,m(GF )] | [GF : ρE(GF )]

follows. Now, let a, b be coprime integers and L := F (ζa) ∩ F (ζb). Then

[Fa ∩ Fb : L] | [GL,ab : ρE,ab(GL)] | [GL : ρE(GL)] | [GF : ρE(GF )]

from Remark 3.5.

Example 3.15. The elliptic curve with LMFDB label 11.a1 has:

• No vertical entanglement at p 6= 5: ρE,p∞ is surjective for all p but 5,

• A vertical entanglement at 5 with index 120: [GL2(Z5) : ρE,5∞(GF )] = [GL2(25) :
ρE,25(GF )] = 120,

• An horizontal entanglement at 22: a (2, 11)-entanglement (due to the Serre entan-
glement) of index 2,

• An horizontal entanglement at 275: a (25, 11)-entanglement of index 5, since

[Q(E[25]) ∩Q(E[11]) : Q] =
[GL2(275) : ρE,275(GQ)]

[GL2(25) : ρE,25(GQ)] · [GL2(11) : ρE,11(GQ)]

=
600

120 · 1
= 5

by Remark 3.5.

All other entanglements are derived from these one. The adelic level is equal to 550 =
2 · 52 · 11 and the adelic index is equal to 1200 = 120 · 2 · 5.

Theorem 3.8 implies that for an elliptic curve over Q the adelic index is never equal
to 1. In fact, Serre proved that the adelic index is even, but with a slightly different
approach:

Theorem 3.16 ([Ser72, Proposition 22]). Let E/Q be a non-CM elliptic curve. Then ρE,2
is not surjective or E/Q has a Serre entanglement. In particular, the adelic index of ρE
is even.

Proof. If ∆sf(E) = 1, then ρE,2(GQ) ≤ Z/3Z (see [RV01, Proposition 2.1]) and so [GL2(2) :
ρE,2(GQ)] is even. Otherwise, then Q(

√
∆E)/Q is a non-trivial abelian extension and so

there is n ≥ 1 such that Q(
√
∆E) ⊆ Q(ζ2n). Thus Q(E[2]) ∩ Q(ζ2n)/Q is quadratic. In

this case, the restriction morphism

Gal(Q(E[2n])/Q(ζ2n))→ Gal(Q(E[2])/Q)

https://www.lmfdb.org/EllipticCurve/Q/11/a/1
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has image Gal(Q(E[2])/Q(
√
∆E), which has index 2 in Gal(Q(E[2])/Q). Therefore, Propo-

sition 2.13 implies that the image of the natural map

SL2(2n) ∩ ρE,2n(GQ)→ ρE,2(GQ)

has even index in ρE,2(GQ), and so in GL2(2). It follows that ρE,2n(GQ) has even index
in GL2(2n). To conclude, we use Proposition 3.14.

Serre entanglements over Q are related to the Kronecker-Weber theorem, which is
specific to F = Q. For a number field F 6= Q, there are two cases. If F∩Qcyc = F∩Q(ζm) 6=
Q, then ρE,m, and so ρE , cannot be surjective, by the Weil pairing. Otherwise, it can be.
This has been proved by Aaron Greicius, who gives necessary and sufficient conditions for
the surjectivity of ρE , and an example of an elliptic curve with surjective adelic Galois
representation.

Theorem 3.17 ([Gre10, Theorem 1.2]). Let E/F be an elliptic curve. The representation
ρE is surjective if and only if

1. ρE,p∞ is surjective for all primes p,

2. F ∩Qcyc = Q, and

3.
√
∆E /∈ F cyc.

Theorem 3.18 ([Gre10, Theorem 1.5]). Let F = Q(α) where α is the real root of x3+x+1.
Let E/F be the elliptic curve defined by

E : y2 + 2xy + αy = x3 − x2.

Then ρE is surjective.

In fact, if F ∩ Qcyc = Q and F 6= Q, almost all elliptic curves defined over F have
surjective adelic Galois representations:

Theorem 3.19 ([Zyw10, Theorem 1.2]). Suppose that F ∩Qcyc = Q and F 6= Q. Let || · ||
be a norm on R ⊗Z O2

F and, for (A,B) ∈ O2
F , ∆A,B be the discriminant of the elliptic

curve E(A,B) with Weierstrass equation y2 = x3 +Ax+B. We set

BF (X) = {(A,B) ∈ O2
F | ∆A,B 6= 0, ||(a, b)|| ≤ X}.

Then

lim
X→∞

#
{
(A,B) ∈ BF (X) | ρE(A,B)(GF ) = GL2(Ẑ)

}
#BF (X)

= 1.

Also, if F ∩ Qcyc 6= Q, then F ∩ Q(ζm) 6= Q for some m and ρE,m, and ρE , cannot
be surjective. However the image can be maximal. Even more, for F ∩ Qcyc 6= Q, the
proportion of elliptic curves defined over Q with maximal image quickly approach 1:

Theorem 3.20 ([Zyw10, Theorem 1.3]). Suppose that F 6= Q. Let || · || and BF (X) be
as in Theorem 3.19. Then there is an effective constant C, depending only on F and on
|| · ||, such that

#
{
(A,B) ∈ BF (X) | ρE(A,B)(GF ) 6= GF

}
#BF (X)

≤ C logX√
X
·



56 CHAPTER 3. ENTANGLEMENTS AND ADELIC REPRESENTATIONS

In particular, almost elliptic curves E/F do not have any entanglement.
If F 6= Q, the adelic index is equal to 1 for almost elliptic curves. If F = Q, the adelic

index is even.

Definition 3.21 ([Jon10]). Let E/Q be an elliptic curve. If [GL2(Ẑ) : ρE(GQ)] = 2, we
say that E/Q is a Serre curve.

Example 3.22. The elliptic curve of Example 3.12 with LMFDB label 53.a1 has adelic
index 2: it has surjective p-adic representation at all primes p and an entanglement of
degree 2, due to the Serre entanglement.

Theorem 3.23 ([Jon10, Theorem 4]). If we order the elliptic curves by their naive height,
the proportion of Serre curves is 1.

In other words, in terms of density, almost all elliptic curves defined over Q are Serre
curves. Jones [Jon10, Lemma 5] first gives a sufficient condition for an elliptic curve to be
a Serre curve, and later, with Brau, a necessary and sufficient condition:

Theorem 3.24 ([BJ16, Theorem 1.6]). Let E/Q be an elliptic curve. Then E is a Serre
curve if and only if

• E has no exceptional primes,

• Q(E[2]) 6⊆ Q(E[3]), and

• ρE,4 and ρE,9 are surjective.1

If E/Q is a Serre curve, then E/F has an entanglement of index 2 due to the Serre
entanglement, and all other entanglements are derived from this one.
Example 3.25. The elliptic curve E : y2 = x3 − 36x + 84 with LMFDB label 1944.c1 has
maximal p-adic Galois representation for all primes p but it is not a Serre curve since it
satisfies Q(E[2]) ⊆ Q(E[3]). The adelic index of ρE is 24.

For elliptic curve with CM, the index of ρE(GQ) in G(E/Q) is also 2 most of the time:

Theorem 3.26 ([DLRM23, Theorem D]). Among the thirteen isomorphism classes over Q
of elliptic curves E/Q with CM, ten are such that, for a good choice of a basis for Etors,
the index of ρE(GF ) in Nδ,ϕ(Ẑ) is 2.

Theorem 3.27 ([CP22b]). Let E/Q be a CM elliptic curve. Then we have

[G(E/Q) : ρE(GF )] =


2 if j(E) 6= 0, 1728,
4 if j(E) = 1728,
6 if j(E) = 0.

We just discussed about the minimal possible adelic index, now we turn to upper
bounds for this index.

Theorem 3.28 ([Lom15, Corollary 9.3]). Let E/F be a non-CM elliptic curve. The index
of the image of ρE in GL2(Ẑ) is bounded by

exp(1021483) · [F : Q]2.4·10
10 ·max{1, h(E), log[F : Q]}4.8·1010

where h(E) is the stable Faltings height of E.
1The formulation of Theorem 3.24 is given in [Dan15, Theorem 1.8]. Originally, the second and third

points correspond to j(E) /∈ j(X ′(4)(Q))∪ j(X ′′(4)(Q))∪ j(X ′(9)(Q))∪X ′(6) where X ′(4), X ′′(4), X ′(9)
and X ′(6) are modular curves defined in [BJ16, (14)]

https://beta.lmfdb.org/EllipticCurve/Q/53/a/1
https://www.lmfdb.org/EllipticCurve/Q/1944/c/1
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For an elliptic curve E/F with CM by the order O, Lozano-Robledo proved that the
index of ρE(GQ(j(E)) inNδ,ϕ(Ẑ) is a divisor of |O∗|, see [LR22, Theorem 1.2.(1)]. Campagna
and Pengo give a formula for the index of ρE(GF ) in G(E/F ), valid over every number
field F , see [CP22b, Theorem 1.1].

Recently, Zywina classified the possibilities for the index of ρE(GF ) in GL2(Ẑ) for
F = Q.

Theorem 3.29 ([Zyw22b, Theorem 1.3]). There exists a completely determined finite
list I (38 elements) such that, for all c, there exists a finite set Jc such that, for all elliptic
curve E/Q such that j(E) /∈ Jc and ρE,p surjective for all p ≥ c, the index of ρE(GQ) in
GL2(Ẑ) belongs to I.

The set Jc is not explicit. Very recently, he gives a substantially better bound than
that of Lombardo:

Theorem 3.30 ([Zyw24b, Theorem 1.2]). There is a finite set JF ⊆ F such that for any
non-CM elliptic curve E/F with j(E) /∈ JF and ρE,p maximal for all primes p > 19, we
have

[SL2(Ẑ) : ρE(GF ) ∩ SL2(Ẑ)] ≤



1382400,

677376 if K ⊆ Q(
√
−1,
√
2,
√
3,
√
5),

172800 if K ∩Q(
√
−1) = Q,

30000 if K ∩Q(
√
−1,
√
2,
√
3) 6= Q,

7200 if K ∩Q(
√
−1,
√
2,
√
3,
√
5,
√
7,
√
11) = Q,

1536 if K = Q.

Zywina [Zyw24a] gives an algorithm to compute ρE(GQ) for elliptic curve over Q2.
Recently, in [Zyw24b], he has studied the question for general number fields. The failure
of the Kronecker-Weber theorem is, again, the main change between F = Q and F 6= Q.

3.3 Radical of the adelic level
Let E/F be an elliptic curve with K ⊆ Q(j(E)) if E has CM by the imaginary quadratic
field K. The non-surjectivity of ρE in GF , if E/F does not have CM, and in G(E/F ), if
E/F has CM by K with K ⊆ Q(j(E)), is due to two phenomena:

• Vertical entanglement: The non-maximality of ρE,p∞ for some primes p,

• Horizontal entanglement: The non-surjectivity of ρE on
∏
p∈P

ρE,p∞(GF ).

The morphism ρE(GF )→
∏
p∈P

ρE,p∞(GF ) is equivalent to the morphism

Gal(F (Etors)/F )→
∏
p∈P

Gal(F (E[p∞])/F ).

Proposition 1.20 is about sets S ⊆ P such that, for all q /∈ S,

F (E[q∞]) ∩

 ∏
p∈P\{q}

F (E[p∞])

 = F.

2The adelic Galois images data in LMFDB was computed using the algorithm given by [Zyw24a]. For
now, their is no data implemented for adelic level of elliptic curves defined over number fields.
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Equivalently, we have an isomorphism

Gal(F (Etors)/F ) ' Gal(F (E[S∞])/F )×
∏

p∈P\S

Gal(F (E[p∞])/F ) (3.2)

where F (E[S∞]) =
∏
p∈S

F (E[p∞]). From Serre’s open image theorem, such a finite set S

exists for non-CM elliptic curves, see Proposition 3.14 and Remark 3.5. Campagna and
Pengo [CP22a] show that this is also the case for CM elliptic curve. Let SE be the smallest
set S satisfying the isomorphism (3.2). By construction of SE and definition of ME , it
follows that:

Proposition 3.31. Let E/F be a non-CM elliptic curve. The primes p such that ρE,p∞(GF )
is non-maximal divides ME. The other prime divisors of ME are in SE.

Remark 3.32. If F ∩Qcyc = Q, then any prime of SE divides ME .
Example 3.33. The elliptic curve with LMFDB label 26.b1 has ∆sf(E) = −2 · 13, and so
a (8, 13)-entanglement. The adelic index is 96 and the index [GL2(7) : ρE,7(GQ)] is 48.
Hence the (8, 13)-entanglement has index 2 and all other entanglements are derived from
this one, so SE = {2, 13}. The adelic level of ρE is ME = 23 · 7 · 13.

For all q ∈ SE , we have:

F (E[q∞]) ∩

 ∏
p∈SE\{q}

F (E[p∞])

 6= F.

In particular, for all q ∈ SE , the elliptic curve E/F has a (qk,m)-entanglement for some
k ≥ 1 and some positive integers m with prime divisors in SE .
Remark 3.34. The previous assumption implies that to study the entanglement of an
elliptic curve, it suffices to deal with (pk,m)-entanglement for p a prime and m a positive
integer prime to p. However, we cannot reduce the question of entanglement only to the
study of (pk, qr)-entanglement for p, q primes. For example, the elliptic curve with LMFDB
label 6350400.xr1 has a (7, 520)-entanglement, but for m strictly dividing 520, we have

[GL2(7m) : ρE,7m(GF )] = [GL2(7) : ρE,7(GF )] · [GL2(m) : ρE,m(GF )]

and so
ρE,7m(GF ) ' ρE,7(GF )× ρE,m(GF )

i.e. E/Q does not have a (7,m)-entanglement.
In [CS23] and [CP22a], Campagna, Pengo and Stevenhagen determined a set S sat-

isfying (3.2), depending on whether E/F has CM or not. Suppose that End(E) ⊆ F ,
hypothesis that is automatically satisfied if E/F does not have CM, otherwise it means
that K ⊆ F if E/F has CM by K. Let fE be the ideal conductor of E and N(fE) be its
norm over Q.

Theorem 3.35 ([CS23, Theorem 3.2]). If E/F does not have CM, then SE is contained
in the set of the primes p satisfying at least one of the two following conditions:

• p | 2 · 3 · 5 ·∆F ·N(fE),

• ρE,p is not surjective.

https://beta.lmfdb.org/EllipticCurve/Q/26/b/1
https://www.lmfdb.org/EllipticCurve/Q/6350400/xr/1


3.3. RADICAL OF THE ADELIC LEVEL 59

In the CM case, Campagna and Pengo also determined such a set S.

Theorem 3.36 ([CP22a, Theorem 1.1]). If E/F has CM by O, an order in K, the set SE
is contained in the set of primes dividing [OK : O] ·∆F ·N(fE).

The previous theorem is optimal in the following sense: there exist elliptic curves E/F
such that SE is exactly the set of primes dividing [OK : O]·∆F ·N(fE), see [CP22a, Remark
6.4].

Definition 3.37. We say that an integer m is minimal exceptional for E if ρE,m is not
surjective and ρE,a is surjective for all a | m.

In particular, every minimal exceptional integer divides ME . If E/F does not have
CM, then it has a finite number of minimal exceptional integer. Jones gives a statement
about the set of minimal exceptional integers for elliptic curves defined over Q. For a
square-free number W , he defines the Serre number :

MW =

{
2|W | if W ≡ 1 (mod 4)
4|W | otherwise.

Lemma 3.38 ([Jon10, Lemma 20]). Let E/Q be an elliptic curve and suppose that m is
minimal exceptional for E, then

m ∈ P ∪ {M∆sf (E)} ∪ {4, 8, 9}.

If 8 is minimal exceptional for E, then [GL2(8) : ρE,8(GQ)] = 2.

In other words, for E/Q and m composite, ρE,m is not surjective if only if m is divisible
by M∆sf (E) or a prime p such that ρE,p∞ is not surjective.
Example 3.39. The elliptic curve with LMFDB label 11.a1 has minimal discriminant ∆E =
−11. Then M∆fs(E) = 2 · 11. By Lemma 3.38, we know that the minimal exceptional
integers are in P ∪ {22} ∪ {4, 8, 9}. In fact, the minimal exceptional integers are 5 and 22.
The adelic level of ρE is 550 = 2 · 52 · 11.
Example 3.40. Let E/Q be the elliptic curve with LMFDB label 6350400.xr1. The minimal
exceptional integers for E/Q are 20 and 13. The adelic level of ρE is 32760 = 23 ·32 ·5·7·13.

Theorem 3.41. If E/Q is a Serre curve, then the only minimal exceptional integer of E
is M∆sf (E). Moreover, ME =M∆sf (E) and

SE = {2} ∪ {prime divisors of ∆sf(E)}.

Proof. By Theorem 3.24, the prime numbers and 4 are not minimal exceptional for E/Q.
In particular, E/Q has a Serre entanglement. If ∆sf(E) = ±2 then ρE,8(GF ) is non max-
imal and so 8 is minimal exceptional. Otherwise, E/Q has a (2, |∆sf(E)|)-entanglement
if ∆sf(E) ≡ 1 (mod 4), a (4, |∆sf(E)|)-entanglement if ∆sf(E) ≡ −1 (mod 4) and a(
8, |∆sf (E))|

2

)
-entanglement if ∆sf(E) ≡ ±2 (mod 4), by Theorem 3.8. In any case, the

representation ρE,M∆sf (E)
is not surjective. By Remark 3.5 we have for any odd m:

[Q(E[8])∩Q(E[9m]) : Q]·[GL2(9m) : ρE,9m(GQ)]·[GL2(8) : ρE,8(GQ)] | [GL2(Ẑ) : ρE(GQ)].

The latter being equal to 2 in case of Serre curves, M∆sf (E) is the only minimal exceptional
by Lemma 3.38. Moreover

[GL2(M∆sf (E)) : ρE,M∆sf (E)
(GQ)] | [GL2(Ẑ) : ρE(GQ)]

https://www.lmfdb.org/EllipticCurve/Q/11/a/1
https://www.lmfdb.org/EllipticCurve/Q/6350400/xr/1
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and E/Q is a Serre curve. Therefore

[GL2(M∆sf (E)) : ρE,M∆sf (E)
(GQ)] = [GL2(Ẑ) : ρE(GQ)] = 2.

This proves that ME =M∆sf (E).

Remark 3.42. The previous lemma implies that the p-adic depth of a Serre curve is 0 for
all odd prime p, and 0 or 3 for p = 2.
Example 3.43. The Serre curve E/Q with LMFDB label 37.a1 has ∆E = 37 ≡ 1 (mod 4),
and so M∆E

= 2 · 37 = 74. Then, by previous theorem, S3 = {2, 37} and the adelic level
is ME = 74.

3.4 Types of entanglement
In Section 3.1, we have described the Serre entanglement. In this section, we present results
about other possible entanglements. For m a positive integer, we set Fm := F (E[m]). Let
a, b two integers with gcd(a, b) = d and lcm(a, b) = m.

Definition 3.44. We say that we have an (a, b)-entanglement of type T if the Galois group
of the entanglement field over Fd is isomorphic to T where d = gcd(a, b), i.e.

Gal((Fa ∩ Fb)/Fd) ' T.

Example 3.45. Any Serre curve E/Q has a (8,m)-entanglement of type Z/2Z, for some
odd m | ∆sf(E).

Example 3.1 was about an elliptic curve E/Q such that Q(E[2]) ⊆ Q(E[3]). The
conditions for having such inclusion is the topic of an article of Jones and Brau:

Theorem 3.46 ([BJ16, Theorem 1.4] and [JM22, Remark 1.9]). There exists an modular
curve X ′(6), with j-map j6 : X ′(6) → X(1), such that, for every elliptic curve E/Q, we
have j(E) ∈ j6(Q) − {0, 1728} if and only if E is isomorphic over Q to an elliptic curve
E′/Q such that ρE′,2 is surjective and Q(E′[2]) ⊆ Q(E′[3]). The modular curve X ′(6) is
parametrized by t : X ′(6)→ P1 such that j = 21033t3(1− 4t3).

In particular, X ′(6) parameterizes elliptic curves over Q with a (2, 3)-entanglement of
type S3. The theorem above provides an answer to the following question for F = Q and
(a, b) = (2, 3), set by Brau and Jones:

Question 3.47 ([BJ16, Question 1.1]). Can one classify the triple (E/F, a, b) where E/F
is an elliptic curve and a, b coprime integers such that Gal(Fa ∩ Fb/F ) is non abelian?

Jones and McMurdy provide an answer to this question when the modular curve XG

has genus 0, where G := ρE(GF ).

Theorem 3.48 ([JM22, Theorem 1.8]). Let E/F be an elliptic curve with an (a, b)-
entanglement of non-abelian type T and G be its adelic image. Suppose that XG has
genus 0. Then

T = S3, (a, b) ∈ {(2, 3), (2, 5), (3, 5), (2, 9)}, G ≤ Gab and jE(t) = jab(t)

for some t ∈ F , where G6, G10, G15 and G18 are defined by [JM22, (3)] and j6, j10, j15
and j18 are the rational functions defined by [JM22, (5)]. Moreover, the modular curve
XG6, XG10 and XG18 are defined over Q, whereas XG15 is defined over Q(

√
−15).

https://www.lmfdb.org/EllipticCurve/Q/37/a/1
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Remark 3.49. We note that X ′(6) = XG6 . Indeed, an elliptic curve E/F has a (2, 3)-
entanglement of non-abelian type if and only if F (E[2]) ∩ F (E[3])/F has Galois group S3
if and only if ρE,2 is surjective and F (E[2]) ⊆ F (E[3]).

By definition, an elliptic curve E/F has an (a, b)-entanglement if G = ρE,ab(GF ) does
not surject on the product Ga×Gb where Ga, respectively Gb, is the image of G in GL2(a),
respectively in GL2(b). Then the question of entanglement can be reformulate as studing
which subgroups G of GL2(m) do not surject on Ga × Gb. Elliptic curves which have
ρE,m(GF ) = G correspond to rational points on the associated modular curve XG. The
groups G6, G10, G15 and G18 of Theorem 3.48 are defined in this way. This approach also
has been followed by Morrow, in [Mor19], which gives, for each pair

(a, b) ∈ {(2, 3), (4, 3), (8, 3), (16, 3), (2, 5), (2, 7), (2, 11), (2, 13)} ,

a restriction of the possible subgroupsG of GL2(ab) such that E/Q has an (a, b)-entanglement
for some elliptic curve E/Q. Moreover, he gives a list of the index of these subgroups which
occur for infinitely many E/Q.

As seen in Section 3.2, almost all elliptic curve E/Q have a Serre entanglement, and so
a (8,m)-entanglement for some odd m. We observe that this entanglement occurs in Qab

since Q(E[8])∩Q(E[m])∩Qab 6= Q. More precisely, it occurs in Q(ζm). For elliptic curves
with CM, the CM field is contained in F (E[m]) for all m. In particular, all division fields
are entangled, and the entanglement occurs in Qab.

Definition 3.50. Let E/F be an elliptic curve and S be a non-trivial abelian group. Let
2 ≤ a < b be positive integers. We say that E/F has:

1. An abelian (a, b)-entanglement of type S if (Fa ∩ Fb ∩ F ab)/(Fd ∩ F ab) is non-trivial
and has Galois group S.

2. A Weil (a, b)-entanglement of type S if Gal((Fa∩F (ζb))/F (ζd)) or (Fb∩F (ζa))/F (ζd)
is non-trivial with Galois group S.

3. A (2, b)-discriminant entanglement if, setting m = lcm(2, b), there exists G ≤
GL2(m) such that ρE,b(GF ) ≤ G has index 2, and N2, Nm ≤ GL2(m) two distinct
index 2 subgroups such that

(a) Gm ∩N2 = Gm ∩Nb and
(b) [π(G) : π(G2)] = 2 where π : GL2(m)→ GL2(2) is the natural reduction map.

4. A Serre entanglement if E is defined over Q and has a Weil (2, 4|∆E |)-entanglement
of type Z/2Z.

5. A fake CM entanglement if E/F is a non-CM elliptic curve, p is an odd prime, ρE,p
is contained in the normalizer of a Cartan subgroup,

Gal(Fp ∩ F ab/Q) ' Z/2Z× (Z/pZ)∗

and E/F has an abelian (p, q)-entanglement of type Z/2Z where Fp ∩ Fq ' F (
√
e)

or F (
√
ep∗) with e 6= p∗ a squarefree integer such that F (

√
e) ⊆ Fp.

Remark 3.51. As said in previous sections, the Serre entanglement is not defined over any
number field F , because this phenomena is very specific to Q.

These definitions are introduced by [DLRM23] for F = Q.
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Remark 3.52. As we observe with the Serre entanglement, a Weil entanglement is not
always an horizontal entanglement of division fields: if a | b, then lcm(a, b) = b and
gcd(a, b) = a. Then the map

ρE,b(GFa)→ ρE,a(GFa)× ρE,b(GFa)

is an isomorphism. In particular, E/F does not have an (a, b)-entanglement, and yet a
non trivial intersection Fa ∩ F (ζb) 6= F (ζa) is possible. We describe the entanglements
obtained from abelian, Weil, Serre and fake CM entanglements.

1. If E/F has an abelian (a, b)-entanglement of type S, then it has an (a, b)-entanglement
of type T and S is a quotient of T . The group T is not necessarily abelian, as seen
in Example 3.1.

2. Suppose that E/F has a Weil (a, b)-entanglement of type S. If gcd(a, b) = 1, then
E/Q has an (a, b)-entanglement of type T and S is a quotient of T . If gcd(a, b) = d
and F 6= F (E[a]) ∩ F (ζb) 6⊆ F (E[d]), then E/F has an (a, b)-entanglement. In
particular, if gcd(a, b) = 2, then either E/F has an (a, b)-entanglement, or F (E[a])∩
F (ζb) = F (E[2]) ∩ F ab.

3. A Serre entanglement is simultaneously a Weil entanglement and a discriminant
entanglement.

4. If E/Q has a Serre entanglement and ∆sf(E) /∈ {−1,±2}, then E/Q has a (8,m)-
entanglement of type T for some odd m and Z/2Z is a quotient of T .

5. If E/F has a fake CM entanglement, then, by definition, it has a (p, q)-entanglement
for some primes p 6= q.

In [DLRM23, Example 3.5 and 3.6], we see that an abelian entanglement is not necessarily
Weil, and a Weil entanglement is not necessarily abelian.
Remark 3.53. Let E/F be a non-CM elliptic curve. Let a, b be integers coprime to 6. If
ρE,a has maximal image, then, by Proposition 4.72, we have Fa∩F ab = F (ζa). Therefore,
if ρE,a and ρE,b have both maximal image, then E/F has a Weil (a, b)-entanglement if and
only if F has a cyclotomic (a, b)-entanglement.

The following definition is introduced in [DM22] for F = Q.

Definition 3.54. Let E/F be an elliptic curve with an (a, b)-entanglement. This entan-
glement is said to be explained if E/F has a Weil (a, b)-entanglement, and unexplained
otherwise.

Results below imply that explained entanglement occurs for infinitely many elliptic
curves over Q and infinitely many pairs (a, b), and even infinitely many pairs (p, q) with p
and q primes. Whereas unexplained entanglement occurs only for finitely many pairs of
primes (p, q) for elliptic curves over Q.
Example 3.55. As seen in Example 3.1, the elliptic curve E : y2 = x3 − 36x + 84 with
LMFDB label 1944.c1 has a (2, 3)-entanglement of non-abelian type S3 and a (4, 6)-
entanglement of abelian type Z/2Z×Z/2Z or Z/4Z. Indeed, since Q(E[6]) = Q(E[3]), we
have

[Q(E[4]) ∩Q(E[6]) : Q(E[2])] =
[Q(E[4]) ∩Q(E[3]) : Q]

[Q(E[2]) : Q]
=

24

6
= 4

The elliptic curve E/Q also has:

https://www.lmfdb.org/EllipticCurve/Q/1944/c/1
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• An abelian (2, 3)-entanglement of type Z/2Z since

Q(E[2]) ∩Q(E[3]) ∩Qab = Q(
√
−3) 6= Q;

• A Weil (2, 3)-entanglement since Q(E[2]) ∩ Q(ζ3) = Q(ζ3) 6= Q, which gives also a
Serre entanglement: Q(E[2]) ∩Q(ζ4×3) = Q(ζ3).

The second point shows that the (2, 3)-entanglement is explained. However, we see that
the Weil pairing explains that Z/2Z ≤ Gal(Q(E[2])∩Q(E[3])/Q) but not that this Galois
group is all S3. On the other hand, the (4, 6)-entanglement is explained if and only if
Q(i) ⊆ Q(E[3]).
Example 3.56. The elliptic curve E/Q with LMFDB label 11.a1 has minimal discrim-
inant ∆E = −11 and it has surjective image for all primes except 5. It has a (25, 11)-
entanglement of abelian type Z/5Z and a (2, 11)-entanglement of abelian type Z/2Z, which
are both explained. Indeed, the elliptic curve E/Q has:

1. An abelian (25, 11)-entanglement of type Z/5Z and a (2, 11)-entanglement of type
Z/2Z;

2. A Weil (25, 11)-entanglement: since ρE,11 is surjective, then Q(E[11])∩Qab = Q(ζ11)
by Proposition 4.72 and so

Gal(Q(E[25]) ∩Q(ζ11)/Q) ' Gal(Q(E[25]) ∩Q(E[11]) ∩Qab/Q) ' Z/5Z;

3. A Serre entanglement since Q(E[2]) ∩Q(ζ4×11) = Q(
√
−11).

Remark 3.57. The definition of Weil entanglement encompasses also vertical entangle-
ments: an elliptic curve E/F has a Weil (pk, pk+1)-entanglement if the extension F (E[pk])∩
F (ζpk+1)/F (ζpk) is non-trivial, which is equivalent to have the inclusions

F (ζpk) ⊊ F (ζpk+1) ⊆ F (E[pk]).

If F ∩Q(ζpk+1) = Q and p ≥ 3, this never happens by Theorem 4.38. However, the elliptic
curve E : y2 = x3 − 11x − 14 with LMFDB label 32.a1 satisfies Q(ζ2k+1) ⊆ Q(E[2k])
for all k ≥ 1, see [DLR23, Theorem 1.5]. Jones [Jon23, Theorem 1.1] proves that this
is the case for all elliptic curves E/Q with CM by an order of an imaginary quadratic
field K with conductor f such that ∆Kf

2 is even. In particular, these elliptic curves have
a (2k, 2k+1)-entanglement of Weil type for all k ≥ 1.

In the case where the extension Q(E[p])/Q is abelian, a theorem of Lozano-Robledo
provides constraints for the possible type of Weil (p, qk)-entanglement, for p < q primes:

Theorem 3.58 ([DLR23, Theorem 1.8.(2)]). Let E/Q be an elliptic curve and let p < q
be prime integers. If Q(E[p])/Q is abelian, then Q(E[p])∩Q(ζqk) can be trivial, quadratic,
cyclic cubic (for p = 2) or cyclic quartic (for p = 5).

The following theorem shows that there is infinitely many isomorphism classes of elliptic
curves over Q with Weil entanglement which are not Serre.

Theorem 3.59 ([DLRM23, Theorem C]). Each of the following conditions is satisfied by
infinitely many Q-isomorphism classes of elliptic curves over Q:

1. a Weil (3, n)-entanglement of type Z/2Z where 3 ∤ n,

https://www.lmfdb.org/EllipticCurve/Q/11/a/1
https://www.lmfdb.org/EllipticCurve/Q/32/a/1
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2. a Weil (5, n)-entanglement of type Z/4Z where 5 ∤ n,

3. a Weil (7, n)-entanglement of type Z/6Z where 7 ∤ n,

4. a Weil (m,n)-entanglement of type Z/2Z where n ≥ 3, m ∈ {4, 6, 9} and gcd(m,n) ≤
2,

5. a Weil (m, gcd(4|∆E |, n))-entanglement of type Z/2Z × Z/2Z where n ≥ 3, m ∈
{8, 10, 12} and gcd(m,n) ≤ 2.

Remark 3.60. Any Weil (a, b)-entanglement of first three points gives rise to an (a, b)-
entanglement since gcd(a, b) = 1. This is also the case for the last point since the gcd(a, b)
is at most 2 and Z/2Z × Z/2Z is not a subgroup of GL2(2). Let m,n be as in the
fourth point. Suppose that gcd(m,n) = 2 and that Q(E[m]) ∩ Q(ζn) = Q(

√
∆E) or

Q(E[n]) ∩Q(ζm) = Q(
√
∆E), then E/Q has a Serre entanglement, which gives rise to an

(8, b)-entanglement for some odd b | ∆sf(E). Otherwise, E/Q has an (m,n)-entanglement.
In particular, for p = 3, 5, 7 and for all primes q 6= p, there are infinitely many elliptic

curves defined over Q with a (p, q)-entanglement. In fact, Daniels and Morrow showed
that most of entanglements follow from Weil entanglements: there are infinitely many
elliptic curves defined over Q with a unexplained (p, q)-entanglement of type T only for
(p, q) = (2, 3), (2, 5), (2, 7), (2, 13) and (3, 5) and T ' Z/2Z,Z/3Z or S3. They used a
theorem of the first author and Lozano-Robledo, on the extension Q(E[p])∩Qab/Q for any
prime p, obtained by studying the derived group of ρE,p(GQ) and by using the classification
of subgroups of GL2(p). We partially use this method in Section 4.6.

Theorem 3.61 ([DLR23, Theorem 1.7]). Let E/Q be an elliptic curve and let p < q be
distinct primes.

1. The Galois group of Q(E[p])∩Qab over Q is isomorphic to (Z/pZ)∗×C where C is
a cyclic group of order dividing p− 1.

2. Further, if ρE(GQ) is not contained in a Borel subgroup, then Q(E[p]) ∩ Qab =
L(ζp) with L/Q trivial or quadratic. If ρE,p(GQ) is maximal or has projective image
isomorphic to A4, S4 or A5, then L is trivial.

3. In particular, if Q(ζqk) ⊂ Q(E[p]), then Q(E[p]) = Q, Q(i) or Q(ζ3), or ρE,p(GQ) is
contained in a Borel subgroup, p = 2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67 or 163 and φ(qn)
divides p− 1.

Remark 3.62. Assuming the Serre’s uniformity bound, then ρE,p(GQ) is not contained in
a Borel subgroup for any p ≥ 41.

Theorem 3.63 ([DM22, Theorem A and Section 8]). There are exactly 9 pairs ((p, q), T )
with p < q distinct primes and T a finite group such that infinitely many E/Q has an
unexplained (p, q)-entanglement of type T . The list of the 9 pairs is the following

((2, 3),Z/2Z) , ((2, 3),Z/3Z) , ((2, 3), S3) ,

((2, 5),Z/2Z) , ((2, 5),Z/3Z) , ((2, 5), S3) ,

((2, 7),Z/2Z), ((2, 7),Z/3Z), ((2, 13),Z/2Z), ((3, 5),Z/2Z)

Moreover, Daniels and Lozano-Robledo have completely classified the families of elliptic
curves corresponding to each pairs ((p, q), T ) of the theorem.
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Remark 3.64. For each pair ((p, q), T ) in the theorem, any elliptic curve having an un-
explained (p, q)-entanglement of type T has also a (p, q)-entanglement of type S, where
S ∈ {Z/2Z,Z/3Z} is a quotient of T .
Remark 3.65. The pairs ((2, p),Z/3Z) and ((2, p), S3) with p = 3, 5, 7 correspond to having
the inclusion Q(E[2]) ⊆ Q(E[p]). In the first case, the discriminant is a square and
ρE,2(GQ) ' Z/3Z. In the second case, ρE,2 is surjective and Q(

√
∆E) ⊆ Q(E[p]). Since

the entanglement in unexplained, we have

Q(
√
∆E) ∩Q(ζp) = Q(E[2]) ∩Q(ζp) = Q.

In particular, the squarefree part of ∆E is not p∗.
The year after, together with Lozano-Robledo, they refine the previous theorem, as-

suming the Serre’s uniformity bound: they classify the elliptic curves E/Q having an
abelian (p, q)-entanglement of type S, with p < q primes, which is not explained, CM or
fake CM.

Theorem 3.66 ([DLRM23, Theorem A]). Let E/Q be a non-CM elliptic curve and p < q
be primes. There is a finite set J ⊆ Q such that, if j(E) /∈ J and E/Q has an abelian
entanglement of type S which is not Weil, discriminant or fake CM, then

((p, q), S) = ((2, 7),Z/3Z).

Corollary 3.67 ([DLRM23, Corollary B]). Let E/Q be a non-CM elliptic curve and p < q
be primes. Assume a positive answer to Serre’s uniformity bound. There is a finite set
J ′ ⊆ Q such that, if j(E) /∈ J ′ and E/Q has an abelian (p, q)-entanglement of type S
which is not Weil, then

((p, q), S) ∈ { ((2, 3),Z/2Z) , ((2, 5),Z/2Z) , ((2, 7),Z/2Z),
((2, 7),Z/3Z), ((2, 13),Z/2Z), ((3, 5),Z/2Z)}

The general method for the results of this section is finding an appropriate subgroup G
of GL2(Ẑ) with the desired property, computing the j-line of the associated modular
curve XG, and finding the rational points on this curve and parametric families of elliptic
curves E/F with j(E) ∈ j(XG(F )).
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Chapter 4

Coincidence of division fields

We focus on an extreme case of entanglement: the coincidence of two divsion fields. This
chapter corresponds in major part to a preprint of the author: available on arXiv [Yvo24].

4.1 Coincidence: definition and approach
For m a positive integer, we set Fm := F (E[m]). Let a, b two integers with gcd(a, b) = d
and lcm(a, b) = m.

If p ≥ 5 and ρE,p is surjective, then ρE,p∞ is surjective by Theorem 2.31. Nevertheless,
if ρE,p is not surjective, then we cannot immediately deduce the image of ρE,p∞ from the
image of ρE,p. This image can be the full inverse image of ρE,p(GF ) in GL2(Zp), which is
equivalent to having

[GL2(p
k) : ρE,pk(GF )] = [GL2(p

k+1) : ρE,pk+1(GF )],

i.e.
Gal(Fpk+1/Fpk) ' (Z/pZ)4

for all k ≥ 1, from 4.2, but it can be smaller.
On the other hand, in the previous chapter on entanglement, we saw that an horizontal
entanglement is equivalent to a non trivial intersection

Fa ∩ Fb 6= Fd.

In this chapter, we focus on the case of a coincidence, that is the extreme case of both
previous statements.

Definition 4.1. We say that an elliptic curve E/F has an (a, b)-coincidence if one of the
following equivalent conditions is satisfies:

1. The map ϕa,b introduced in Section 3.1 induces an isomorphism

ρE,m(GF ) ' ρE,a(GF ) ' ρE,b(GF ).

2. The equality Fa = Fb holds.

We immediately see that E/F does not have an (a, b)-coincidence if the representations
mod a and mod b are both surjective, since GL2(a) is never isomorphic to GL2(b) for a 6= b.
In particular, if ρE,a and ρE,b are surjective, then E/F can have an (a, b)-entanglement as
Example 3.1 shows but not an (a, b)-coincidence. However, this counter-example provides
an example of a (3, 6)-coincidence.

67
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Example 4.2. Let E/Q be the elliptic curve of Example 3.1 given by the equation

y2 = x3 − 36x+ 84.

It satisfies
ρE,6(GF ) ' ρE,3(GF ) 6' ρE,2(GF ),

and, equivalently,
Q(E[2]) ⊊ Q(E[3]) = Q(E[6]).

If a coincidence Fa = Fb holds, then, since Fm = FaFb, it remains true replacing b
by m. Thus, to obtain constraints on coincidences, it suffices to consider a dividing b.
Furthermore, we can reduce to the question of whether Fa = Fpka for a prime p and k ≥ 1.
Moreover, considering a set S satisfying the isomorphism (3.2), and using Lemma 4.12, it
suffices to consider a with only prime divisors in S ∪ {p}. Then, we consider the following
guiding question:

Question 4.3. Let p be a prime, k ≥ 1 and m be an integer with only prime divisors in
S ∪ {p}. When do we have F (E[m]) = F (E[pkm])?

We can reformulate this question, considering p ∤ m and the following situations:

- Horizontal coincidences

• F (E[m]) = F (E[pkm]) for some k ≥ 1

- Vertical coincidences

• F (E[m]) 6= F (E[pm]) = · · · = F (E[pkm]) for some k ≥ 2, or
• F (E[2m]) 6= F (E[4m]) = · · · = F (E[2km]) for some k ≥ 3.

We know by Theorem 4.46 that there are no other cases.
Suppose that E/F has an (a, b)-coincidence. Then it has a Weil (a, b)-coincidence:

F (ζa) ∩ F (E[b]) = F (ζa) and F (ζb) ∩ F (E[a]) = F (ζb).

In particular E/F has an (a, b)-Weil entanglement. Moreover E/F has an abelian (a, b)-
coincidence:

F (E[a]) ∩ F ab = F (E[b]) ∩ F ab.

An abelian (a, b)-coincidence is an abelian (a, b)-entanglement if and only if the field
F (E[a]) ∩ F ab is not equal to F (E[d]) ∩ F ab. Thus, a subquestion of that of coincidence
is to know whether Weil coincidences and abelian coincidences occur. This approach has
been followed by Daniels and Lozano-Robledo in [DLR23] and will be exploited in this
manuscrit, in Section 4.3, 4.4 and 4.5 for the Weil entanglement and in Section 4.6 for the
abelian entanglement.

4.2 Coincidence over Q

Stevenhagen asked if elliptic curves over Q can have a (2k, 2k+1)-coincidence and the answer
was given by Rouse and Zureick-Brown. Indeed, their classification on 2-adic images for
elliptic curves over Q gives:
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Theorem 4.4 ([RZB15, Remark 1.6]). Let E/Q be a non-CM elliptic curve. If E/Q has
a (2k, 2k+1)-coincidence then k = 1 and there exists t ∈ Q such that E is Q-isomorphic to
y2 = x3 +A(t)x+B(t)1 where

A(t) = −27t8+648t7−4212t6−2376t5+60102t4+79794t3−105732t2−235224t−107811,

B(t) = 54t12 − 1944t11 + 24300t10 − 97848t9 − 251262t8 + 1722384t7 + 4821768t6

−8697456t5 − 64323558t4 − 140447736t3 − 90561240t− 21346578.

Example 4.5. The elliptic curve with LMFDB label 162.d2 with Weierstrass equation

E : y2 + xy + y = x3 − x2 + 4x− 1

([RZB15, Remark 1.6]) satisfies Q(E[2]) = Q(E[4]), and the Galois group over Q of this
extension is GL2(2). We observe that ∆sf(E) = −1 gives Q(ζ4) ⊆ Q(E[2]).

Around the same time, Brau and Jones gave a parametrization of elliptic curves E/Q
such that Q(E[2]) ⊆ Q(E[3]), given in Theorem 3.46, which is equivalent to having a
(3, 6)-coincidence.

In [DLR23], Daniels and Lozano-Robledo study Weil and abelian coincidences. More
precisely, they ask when the inclusion Q(ζpk) ⊆ Q(E[m]) holds for a prime p and use it
to study coincidence. We presented some of their results in Section 3.4, now we focus on
what they proved about coincidence. They extend the result of Rouse and Zureick-Brown:

Theorem 4.6 ([DLR23, Theorem 1.4]). Let E/Q be an elliptic curve, p be a prime and
k ≥ 1.

1. If Q(E[pk]) ∩Q(ζpk+1) = Q(ζpk+1), then p = 2.

2. If Q(E[pk+1]) = Q(E[pk]), then (pk, pk+1) = (2, 4) and E/Q satisfies hypothesis of
Theorem 4.4.

Theorem 4.7 ([DLR23, Theorem 1.7]). Let E/Q be an elliptic curve and p < q be distinct
primes such that Q(E[pk]) = Q(E[qr]). Then (pk, qr) = (2, 3) and there is some t ∈ Q
such that E is Q-isomorphic to

y2 =x3 − 3t9(t3 − 2)(t3 + 2)3(t3 + 4)x

− 2t12(t3 + 2)4(t4 − 2t3 + 4t− 2)(t8 + 2t7 + 4t6 + 8t5 + 10t4 + 8t3 + 16t2 + 8t+ 4).

or its quadratic twist by −3.

Example 4.8. Let E/Q be the elliptic curve with LMFDB label 486.e2 ([DLR23, Exam-
ple 1.2]) given by

y2 = x3 + 405x− 9882.

By Proposition 2.6, the field Q(E[2]) is the splitting field of x3 + 405x − 9882, which
is isomorphic to Q[X]/(x3 − 3). Then Q(E[2]) is equal to Q(ζ3,

3
√
3), which has Galois

group S3 over Q. From LFMDB, we have

[GL2(6) : ρE,6(GQ)]

[GL2(2) : ρE,2(GQ)] · [GL2(3) : ρE,3(GQ)]
=

48

1 · 8
= 6 = [Q(E[2]) : Q].

This quantity is equal to [Q(E[2]) ∩Q(E[3]) : Q] by Remark 3.5, which gives:

Q(E[2]) = Q(E[3]) = Q(E[6]) = Q(ζ3,
3
√
3).

1The modular curve which parameterises elliptic curves with a (2, 4)-coincidence is denoted X20b is the
notation of Rouse and Zureick-Brown.

https://www.lmfdb.org/EllipticCurve/Q/162/d/2
https://www.lmfdb.org/EllipticCurve/Q/486/e/2
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Theorem 4.9 ([DLR23, Theorem 1.8]). Let E/Q be an elliptic curve and let nm < n be
positive integers such that Q(E[m])/Q is abelian. Suppose that Q(E[m]) = Q(E[n]). Then

1. Either (m,n) = (2, 4), Q(E[2]) = Q(E[4]) = Q(i) and there is some t ∈ Q such that
E/Q is Q-isomorphic to

y2 = x3 + (−432t8 + 1512t4 − 27)x+ (3456t12 + 28512t8 − 7128t4 − 54).

2. Or (m,n) = (3, 6), Q(E[2]) ⊊ Q(E[3]) = Q(E[6]) and there is some t ∈ Q such that

j(E) =
(
−(t3−3t2−9t−9)(t3+3t2+3t−3)(t6+12t5+81t4+216t3+243t2+108t+27)

t(t+1)2(t+3)2(t2+3)2(t2+3t+3)

)3
.

Example 4.10. The elliptic curve with LMFDB label 448.g3 ([DLR23, Example 3.5]) sat-
isfies Q(E[2]) = Q(

√
2) and Q(E[3]) = Q(E[6]) = Q(

√
2,
√
−3). Thus we have

ρE,6(GQ) ' ρE,3(GQ) 6' ρE,3(GQ)× ρE,2(GQ).

Theorem 4.11 ([DLR23, Theorem 1.10]). Let 2 ≤ m < n ≤ 10 and E/Q be an elliptic
curve with an (m,n)-coincidence. Then

(m,n) ∈ {(2, 3), (2, 4), (2, 6), (3, 6), (4, 6), (6, 8), (6, 9), (5, 10)}.

It is suspected that the only pairs (m,n) such that an elliptic curve E/Q has an (m,n)-
coincidences are (2, 4), (2, 3), (2, 6) and (3, 6).

4.3 Preliminary results over number fields

Let E/F be an elliptic curve. If E/F has CM, we suppose that F contains the CM field.
As seen in Section 3.3, there exists a finite set S of rational primes such that

Gal(F (Etors)/F ) ' Gal(F (E[S∞])/F )×
∏

p prime
p/∈S

Gal(F (E[p∞])/F ) (4.1)

where F (E[S∞]) is the compositum of F (E[p∞]) for p ∈ S. As underlined in Section 3.3,
Campagna, Pengo and Stevenhagen gave a possible choice of S, distinguishing CM and
non-CM case. All tensor products are taken over the base field F .

We deduce the following proposition, which does not depends on the set S. For an
integer m, let mS be the greatest divisor of m with only prime divisors in S.

Lemma 4.12. Let m and n be two positive integers and suppose that E/F has an (m,n)-
coincidence. Then

F (E[mS ]) = F (E[nS ])

and
∀p /∈ S, F (E[pvp(m)]) = F (E[pvp(n)]).

Proof. From the isomorphism (4.1), we know that F (Etors) =
⊗
i∈I
F (E[i∞]) for

I = {S} ∪ {p : p is prime and p /∈ S}.

https://www.lmfdb.org/EllipticCurve/Q/448/g/3
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By linear independance of Galois extensions, we have the following decompositions

F (E[m]) = F (E[mS ]) ·
∏
p/∈S

F (E[pvp(m)]),

F (E[n]) = F (E[nS ]) ·
∏
p/∈S

F (E[pvp(n)]).

By Remark 1.21 these decompositions are unique, therefore the proposition holds true.

Proposition 2.13 implies that, if F (E[n]) = F (E[m]) for some n ≥ m, then F (ζn) is
contained in F (E[m]). A recurring strategy will be to give restrictions on having this
inclusion.
Remark 4.13. Let n and m be two integers such that m < n. Then there exists a prime p
such that vp(n)− vp(m) = k ≥ 1. On the one hand, we have

F (E[m]) ⊆ F (E[pkm]) ⊆ F (E[lcm(m,n)]) = F (E[m])F (E[n]).

On the other hand, we have F (ζpkm) ⊆ F (E[pkm]). Therefore, each time we have
F (ζpkm) 6⊆ F (E[m]) for some k ≥ 1, it follows that F (E[m]) 6= F (E[n]) for all n such
that vp(n)− vp(m) ≥ k.

As a first attempt, we investigate the possibility of an (m,n)-coincidence, simply by
using the inclusions of fields F (ζm) ⊆ F (E[m]) and of groups ρE,m(GF ) ≤ GL2(m), and
the resulting divisibility of degrees and orders. The next proposition tells us that, if
F (E[n]) = F (E[m]), subject to an additional condition on F , then the primes greater
than every prime dividing m can divide n to at most power 1, unless m is a power of 2, in
which case 3 can divide n with possibly a greater power than 1.

Proposition 4.14. Let m ≥ 2, p be a prime such that p > q for all primes q | m and r
be the largest integer such that Q(ζpr) ⊆ F ∩ Q(µp∞). Let E/F be an elliptic curve such
that F (ζpk) ⊆ F (E[m]) with k > r. Then, k = 1 (and r = 0), unless (m, p) = (2j , 3) for
some j ≥ 1, in which case either r = 0 and k ≤ 2, or r = k − 1.

Proof. Suppose that r > 0, or r = 0 and k ≥ 2. We will prove that (m, p) = (2j , 3),
and r = k − 1 or r = 0 and k = 2. By assumption, pk−r | [F (ζpk) : F ] if r > 0 or
pk−1 | [F (ζpk) : F ] if r = 0. In any case, p divides [F (ζpk) : F ]. Since F (ζpk) ⊆ F (E[m]),
we have

[F (ζpk) : F ]
∣∣ [F (E[m]) : F ]

∣∣ #GL2(m),

and
#GL2(m) =

∏
qj |m

j=vq(m)

#GL2(q
j) =

∏
qj |m

j=vq(m)

q4(j−1)+1(q − 1)2(q + 1).

Therefore, since q < p for all q | m, we obtain p = q + 1 for some q dividing m and so
m = 2j for some j ≥ 1 and p = 3. In this case, k − r = 1 if r > 0 and k − 1 = 1 if
r = 0.

Corollary 4.15. Under the hypotheses of Proposition 4.14, let n be an integer such that
vp(n) = k and suppose that E/F has an (m,n)-coincidence. Then, k = 1, unless (m, p) =
(2j , 3) for some j ≥ 1, in which case r = 0 and k ≤ 2, or r = k − 1.

In Corollary 4.24, in the next section, we extend Proposition 4.14 by replacing « q < p
for all q | m » by « p ∤ m », at the expense of adding conditions on the ramification at p
in F or on the reduction type of E at p.
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4.4 Horizontal coincidence: ramification behaviour
We talk about horizontal coincidence if we have an (m,n)-coincidence and the sets of
prime divisors of m and n are not the same. In this section, we study the obstructions to
horizontal coincidences given by the type of reduction of the elliptic curve and the resulting
ramification.

4.4.1 Ramification and reduction type

Let p be a prime of OF , whose residue characteristic is p. We recall the criterion of
Néron-Ogg-Shafarevitch:

Proposition 4.16 ([Sil09, VII, Theorem 7.1]). Let E/F be an elliptic curve. If E/F has
good reduction at p, then F (E[m])/F is unramified at p for all m such that p ∤ m.

Moreover, the theory of Tate curves gives constraints on the ramification when the
reduction is multiplicative:

Proposition 4.17. Let E/F be an elliptic curve and m ≥ 2 such that p ∤ m. If E/F has
split multiplicative reduction at p or if E/F has multiplicative reduction p and p is odd,
then F (E[m])/F is tamely ramified at p. If E/F has non split multiplication at p and p
is even, then vp(ep(F (E[m])/F )) ≤ 1.

Proof. First, we suppose that E/F has split multiplicative reduction at p. Let Fp be the
completion of F at p. We have, from [Sil94, V.Theorem 5.3], that E is isomorphic over Fp

to the Tate curve Eq for some q ∈ F ∗
p (for the definition of Eq, see [Sil94, V.Theorem 3.1].

We consider the p-adic uniformization:

Fp
∗
/qZ

∼−→ Eq(Fp).

Restricting to the group of m-torsion on each side, we obtain an isomorphism

ϕ :
(
ζZmQ

Z
)
/qZ

∼−→ Eq[m],

where Q = q
1
m is a m-th root of q. The action of Gal(Fp/Fp) on Eq[m] is compatible with

its action on
(
ζZmQ

Z) /qZ (see [Sil09, V, Theorem 5.3]). Let Ip be the inertia subgroup of
Gal(Fp/Fp) and let σ ∈ Ip. Since p ∤ m, the extension Fp(ζm)/Fp is unramified, and so
σ(ζm) = ζm. Since Q is a root of Xm − q, so is σ(Q). Therefore, there exists a ∈ Z/mZ
such that σ(Q) = ζamQ. We set P1 = ϕ(ζm) and P2 = ϕ(Q). Then

σ(P1) = σ(ϕ(ζm)) = ϕ(σ(ζm)) = ϕ(ζm) = P1

and,
σ(P2) = σ(ϕ(Q)) = ϕ(σ(Q)) = ϕ(ζamQ) = aϕ(ζm) + ϕ(Q) = aP1 + P2.

Hence, for all σ ∈ Ip, there exists a ∈ Z/mZ such that

ρE,p(σ) =

(
1 a
0 1

)
.

It follows that the image of the wild inertia by ρE,p is included in a group of order m.
However, as observed by Serre in [Ser72, Section 1.1], Ip is a pro-p-group, and so its image
by ρE,p is a p-group. So it is trivial. Hence, F (E[m])/F is tamely ramified at p.
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Now, suppose that E/F has non split multiplicative reduction at p, and let L/F be
the quadratic extension where the reduction is split. Then L(E[m])/L is tamely ramified
at p. Moreover,

ep(L(E[m])/F ) = ep(L(E[m])/L)ep(L/F )

and so
ep(F (E[m])/F ) | ep(L(E[m])/F ) | 2ep(L(E[m])/L),

which completes the proof.

Finally, we also have constraints on the ramification in case of additive reduction:

Proposition 4.18. Let E/F be an elliptic curve and m ≥ 2 such that p ∤ m. If p > 3
and E/F has additive reduction at p, or if p = 3 and E/F does not have potential good
reduction at p, then F (E[m])/F is tamely ramified at p.

Proof. If E/F has potential good reduction, the proposition follows from [ST68, Section 2,
Corollary 2]. If E/F does not have potential good reduction, then the results follows
from Proposition 4.17 and [Sil09, Appendix C, Theorem 14.1], since a quadratic extension
cannot be widely ramified outside 2.

Finally, let us recall the following result:

Proposition 4.19 ([Ann14, Section 4.2]). Let E/F be an elliptic curve and m ≥ 2 such
that p ∤ m. Suppose that E/F has additive reduction at p. There exists an extension L/F
of degree dividing 24 such that E/L has stable reduction at p.

4.4.2 Ramification and entanglement

Let p be a prime and p be a prime ideal of F above p. Set e = ep(F/Q) the ramification
index of p in F/Q. We know that, if F (E[n]) ⊆ F (E[m]) then F (ζpk) ⊆ F (E[m]) for all
pk | n. In particular, ep(F (ζpk)/F ) divides ep(F (E[m])/F ) for all pk | n. Lemma 4.20
gives information about ep(F (ζpk)/F ).

The map φ : Z→ Z denotes the Euler totient function.

Lemma 4.20. We have vp(e) ≥ k−1−vp(ep(F (ζpk)/F )). Moreover, if ep(F (ζpk)/F ) = 1,
then φ(pk) | e.

Proof. The extension F (ζpk)/F is Galois and so the ramification index above p only de-
pends on p. We have

ep(F (ζpk)/F )e = ep(F (ζpk)/Q)

= ep(F (ζpk)/Q(ζpk))ep(Q(ζpk)/Q)

= ep(F (ζpk)/Q(ζpk))φ(p
k)·

Since vp(φ(pk)) = k−1 we obtain the first statement. The second follows from the previous
equality.

The previous section gives information about ep(F (E[m])/F ), summarized in Theo-
rem 4.21. These results give constraints on having an (m,n)-coincidence when m and n
do not have the same prime divisors.
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Theorem 4.21. Let m ≥ 2 such that p ∤ m. Let E/F be an elliptic curve. The valuation
at p of the ramification index ep(F (E[m])/F ) appears in the table below together with
sufficient conditions on the reduction of E/F at p.

Sufficient condition on E/F t = ep(F (E[m])/F )

good reduction at p t = 1

multiplicative red. at p with p odd
split multiplicative red. at p with p = 2 vp(t) = 0

additive red. at p with p > 3
additive, not potentially good red. at p with p = 3

non split multiplicative red. at p with p = 2 vp(t) ≤ 1
additive, potentially good red. at p with p = 3

additive red. at p with p = 2 vp(t) ≤ 3

Proof. Here is the table, with an additional column with the propositions required for the
proof.

Sufficient condition on E/F t = ep(F (E[m])/F ) Proof
good red. at p t = 1 Proposition 4.16

mult. red. at p with p odd Proposition 4.17
split mult. red. at p with p = 2 vp(t) = 0 Proposition 4.17

add. red. at p, p > 3 Proposition 4.18
add., no pot. good red. at p with p = 3 Proposition 4.18

non split mult. red. at p with p = 2 vp(t) ≤ 1 Proposition 4.17
add., pot. good red. at p with p = 3 Proposition 4.19

add. red. at p with p = 2 vp(t) ≤ 3 Proposition 4.19

Remark 4.22. By Lemma 4.20, we obtain the table below, in which we present the necessary
condition on the ramification of F/Q to obtain the ramification index as in previous
theorem.

s = ep(F (ζpk)/F ) Necessary condition on F/Q
s = 1 φ(pk) | e

vp(s) = 0 vp(e) ≥ k − 1

vp(s) ≤ 1 vp(e) ≥ k − 2

vp(s) ≤ 3 vp(e) ≥ k − 4

With the notation of Theorem 4.21 and Remark 4.22, if F (ζpk) ⊆ F (E[m]), then we
must have s | t. Therefore, the tables give restrictions on having F (ζpk) ⊆ F (E[m]). For
example, if we have this inclusion and E/F has good reduction at p, then φ(pk) must
divide the ramification index of F/Q at p. In the following corollary, we consider the case
of F/Q unramified above p.

Corollary 4.23. Let E/F be an elliptic curve, m ≥ 2, k ≥ 1 and suppose that p ∤ m∆F .
If F (ζpk) ⊆ F (E[m]), then we are in one of the following cases:

• k = 1 and E/F has bad reduction at every ideal above p,

• k = 2, p = 2 and at each prime above p, E/F has either additive or non split
multiplicative reduction,
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• k = 2, p = 3, and E/F has additive and potential good reduction at every ideal above
p,

• k = 3 or 4, p = 2 and E/F has additive and potential good reduction at every ideal
above p.

Proof. Let p be a prime ideal above p. Since p ∤ ∆F , the extension F (ζpk)/F is rami-
fied at p, from Lemma 4.20, so is F (E[m])/F by assumptions. Looking at the tables in
Theorem 4.21 and Remark 4.22, with e = 1, we see that the possibilities are: k = 1,
corresponding to the second line of each tables; k = 2, corresponding to the third line and
in this case p = 2, 3; or k = 3, 4, corresponding to the fourth line, where p = 2.

The corollary below tells us that if E/F has a (m,n)-coincidence (with some conditions
on F ), then the primes greater than 5 not dividing m (respectively n) divide n (respectively
m) to at most power 1, and E/F must have bad reduction at these primes. Moreover, if
3 ∤ m, then 3 divides n to at most power 2, and if m is odd, then 2 divides n to at most
power 4, and the greater the power, the more restrictive is the reduction type.

Corollary 4.24. Let E/F be an elliptic curve with an (m,n)-coincidence. Suppose that
p | n and p ∤ m∆F . Then we are in one of the following cases:

• vp(n) = 1 and E/F has bad reduction at every ideal above p,

• vp(n) = 2, p = 2 and at each prime above p, E/F has either additive or non split
multiplicative reduction,

• vp(n) = 2, p = 3, and E/F has additive and potential good reduction at every ideal
above p,

• vp(n) = 3 or 4, p = 2 and E/F has additive and potential good reduction at every
ideal above p.

Remark 4.25. If ep(F/Q) is prime to φ(pk) (hypothesis that is satisfied for example if
F/Q is unramified at p), then Corollaries 4.23 and 4.24 are true replacing « at every ideal
above p » by « at p ».

Using ramification, we can also deduce a result on vertical coincidences, which is the
topic of the next section:

Theorem 4.26. Let E/F be an elliptic curve, p be a prime and k ≥ 2. If pk−1 ∤ ep(F/Q)
and E/F has good supersingular reduction at p, then F (E[p]) 6= F (E[pk]).

Proof. From Theorem 1.32, the extension F (E[p])/F is tamely ramified at p. Since pk−1

does not divide ep(F/Q), then Remark 4.22 gives that F (E(ζp2)/F is wildly ramified at
p. The result follows as a consequence of the Weil pairing 2.13.

4.5 Coincidences in towers

In this section, we deal with coincidence in towers, or vertical coincidences, that is to say
(pk, pk+1)-coincidences for a prime p and a positive integer k. More generally, the section
also contains results about (m,n)-coincidence where m | n.
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4.5.1 Construction of vertical coincidences

Over Q, we know that infinitely many elliptic curves have a (2, 4)-coincidence and this is
the only vertical coincidence which occurs, see Theorem 4.6. Over a number field, there
are additional possibilities. Obviously, to obtain an (m,mn)-coincidence for an elliptic
curve E/F , it suffices to do a base change of the ground field to F (E[mn]). However, such
a base change is a trivial construction and so not very relevant. We will say that the base
change from F to L is minimal for an (m,mn)-coincidence if L(E[m]) = F (E[mn]) and
F (E[m]) ∩ L = F . Here is an example of a (4, 8)-coincidence obtained by a minimal base
change:

Theorem 4.27. There are infinitely many isomorphism classes of elliptic curves E/Q
such that there exists a number field L with Galois group (Z/2Z)r over Q with 1 ≤ r ≤ 4
satisfying

L(E[4]) = L(E[8]) 6= L.

To prove it, we will use the following theorem on abelian division fields:

Theorem 4.28 ([GLR16, Theorem 1.1]). Let E/Q be an elliptic curve and let n ≥ 2. If
Q(E[m]) = Q(ζm), then m = 2, 3, 4 or 5. More generally, if Q(E(E[m])/Q is abelian then
m = 2, 3, 4, 5, 6 or 8 and Gal(Q(E[m])/Q) is isomorphic to one of the following groups:

m 2 3 4 5 6 8

{0} Z/2Z Z/2Z Z/4Z (Z/2Z)2 (Z/2Z)4
Gal(Q(E[m])/Q) Z/2Z (Z/2Z)2 (Z/2Z)2 Z/2Z× Z/4Z (Z/2Z)3 (Z/2Z)5

Z/3Z (Z/2Z)3 (Z/4Z)2 (Z/2Z)6
(Z/2Z)4

Furthermore, each listed Galois group occurs for infinitely many distinct j-invariants.

Proof of Theorem 4.27. We apply Proposition 4.33 for F = Q, m = 4, r = 2 and E/Q such
that Gal(Q(E[8])/Q) ' (Z/2Z)t for some t. Hence, there exists L/Q of degree dividing
#GL2(8)/#GL2(4) = 24 (by (4.3) in Subsection 4.5.3) such that L(E[8]) = L(E[4]) 6= L.
By Theorem 4.28, the Galois group Gal(Q(E[8])/Q) is isomorphic to (Z/2Z)t for some t
for infinitely many isomorphism classes of elliptic curves E/Q and Q(E[4])/Q is non trivial
since it contains ζ4, which completes the proof.

Remark 4.29. The proof of Theorem 4.27 considers only elliptic curves E/Q such that
Q(E[8])/Q is abelian. In this case Gal(Q(E[8])/Q) ' (Z/2Z)t with t ∈ {4, 5, 6} from [GLR16,
Theorem 1.1]. Let r be as in Theorem 4.27. We have 2r = #Gal(Q(E[8])/Q(E[4])) by
construction of F and 1 ≤ r ≤ 4. If t = 4, then 1 ≤ r ≤ 3 and if t = 6 then 2 ≤ r ≤ 4.
Remark 4.30. We cannot use the abelian case to construct (p, p2)-coincidence with p odd,
because there is no abelian p2-division field for p odd and E defined over Q.

We recall the following definitions:

Definition 4.31. A short exact sequence of groups 1 → H → G
r→ G/H → 1 split if

there exists an injective morphism ι : G/H → G such that r ◦ ι = id.

Definition 4.32. Let G be a group and H,K ≤ G such that H is normal in G. We said
that G is the semi-direct product of H by K, denoted by G = H ⋊K, if, for any g ∈ G,
there exists a unique pair (h, k) ∈ H ×K such that g = hk.
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Proposition 4.33. Let m,n be positive integers. Let E/F be an elliptic curve such that
the following exact sequence is split:

1→ Gal(F (E[mn]/F (E[m]))→ Gal(F (E[mn]/F )→ Gal(F (E[m]/F )→ 1

with F (E[m])/F non trivial. Then there exists an extension L/F of degree dividing
#GL2(mn)/#GL2(m) such that

L(E[m]) = L(E[mn]) 6= L.

To prove the proposition, we will use the following elementary remark:
Remark 4.34. Let G be a group and H be a subgroup of G of finite index. Let ϕ : G→ G′

be a surjective morphism (of groups) and set H ′ = ϕ(H). Then ϕ induces a surjective
morphism of G-sets G/H → G′/H ′, from which

[G : H] = [G′ : H ′][ker(ϕ)H : ker(ϕ)].

In particular [G′ : H ′] divides [G : H].

Proof of Proposition 4.33. Since the sequence is split, there exists a morphism

ι : Gal(F (E[m])/F )→ Gal(F (E[mn])/F )

such that the composition with the restriction map

Gal(F (E[mn])/F )→ Gal(F (E[m])/F )

is the identity. Let L be the fixed field of Im(ι). Then Gal(F (E[mn])/F ) is the semi-direct
product of Gal(F (E[mn])/F (E[m])) by Gal(F (E[mn])/L) and so

L(E[m]) = F (E[mn]) = L(E[mn]) and L ∩ F (E[m]) = F.

Since F (E[m])/F is nontrivial, then L(E[m]) 6= L. Moreover, the extension L/F has
degree [F (E[mn]) : F (E[m])], which divides #GL2(mn)/#GL2(m) by point (1) of Re-
mark 4.34, taking for ϕ the natural map GL2(mn)→ GL2(m) and H = ρE,mn(GF ).

Corollary 4.35. For E/F an elliptic curve, the following are equivalent:

1. The following sequence is split

1→ Gal(F (E[mn]/F (E[m]))→ Gal(F (E[mn]/F )→ Gal(F (E[m]/F )→ 1.

2. There exists an injective morphism

ι : Gal(F (E[m])/F )→ Gal(F (E[mn])/F )

such that

Gal(F (E[mn])/F ) = ι(Gal(F (E[m])/F ))⋉Gal(F (E[mn])/F (E[m])).

3. There exists a minimal base change L/F such that E/L has an (m,mn)-coincidence.

In this case, ι(Gal(F (E[m])/F ) = Gal(F (E[mn])/L).
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Proof. The equivalence between point (1) and (2) is immediate from the definitions of split
exact sequence and semi-direct product. We know that (1) =⇒ (3) by Proposition 4.33.
It remains to show that (3) =⇒ (1). Suppose that the conditions of (3) are satisfied. Since
F (E[mn]) = L(E[mn]), we have the following commutative diagram, where the horizontal
arrows are restriction morphisms and the vertical arrows are inclusion morphisms:

Gal(F (E[mn])/L) Gal(L(E[m])/L)

Gal(F (E[mn])/F ) Gal(F (E[m])/F ).

ψ

ϕ

By assumption, ψ is a isomorphism, together with ϕ by linear independance of F (E[m])
and L over F . It follows that the exact sequence of (1) splits by the morphism

ι : Gal(F (E[m])/F ) −→ Gal(F (E[mn])/F )
σ 7−→ (ϕ ◦ ψ)−1(σ).

As a consequence of the corollary, the elliptic curves satisfying Theorem 4.27 are exactly
those such that we have a split exact sequence

1→ (Z/2Z)r → Gal(Q(E[8]/Q)→ Gal(Q(E[4]/Q)→ 1.

In particular, this is true for E/Q such that Q(E[8])/Q is a (Z/2Z)t-extension and a
classification for such elliptic curves is given in [GLR16, Table 4]. But there are many
other possibilities. More generally, we have

Gal(F (E[pk+1]/F (E[pk])) ' (Z/pZ)r

for some r ≤ 4. Indeed, the Galois group Gal(F (E[pk+1]/F (E[pk])) is isomorphic, for
n = 2, to a subgroup of

ker
(
GLn(p

k+1)→ GLn(p
k)
)
= In + pkMn(Z/pk+1Z) ' (Z/pZ)n

2
. (4.2)

Hence, to construct a (pk, pk+1)-coincidence by minimal base change, we have and it suffices
to find elliptic curves E/F such that the following exact sequence is split:

1→ (Z/pZ)r → Gal(F (E[pk+1]/F )→ Gal(F (E[pk]/F )→ 1.

4.5.2 Trivial intersection with the cyclotomic field

In this section, we show that, if F ∩Q(ζpk) is trivial, then a (pk, pk+1)-coincidence with p
prime is possible only for p = 2.

Lemma 4.36. Let E/F be an elliptic curve, and L/F be a cyclic extension such that
L ⊆ F (E[m]). Let σ ∈ GF such that its restriction to L generates Gal(L/F ). Then the
order of ρE,m(σ) is divisible by [L : F ].

Proof. Let ρE,m be the reduction of ρE,m modulo Gal(F/F (E[m])). Then

[L : F ] = ord(σ|L) | ord(σ|F (E[m])) = ord(ρE,m(σ|F (E[m]))) = ord(ρE,m(σ)).

The first equality is by assumption, and the second is because of the injectivity of ρE,m.
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Lemma 4.37 ([DLR23, Lemma 3.5]). Let A ∈ GL2(p
k) be a matrix with order divisible

by φ(pk+1), then det(A) is a square modulo p.

From the two previous lemma, we deduce the following result:

Theorem 4.38. Let E/F be an elliptic curve, p be a prime and k be a positive integer
such that F ∩Q(ζpk) = Q. If F (ζpk+1) ⊆ F (E[pk]), then p = 2.

Proof. Suppose that p is odd and F (ζpk+1) ⊆ F (E[pk]). Let σ ∈ GF such that its re-
striction to F (ζpk+1) generates Gal(F (ζpk+1)/F ). Then its restriction to F (ζpk) gener-
ates Gal(F (ζpk)/F ). So det ρE,pk(σ) generates (Z/pkZ)∗. Moreover, Lemma 4.36 says
that φ(pk+1) divides the order of ρE,pk(σ) and so its determinant is a square mod p, by
Lemma 4.37. But, for p odd, a square mod p cannot generate (Z/pkZ)∗. Hence, p is
even.

Corollary 4.39. Let E/F be an elliptic curve with F ∩ Q(ζpk) = Q. If E/F has a
(pk, pk+1)-coincidence, then p = 2.

Proof. It is immediate from Theorem 4.38, since F (ζpk+1) ⊆ F (E[pk+1]).

Remark 4.40. If E/F has an (m,mn)-coincidence, then we must have F (ζmn) ⊆ F (E[m]).
But this does not implies in general that F (ζmn) = F (ζm), as we will see in Remark 4.56.
Even more, unless m is odd and n = 2, this last never happens if F = Q, and yet some
coincidences occurs, like (2, 4) and (2, 6)-coincidence, as Examples 4.5 and 4.8. As in
Remark 4.56, it is due to the non-surjectivity of

SL2(mn) ∩ ρE,mn(GF )→ SL2(m) ∩ ρE,m(GF ).

Remark 4.41. The condition F (ζpk+1) ⊆ F (E[pk]) is not sufficient to have the coincidence.
For example, the elliptic curve of Remark 3.57 does not satisfy Q(E[2k]) = Q(E[2k+1]) for
any k. Indeed, this elliptic curve has CM and Theorem 4.6 implies that no CM elliptic
curve defined over Q has a (2k, 2k+1)-coincidence.

We are now able to prove the theorem stated in the introduction:

Theorem 4.42. Let m,n ≥ 1 and E/F be an elliptic curve with conductor ideal fE. Let
N(fE) be the norm of fE. Suppose that F (E[m]) = F (E[n]). Then, for all primes p such
that vp(m) 6= vp(n), we have

p | 2 ·∆F ·N(fE).

Proof. First, suppose that p divides n or m but not both. Then, by Corollary 4.24, if p
does not divide ∆F , then E/F has bad reduction above p. Now, suppose that p divides
both n and m such that vp(m) = k and vp(m) < vp(n). Since F (E[m]) = F (E[lcm(m,n)]),
then F (E[m]) = F (E[pm]). Setting a = m

pk
and L = F (E[a]), we obtain

F (E[pka]) = F (E[pk+1a]) and L(E[pk]) = L(E[pk+1]).

Then Corollary 4.39 implies that L ∩ Q(ζpk+1) 6= Q or p = 2. In particular, p is ramified
in L/Q or p = 2. But L = F (E[a]), so p is ramified in L/Q if and only if p is ramified
in F/Q or in F (E[a])/F . Therefore p | ∆F or E has bad reduction above p.

Corollary 4.43. Let m,n ≥ 1, E/Q be an elliptic curve and ∆E be the minimal dis-
criminant of E. Suppose that Q(E[m]) = Q(E[n]). Then, for all primes p such that
vp(m) 6= vp(n), we have p | 2∆E.
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4.5.3 Index of images

Let p be a prime. Let M be a subgroup of GLn(Zp) and let G be a subgroup of M .
In our setting we only need to consider the groups SL2(Zp), GL2(Zp) and (Zp)∗, but we
state results in the general case as the approach is the same. For k a positive integer,
we denote by Mk the image of M in GLn(Z/pkZ) and Gk the image of G in Mk. We set
ik = [Mk : Gk]. We have ik | ik+1 by Remark 4.34. Moreover,

ik+1

ik
=

#Mk+1

#Gk+1
· #Gk
#Mk

∣∣∣∣#Mk+1

#Mk
=

{
pn

2 if M = GLn(Zp)
pn

2−1 if M = SLn(Zp).
(4.3)

from (4.2). In particular,

Gk ' Gk+1 ⇐⇒
ik+1

ik
=

{
pn

2 if M = GLn(Zp)
pn

2−1 if M = SLn(Zp).
(4.4)

The idea of the lemma below and its proof follows [SZ17, Lemma 3.7].

Proposition 4.44. Suppose that M = GLn(Zp) or SLn(Zp). The sequence (uk) =
(
ik+1

ik

)
satisfies uk+1 | uk for k ≥ 1 if p is odd and for k ≥ 2 if p = 2.

Proof. Suppose that p is odd or that k ≥ 2 and p = 2. Let Hk be the kernel of the reduction
map Gk → Gk−1. Let h ∈ G whose image in Gk belongs to Hk. Then h = I + pk−1A with
A ∈Mn(Zp). The map

ϕ : Hk −→ Hk+1

h 7−→ hp

is an injective morphism since

(I + pk−1A)p = I +

(
p

1

)
pk−1A+

(
p

2

)
p2k−1A2 + · · · ≡ I + pkA (mod pk+1).

Therefore #Gk
#Gk−1

divides #Gk+1

#Gk
and so, since #Mk

#Mk−1
=

#Mk+1

#Mk
from the equation (4.3), we

obtain uk+1 | uk.

Corollary 4.45. Let k ≥ 1 if p is odd and k ≥ 2 if p is even. If M = GLn(Zp) or
M = SLn(Zp), and Gk ' Gk+1, then G1 ' G2 ' · · · ' Gk+1 if p is odd, and G2 ' G3 '
· · · ' Gk+1 if p is even.

Proof. Suppose thatM = GLn(Zp). Equivalence (4.3) gives ik+1

ik
= pn

2 . Since the sequence(
is+1

is

)
is non-increasing from Lemma 4.44 for s ≥ 1 and p odd or s ≥ 2 and p = 2, and has

values dividing pn2 by Equation (4.4), then is+1

is
= p4 for all s ≤ k. The proof is similar

for M = SLn(Zp).

Theorem 4.46. Let q = p and k ≥ 1 if p is odd, or q = p2 and k ≥ 2 if p is even. Let
E/F be an elliptic curve. If F (E[pk]) = F (E[pk+1]), then F (E[q]) = F (E[pk+1]).

Proof. Let M = GL2(Zp) and G = ρE,p∞(GF ). So

Gk = ρE,pk(GF ) ' Gal(F (E[pk])/F ).

Therefore, the equality F (E[pk]) = F (E[pk+1]) is equivalent to Gk ' Gk+1, and we use
Corollary 4.45.
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Corollary 4.47. Let k ≥ 2 if p odd and k ≥ 3 if p is even. Let E/F be an elliptic curve
such that the exact sequence

1→ Gal(F (E[pk+1]/F (E[pk]))→ Gal(F (E[pk+1]/F )→ Gal(F (E[pk]/F )→ 1

is split, then F (E[pk−1]) = F (E[pk]).

Proof. By Proposition 4.33, there exists L/F linearly disjoint from F (E[pk])/F such
that L(E[pk]) = L(E[pk+1]). Therefore, by Theorem 4.46, we have L(E[pk−1]) = L(E[pk]).
But L ∩ F (E[pk]) = F gives L(E[pk−1]) ∩ F (E[pk]) = F (E[pk−1]), from which we obtain

[F (E[pk]) : F (E[pk−1])] = [L(E[pk]) : L(E[pk−1])] = 1,

using Proposition 1.16.

Corollary 4.48. If p is odd or k ≥ 3, then the sequence

1→ Gal(Q(E[pk+1]/Q(E[pk]))→ Gal(Q(E[pk+1]/Q)→ Gal(Q(E[pk]/Q)→ 1

is not split.

Proof. This follows from Corollary 4.47 and Theorem 4.6.

Remark 4.49. We notice that the assumptions of the theorem are necessary. Indeed, let
E/Q be an elliptic curve satisfying Gal(Q(E[8])/Q) ' (Z/2Z)6. Then, the sequence in
Corollary 4.47 is split. However, since Gal(Q(E[8])/Q(E[4])) ≤ (Z/2Z)4 by (4.2), we have
(Z/2Z)2 ≤ Gal(Q(E[4])/Q) and so Q(E[2]) 6= Q(E[4]).

We obtain the following proposition on the adelic index:

Proposition 4.50. Let E/F be an elliptic curve without CM, with a (pk, pk+1)-coincidence.
Then [GL2(Ẑ) : ρE(GF )] is divisible by p4k if p is odd, or max

{
24, 24k−1

}
if p is even.

Proof. With the introduced notation, we consider M = GL2(Zp) and G = ρE,p∞(GF ).
The index ik+1 divides [GL2(Ẑ) : ρE(GF )] by Remark 4.34 and so ik+1/ik divides the
global index [GL2(Ẑ) : ρE(GF )]. But having a (pk, pk+1)-coincidence is equivalent to have
Gk ' Gk+1. Then, the proposition follows from Equation 4.4 and Corollary 4.45.

Remark 4.51. We saw in Theorem 3.29 a set of possible adelic indexes which is generic for
elliptic curves E defined over Q and in Theorem 3.30, upper bounds for the adelic index
which is generic for elliptic curves E/F , depending on the number field F , both given by
Zywina.
Remark 4.52. Let E/F be an elliptic curve and take G = ρE,p∞(GF ). So we have Gk =
ρE,pk(GF ) for k ≥ 1.

1. The sequence (ik) is increasing, and, if E/F does not have CM, becomes stationary.

2. For elliptic curves E/Q without CM, let s be the p-adic depth of ρE . Then the
sequence

(
ik+1

ik

)
stabilizes at 1 from max{1, s}. In particular, if G = GL2(Zp), then(

ik+1

ik

)
is constant equal to 1. The converse is false: the elliptic curve with LMFDB

label 11.a2 has non maximal Galois representation at 5 and the sequence
(
ik+1

ik

)
attached to 5 is constant, equal to 1. In Table 2.1, we find the possible p-adic depth
for all p. For example, for p = 2,

(
ik+1

ik

)
stabilizes at 1 from k at most 5.

https://www.lmfdb.org/EllipticCurve/Q/11/a/2
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3. We consider k ≥ 1 if p is odd, or k ≥ 2 if p is even. If the first term of
(
ik+1

ik

)
is

different than p4, then E/F does not have (pk, pk+1)-coincidences for any k. Oth-
erwise, if s is the rank of the first jump of the sequence, then E/F does not have
(pk, pk+1)-coincidences for k ≥ s.

4. We consider k ≥ 1 if p is odd, or k ≥ 2 if p is even. We know that the sequences
(
ik+1

ik

)
is non-increasing, then constant. We can ask if it is decreasing then constant. The
answer is no. For example, the elliptic curve with LMFDB label 15.a4 has, for p = 2,(
ik+1

ik

)
= (22, 2, 2, 2, 1, . . . ). We can also ask if the graphs are "progressively non-

increasing", meaning that ik+1

ik
∈
{

ik
ik−1

, 1p
ik
ik−1

}
. The answer is also no. For example,

the elliptic curve with LMFDB label 15.a8 has, for p = 2,
(
ik+1

ik

)
= (23, 2, 1, . . . )

and the elliptic curve with LMFDB label 40.a4 has, for p = 2,
(
ik+1

ik

)
= (24, 1, . . . ).

Example 4.53. Here some examples over Q, computed from [LMF24], illustrate different
possibilities for the sequence

(
ik+1

ik

)
. As underlined in Remark 4.52, the sequence (

ik+1

ik

is constant equal to 1 for p ≥ 13, and, for p < 13, it stabilizes at the rank corresponding
to the p-adic depth of ρE , which is a most 5 if p = 2, at most 3 if p = 3, at most 2 if
p = 5, 7, 11.

LMFDB Minimal Weierstrass equation Non max Sequence
(
ik+1

ik

)
label p attached to p
14.a6 y2 + xy + y = x3 + 4x− 6 2 1, 2, 1, . . .

15.a1 y2 + xy + y = x3 + x2 − 2160x− 39540 2 22, 22, 2, 1, . . .

15.a2 y2 + xy + y = x3 + x2 − 135x− 660 2 22, 22, 1, . . .

15.a4 y2 + xy + y = x3 + x2 − 80x+ 242 2 22, 2, 2, 2, 1, . . .

15.a5 y2 + xy + y = x3 + x2 − 10x− 10 2 23, 2, 1, . . .

15.a8 y2 + xy + y = x3 + x2 + 35x− 28 2 23, 22, 1, . . .

20.a3 y2 = x3 + x2 − x 2 2, 2, 1, . . .

40.a4 y2 = x3 + 13x− 34 2 24, 1, . . .

19.a1 y2 + y = x3 + x2 − 769x− 8470 3 3, 3, 1, . . .

54.a2 y2 + xy = x3 − x2 − 3x+ 3 3 32, 1, . . .

1944.f1 y2 = x3 − 27x− 42 3 33, 1, . . .

11.a1 y2 + y = x3 − x2 − 7820x− 263580 5 5, 1, . . .

11.a2 y2 + y = x3 − x2 − 10x− 20 5 1, 1, . . .

Remark 4.54. Let E/F be an elliptic curve and take G = ρE,p∞(GF ). Then detG is a
subgroup of (Zp)∗, with image detGk in (Z/pkZ)∗. We recall that detGk ' Gal(F (ζpk)/F ),
by Proposition 2.13. We set jk = [(Z/pkZ)∗ : detGk]. We consider k ≥ 1 if p is odd,
and k ≥ 2 is p is even. The sequence

(
jk+1

jk

)
is non-increasing and has value in {1, p} by

Lemma 4.44 and the equation (4.3). We have jk+1/jk = p if and only if detGk ' detGk+1,
by the isomorphism (4.4), and this is equivalent to F (ζpk+1) = F (ζpk). Corollary 4.45
implies that F (ζq) = F (ζpk+1) with q = p if p is odd and q = 4 if p is even. As a
consequence, the sequence (jk) is increasing and becomes stationary from the smallest s
such that ζps /∈ F (ζq).
Remark 4.55. A different argument for Remark 4.54 is the following: let r be the greatest
integer such that F (ζq) = F (ζpr). If F (ζq) is a proper subfield of F (ζpk+1), then m < k+1

https://www.lmfdb.org/EllipticCurve/Q/14/a/6
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/EllipticCurve/Q/15/a/2
https://www.lmfdb.org/EllipticCurve/Q/15/a/4
https://www.lmfdb.org/EllipticCurve/Q/15/a/5
https://www.lmfdb.org/EllipticCurve/Q/15/a/8
https://www.lmfdb.org/EllipticCurve/Q/20/a/3
https://www.lmfdb.org/EllipticCurve/Q/40/a/4
https://www.lmfdb.org/EllipticCurve/Q/19/a/1
https://www.lmfdb.org/EllipticCurve/Q/54/a/2
https://www.lmfdb.org/EllipticCurve/Q/1944/f/1
https://www.lmfdb.org/EllipticCurve/Q/11/a/1
https://www.lmfdb.org/EllipticCurve/Q/11/a/2
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and
Z/pk+1−rZ ' Gal(F (ζpk+1)/F (ζq))

and
Z/pk−rZ ' Gal(F (ζpk)/F (ζq)),

so F (ζpk+1) 6= F (ζpk).

Remark 4.56. Let E/F be an elliptic curve and take G = ρE,p∞(GF ). We observe that
SL2(Zp) ∩ G is a subgroup of SL2(Zp) and so we can consider its projection in SL2(p

k)
for each k. Unfortunately, these projections are not necessarily equal to SL2(p

k+1) ∩ Gk
and so we cannot use these groups to deal with the coincidence: if Gk ' Gk+1, we do not
necessarily have SL2(p

k)∩Gk ' SL2(p
k+1)∩Gk+1. Setting ℓk = [SL2(p

k) : SL2(p
k)∩Gk],

we have ik = jkℓk with jk defined as in Remark 4.54. Suppose that Gk ' Gk+1. Then
ik+1/ik = p4. Hence

p4 =
jk+1ℓk+1

jkℓk
= p4

#detGk
#detGk+1

#(SL2(p
k) ∩Gk)

#(SL2(pk+1) ∩Gk+1)

= p4
[F (ζpk) : F ]

[F (ζpk+1) : F ]

#(SL2(p
k) ∩Gk)

#(SL2(pk+1) ∩Gk+1)
·

Then we have two situations:

1. F (ζpk) = F (ζpk+1), and SL2(p
k) ∩Gk ' SL2(p

k+1) ∩Gk+1,

2. F (ζpk+1) 6= F (ζpk+1), and the reduction map SL2(p
k+1) ∩ Gk+1 → SL2(p

k) ∩ Gk is
not surjective.

In the first case, we have seen in Remark 4.54 that F (ζpk+1) is equal to F (ζ4) if p = 2 and
F (ζp) otherwise. The examples of vertical coincidence we have for elliptic curves over Q
fits, obviously, in the second case. Indeed, the elliptic curve with LMFDB label 40.a4 has
a (2, 4)-coincidence with

G2 = ρE,4(GF ) '
〈(

0 1
1 0

)〉
.

In this case, we have G2 ∩ SL2(4) = {id}, whereas

G1 ∩ SL2(2) = G1 =

〈(
0 1
1 0

)〉
.

4.5.4 Split liftable subgroups

Let m,n be positive integers. If E/F is an elliptic curve with an (m,mn)-coincidence,
then ρE,m(GF ) ' ρE,mn(GF ) and the image of ρE,mn(GF ) in GL2(m) is ρE,m(GF ). It
leads to the following definition. For a subgroup G of GL2(m), there are a priori several
liftings of G in GL2(mn).

Definition 4.57. We say that a subgroup G of GL2(m) is split liftable modulo mn if there
exists G′ ≤ GL2(mn) such that G is the image of G′ in GL2(m) and G ' G′. We say that
an element g of GL2(m) is split liftable modulo m if there exists g′ ∈ GL2(mn) with same
order as g and such that g is the image of g′ in GL2(m).
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A subgroup G of GL2(m) is split liftable modulo mn is there exists an injective mor-
phism G→ GL2(mn) which makes the following diagram commutative:

GL2(mn)

G GL2(m)

The definition above is up to conjugation, since two conjugate groups are isomorphic.
Therefore:

Proposition 4.58. Let E/F be an elliptic curve with an (m,mn)-coincidence. Then
ρE,m(GF ) is split liftable modulo mn.

The aim of this section is to determine the subgroups of GL2(m) which are split liftable
or not modulo some multiple of m.
Remark 4.59. If G in GL2(m) is split liftable modulo mn, then G is split liftable modulo
every km such that 1 ≤ k ≤ n.
Remark 4.60. In [Elk06], Elkies already use the property of being split liftable to construct
the modular curve X9. It is defined by X9 = X(9)/(G/ 〈− id〉) where G is a split lifting of
SL2(3) in GL2(9), and more specifically, in SL2(9).
Remark 4.61. Corollary 4.45 tells that, if a subgroup of GL2(p

k) is split liftable modulo
GL2(p

k+1), then its image in GL2(q) is also split liftable modulo GL2(p
k+1), where q = p

if p is odd or q = 4 if p is even.

Lemma 4.62. Let G ≤ GL2(m) be split liftable modulo mn. Then, all subgroups of G are
split liftable modulo mn.

Proof. Let G′ be a subgroup of GL2(mn) such that G is the image of G′ in GL2(mn) and
G ' G′. Then, the restriction π : G′ → G of the natural projection GL2(mn) → GL2(m)
is an isomorphism. Let H ≤ G. We set H ′ := π−1(H). Then H ′ ' H and H is the image
of H ′ in GL2(m).

Proposition 4.63. Let m ≥ 2. The following subgroups of GL2(m) are split liftable
modulo every multiple of m:〈(

0 −1
1 1

)
,

(
0 1
1 0

)〉
,

〈(
1 0
0 −1

)
,

(
0 1
−1 0

)〉
.

Proof. Considering the two groups as subgroups of GL2(Z), we observe that they have
finite orders, respectively 12 and 8, and their elements only have coefficients in {0, 1,−1}.
Consequently, they are isomorphic to their projection modulo any integers m such that
1 6= −1 (mod m), that is for any m ≥ 3. The case m = 2 is given by Example 4.64.

Example 4.64. The group GL2(2) lifts to
〈(
−1 1
−1 0

)
,

(
0 1
1 0

)〉
⊆ GL2(Z), and so is split

liftable modulo every even integer.
Remark 4.65. Let E/F be an elliptic curve. To have an (m,mn)-coincidence, it is necessary
to have ρE,m(GF ) split liftable modulo mn, but it is not sufficient. Indeed, GL2(2) is split
liftable modulo 8, but there are no (2, 8)-coincidence for elliptic curve defined over Q, see
[DLR23, Theorem 1.4]. This is also the case for GL2(3): the subgroup〈(

1 0
0 −1

)
,

(
−2 2
−2 −2

)
,

(
4 −2
−3 4

)〉
⊆ GL2(9)
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is a lifting of GL2(3) of order 48. Hence, GL2(3) is split liftable modulo 9 and yet there
is no (3, 9)-coincidence for elliptic curves with surjective mod 3 Galois representation, by
Corollary 4.39 and Proposition 2.13.

Now we will present groups which are not split liftable, which give us obtructions
having the coincidence. We underline that, by Lemma 4.62, if g ∈ GL2(m) is not split
liftable modulo mn, then all groups containing g are not split liftable modulo mn.

From now on, we will denote by T the matrix
(
1 1
0 1

)
.

Lemma 4.66. Let p be a prime and k ≥ 1. The matrix T in GL2(p
k) is split liftable

modulo pk+1 if and only if p = 2, 3 and k = 1.

Proof. In GL2(2), resp. GL2(3), the matrix T is conjugates to
(
0 1
1 0

)
, resp.

(
0 1
−1 −1

)
,

and so is split liftable modulo 4, resp. modulo 9, by Lemma 4.63. Set q = p2 if p = 2, 3
and q = p otherwise. We know, from Corollary 4.45, that, for k ≥ 1 if p is odd and k ≥ 2
if p is even, if T in GL2(p

k) is split liftable modulo pk+1, then T in GL2(q) is split liftable
modulo pk+1 and so modulo pq. Now, if T was split liftable modulo pq, then we could find
M ∈M2(Zp) such that T + qM has order q in GL2(pq). But(

1+qa 1+qb
qc 1+qd

)n
≡
(

1+nqa+
n(n−1)

2
qc n+nqb+

n(n−1)
2

q(a+d)+
n(n−1)(n−2)

6
qc

nqc 1+nqd+
n(n−1)

2
qc

)
(mod pq).

Now, we take n = q. Then p divides q(q−1)
2 and q(q−1)(q−2)

6 . We obtain

(T + qM)q ≡
(
1 q
0 1

)
6≡ id (mod pq).

Theorem 4.67. Let p be a prime. Let q = p if p 6= 2, 3, or q = p2 if p = 2, 3. Let E/F
be an elliptic curve. If ρE,q(GF ) contains T , then F (E[q]) 6= F (E[pq]).

In particular, if E/F does not have CM and has a (pk, pk+1)-coincidence, then E/F
has non maximal image modulo p2, and even modulo p if p 6= 2, 3.

Corollary 4.68. Let E/F be an elliptic curve with multiplicative reduction at a prime r
of OF and let p be a prime not dividing 2vr(j(E)). Then E/F does not have a (pk, pk+1)-
coincidence for any k.

Proof. If E/F has multiplicative reduction at a prime ideal r and p does not divide
2vr(j(E)), then T ∈ ρE,p(GF ) by [Sil94, Proposition 1.6]. But this is not possible for
a (pk, pk+1)-coincidence from Theorem 4.67.

Remark 4.69. Suppose that p is odd, and k ≥ 2 if p = 3. To study (pk, pk+1)-coincidences
further, it remains to deal with subgroups of GL2(p

k) with non-surjective determinant, by
Corollary 4.39, and which does not contains T , by Theorem 4.67.

4.5.5 CM case

If E/F has complex multiplication by a quadratic field K and F ⊆ K(j(E)), then we can
say more.
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Proposition 4.70. Let E/Q be an elliptic curve with CM by a quadratic field K and
F = K(j(E)). If F (E[pk]) = F (E[pk+1]), then p = 2 and k = 1.

Proof. We have the following field inclusions:

F (E[pk+1])

F (E[pk]) F (h(E[pk+1])

F (h(E[pk]))

a

c d

where h is a Weber function for E (see [LR22]). Suppose that k ≥ 1 if p is odd or k ≥ 2
if p = 2 and a = 1. By [LR22, Theorem 4.3], we have,

d = [F (h(E[pk+1])) : F (h(E[pk]))] = p2.

This implies that p2 | c. Moreover, by [LR22, Theorem 4.1] we have c | #O∗
K . But

#O∗
K = 2, 4 or 6. Thus p = 2 and c = #O∗

K = 4. But O∗
K ' Aut(E), so j(E) = 1728 by

[Sil09, III, Theorem 10.1] and F = K(j(E)) = K = Q(i). In this case, E is defined over
Q and Q(E[2k]) ⊊ Q(E[2k+1]) by Theorem 4.6. Moreover, the Weil pairing implies that

F = Q(i) ⊆ Q(E[4]) ⊆ Q(E[2k]) ⊊ Q(E[2k+1])

and so F (E[2k]) ⊊ F (E[2k+1]). We conclude that p = 2 and k = 1.

Remark 4.71. If an elliptic curve E/F has a (2, 4)-coincidence, then ρE,4(GF ) must be a
split lifting of ρE,2(GF ). Example 4.64 gives such a split lifting and a Magma computation
shows that this is the only one up to conjugation ([DLR23, Proof of Proposition 3.9]). The
corresponding modular curve is X20b in the notation of Rouse and Zureick-Brown [RZB15,
Remark 1.6], whose model is given in Theorem 4.4. We deduce the map to the j-line,
explicitely given in [DLR23, Proof of Proposition 3.9]: let E/F be an elliptic curve with
a (2, 4)-coincidence, then there exists t ∈ F such that

j(E) =
−4t8 + 32t7 + 80t6 − 288t5 − 504t4 + 864t3 + 1296t2 − 864t− 1188

t4 + 4t3 + 6t2 + 4t+ 1
·

For rational CM j-invariant, there is no such t.

4.6 Large images
Since GL2(m) and GL2(n) are not isomorphic for m 6= n, then (m,n)-coincidences cannot
happen for elliptic curves with surjective mod m and mod n representations. Daniels and
Lozano-Robledo compared the abelian part of the division field to show that E/Q does
not have (m,n)-coincidence if only ρE,m is surjective. In this section, we use the same idea
to show a similar result over number fields, in case where ρE,m is large, i.e. it contains
the special linear group. In this case, the elliptic curve E/F does not have CM, and it is
said that it has maximal image at m. We will only deal with m odd.

For a group G, we denote by D(G) its commutator subgroup. We know that D(G) is
the smallest normal subgroup of G such that G/D(G) is abelian and this last is called the
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abelianization of G. We will use several well-known results about derived group of SL2(m)
and GL2(m), given with detailed proofs in Appendix A.

We denote by F ab the maximal abelian extension of F . We will compare the maximal
abelian extension of F (E[m]) and that of F (E[n]).

Proposition 4.72. Let m be an odd integer and E/F be an elliptic curve. Suppose that
ρE,m(GF ) contains SL2(m). Then

F (E[m]) ∩ F ab =

{
F (ζm) if D(ρE,m(GF )) = SL2(m)
a Z/3Z-extension of F (ζm) otherwise.

Proof. LetG = ρE,m(GF ). We have SL2(m) ≤ G ≤ GL2(m). Then, using Proposition A.3,

D(SL2(m)) ≤ D(G) ≤ SL2(m)).

Suppose that D(G) = SL2(m). Since

G/SL2(m) ' det(G),

therefore the largest abelian quotient of F (E[m])/F has Galois group isomorphic to det(G).
By the Weil pairing, F (ζm) ⊆ F (E[m]) and from Proposition 2.13, we have Gal(F (ζm)/F ) '
det(G). Then the largest abelian subextension of F (E[m]) is F (ζm).

Now, suppose that D(G) 6= SL2(m). If 3 ∤ m, this does not happens, since in this
case D(SL2(m)) = SL2(m) from Proposition A.2. If 3 | m, then D(SL2(m)) has index 3 in
SL2(m) from Proposition A.2 and so is D(G). It follows that F (E[m])∩F ab is an extension
of degree 3 of F (ζm).

Remark 4.73. The case F (E[m]) ∩ F ab 6= F (ζm) happens only for gcd(m, 12) 6= 1 by
Proposition A.2 and Proposition A.3. Let k = v3(m). In the previous proposition, m is
odd and so F (E[m]) ∩ F ab 6= F (ζm) only if k > 0. In this case L := F (E[3k]) ∩ F ab is a
(Z/3Z)-extension of F (ζ3k) and

F (E[m]) ∩ F ab = L⊗F F (ζ m

3k
).

Remark 4.74. Let k = 1 if p ≥ 5, k = 2 if p = 3 and k = 3 if p = 2. If ρE,pk(GF ) contains
SL2(p), then ρE,p∞(GF ) contains SL2(Zp), by Theorem 2.31.

Theorem 4.75. Let m,n be integers such that m is odd, F (ζn) 6⊆ F (ζm) and E/F be
an elliptic curve. Suppose that ρE,m(GF ) contains SL2(m) and that E/F has an (m,n)-
coincidence. Then

3 | m, and D(ρE,m(GF )) 6= SL2(m), and F (ζn) ⊆ L

where L is a Z/3Z-extension of F (ζm).

Proof. Suppose that F (E[m]) = F (E[n]). Then F (ζn) ⊆ F (E[m]) ∩ F ab, which is not
possible if F (E[m]) ∩ F ab = F (ζm), by assumption. Hence, from Proposition 4.72, the
field F (E[m]) ∩ F ab is a Z/3Z-extension of F (ζm) and the derived group of ρE,m(GF ) is
smaller than SL2(m), which only happens if 3 | m by Remark 4.73.

Remark 4.76. Under the hypotheses of the previous theorem, for (m,n) = (pk, pk+1), we
know by the previous theorem that p = 2 or 3. Since SL2(p

k) contains the matrix T , this
results was already known by Theorem 4.67 and even more: the assumption ζpk+1 /∈ F is
unnecessary and k = 1.
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By [Zyw24a, Lemma 1.7], we have SL2(Ẑ) ∩ ρE(GF ) = D(ρE(GF )). In particular,
if ρE(GF ) contains SL2(Ẑ), then D(ρE(GF )) = SL2(Ẑ). In particular, if 8 · 9 | m and
SL2(m) ⊆ ρE,m(GF ) then SL2(Ẑ) ⊆ ρE(GF ) by Theorem 2.31 and so D(ρE,m) = SL2(m).
Hence we deduce from Theorem 4.72 the following:

Theorem 4.77. Let E/F be an elliptic curve and m be a positive integer. Suppose that
72 | m and ρE,m(GF ) contains SL2(m). Then F (E[m]) ∩ F ab = F (ζm). In particular,
if E/F has an (m,n)-coincidence, then F (ζn) ⊆ F (ζm).

We finish the section by the following lemma, which contains some additional informa-
tion about the extension F (E[3])/F .

Lemma 4.78. Let E/F be an elliptic curve with j-invariant j(E). Then we have the
inclusion F (j(E)1/3) ⊆ F (E[3]). Moreover, if SL2(3) ≤ ρE,3(GF ), then F (j(E)1/3)/F is
non trivial.

Proof. The inclusion F (j(E)1/3) ⊆ F (E[3]) follows from Example B.9. Again from Ex-
ample op.cit., if j(E)

1
3 ∈ F , then ρE,3(GF ) ≤ C+

ns(3). In particular, in this case, ρE,3(GF )
cannot contain SL2(3).

Remark 4.79. If ζ3 ∈ F , then F (j(E)
1
3 )/F is Galois and so is contained in F ab. If,

moreover, F (j(E)
1
3 )∩F (ζm) = F , then F (E[m])∩F ab = F (j(E)

1
3 , ζm). Hence, if we have

an (m,n)-coincidence, then

3 | m, and D(ρE,m(GF )) 6= SL2(m), and F (ζn) ⊆ F (j(E)
1
3 , ζm).

Remark 4.80. If ζ3 ∈ F , 3 | m and D(ρE,3v3(m)(GF )) = SL2(3
v3(m)), then F (j(E)

1
3 ) ⊆

F (ζ3v3(m)) and so we have r ≥ 1 such that

F (j(E)
1
3 ) = F (ζ3r+1) and F = F (ζ3r) 6= F (ζ3r+1).

4.7 Coincidence of division fields of two elliptic curves
Let E and E′ be elliptic curves defined over F . In all this section, we suppose that
F (E[m]) = F (E′[n]) for two integers m and n. Then ζn ∈ F (E[m]) and in the previous
sections we gave constraints to this property. Hence:

Proposition 4.81. Let p be a prime and r be the largest integer such that Q(ζpr) ⊆
F ∩ Q(µp∞). Suppose that p > q for all primes q | m and vp(n) > r. Then, vp(n) = 1
(and r = 0), unless (m, p) = (2j , 3) for some j ≥ 1, in which case r = 0 and vp(n) ≤ 2, or
vp(n) = r + 1.

Proof. This follows from Proposition 4.14 and the fact that F (ζpk) ⊆ F (E′[pk]) ⊆ F (E′[n]).

We can use Theorem 4.21 and Remark 4.22 in the same way as in Section 4.4 to
give constraints on a coincidence F (E[m]) = F (E′[n]) using again that we must have
ζn ∈ F (E[m]). For example, we give a generalization of Corollary 4.24.

Theorem 4.82. For all primes p such that p | n and p ∤ m∆F we are in one of the
following situation:

• vp(n) = 1 and E/F has bad reduction at every ideal above p,
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• vp(n) = 2, p = 2 and at each prime above p, E/F has either additive or non split
multiplicative reduction,

• vp(n) = 2, p = 3, and E/F has additive and potential good reduction at every ideal
above p,

• vp(n) = 3 or 4, p = 2 and E/F has additive and potential good reduction at every
ideal above p.

Theorem 4.83. Let p be a prime and k ≥ 1 such that F ∩ Q(ζpk) = Q. If F (E[pk]) =

F (E′[pk+1]), then p = 2.

Proof. This follows from Theorem 4.38.

Theorem 4.84. For all primes p such that vp(m) 6= vp(n), we have

p | 2 ·∆F ·N(fE) ·N(fE′).

Proof. The proof is the same as for Theorem 4.42, using Proposition 4.82 and Theorem 4.83
instead of Corollary 4.24 and Corollary 4.39.

Theorem 4.85. Suppose that m is odd, F (ζn) 6⊆ F (ζm) and ρE,m(GF ) contains SL2(m).
Then

3 | m, and D(ρE,m(GF )) 6= SL2(m), and F (ζn) ⊆ L

with L a Z/3Z-extension of F (ζm).

Proof. The proof is exactly the same as Theorem 4.75, replacing F (E[n]) by F (E′[n]).

Remark 4.86. Except in Subsection 4.5.2, the results of Section 4.5 use the relationship
between ρE,pk+1 and ρE,pk on the same elliptic curve. In particular, this method does not
apply for different elliptic curves.
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Chapter 5

Polynomials realizing mod m
images

In this chapter, we return to the inverse Galois problem (IGP), introduced in Chapter 1,
which motivated the study of entanglement treated in the previous chapters. We saw in
Problem 1.5 that the IGP can be broken down in four problems: the classical IGP, the
effective IGP, the IGP with ramification and the explicit IGP. In the context of elliptic
curve, we consider G = ρE,m(GF ) ≤ GL2(m) for a positive integer m and an elliptic
curve E/F . We notice that if E/F is non-CM, m is coprime to the adelic level ME and
Q(ζm)∩F = Q, then ρE,m is surjective. However, if m is divisible by a minimal exceptional
integer or if Q(ζm)∩F 6= Q, then the group ρE,m(GF ) is a proper subgroup of GL2(m). In
Section 1.3, we saw that we have the isomorphism Gal(F (E[m])/F ) ' ρE,m(GF ) and so a
solution for the classical IGP and the effective IGP, and also for the IGP with ramification,
see Theorem 4.21, more specifically the tame IGP, see Theorem 1.31 and 1.32.

For the explicit IGP, Reverter and Vila provide a solution when m is prime and ρE,m
is surjective:

Theorem 5.1 ([RV00, Theorem 2.1]). Let E/F be an elliptic curve, given by Weierstrass
equation E : y2 = f(x), and let p be an odd prime. Suppose that the Galois representation

ρE,p : GF → Aut(E[p]) ' GL2(p)

is surjective and let P ∈ E[p] \ {O}. Then

1. The p-division polynomial is irreducible and its Galois group over F is isomorphic
to ρE,p(GF )/{± id}.

2. The characteristic polynomial χE,p of the multiplication by x(P ) + y(P ) in F (P ) :=
F (x(P ), y(P )) is irreducible with Galois group isomorphic to ρE,p(GF ).

In this chapter, we use their idea to generalize the previous theorem to a general
setting. We give families of polynomials realizing the image of the representation ρE,m :
GF → GL2(m). We also determine a minimum for the valuations of the coefficients of the
polynomials arising in our construction.

Most of the results are valid in more general fields, but in our context we restrict our
interests to number fields. All results, including Theorem 5.1, are valid for F a field of
characteristic 0, except those of Section 5.1.5, because we need that OF is a Dedekind
domain, and in Proposition 5.41 and Remark 5.42, since we refer to valuation.
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This chapter, apart from a few details, corresponds to a paper of the author [Yvo23].
To be consistent with the rest of the manuscrit, we changed some notations. Also, in order
to be self-contained, we add the definition of division polynomials and Proposition 5.2 at
the begining of Section 5.1.1, a version of Cebotarev density theorem and a corollary in
Section 5.1.5, a theorem, a remark, a lemma and a corollary at the end of Section 5.1.2.
We add Remark 5.23, linked to the topic of coincidence. Moreover, we explain why a 6= 0
is a necessary condition in Section 5.1.4.3.

5.1 Polynomials realizing ρE,m(GF )

Let E/F be an elliptic curve. For a positive integer m, we define

Em := {P ∈ E(F ) of order m} ⊆ E[m].

5.1.1 Primitive division polynomials

Let E/F be an elliptic curve with Weiertrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and let bi as defined in Section 2.1. The family (ψm) of division polynomials of E is defined
as follow:

ψ1 = 1 ψ2 = 2y + a1x+ a3

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8

ψ4 = ψ2(2x
6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26))

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ

2
m+1 for m ≥ 3

ψ2m+1 = ψm+2ψ
3
m − ψm−2ψ

3
m+1 for m ≥ 2.

A paper of McKee is about methods to compute faster the coefficients of division
polynomials, see [McK94].

The m-division polynomial of an elliptic curve has roots corresponding to the first
coordinate of m-torsion points:

Proposition 5.2 ([Sil09, Exercise 3.7]). Let m ≥ 2 and E/F be an elliptic curve.

1. For m odd, respectively even, the polynomial ψm, respectively ψm

ψ2
, is univariate with

roots the elements of x(E[m]), respectively x(E[m]) \ x(E[2]), and degree m2−1
2 .

2. Let ϕk be the polynomial defined in [Sil09, Exercice 3.7]. Then we have

x(mQ) =
ϕm(x(Q))

ψ2
m(x(Q))

.

Studying the points of order m, where m is not necessary prime, naturally leads to the
following definition:

Definition 5.3. Let E/F be an elliptic curve and (ψm) the family of its division polyno-
mials. We define the primitive division polynomial (ψ̃m) recursively by

ψm =
∏
n|m

ψ̃n.
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Remark 5.4. Clearly ψ1 = ψ̃1 = 1 and, for p prime and k ≥ 1, we have ψ̃pk =
ψ
pk

ψ
pk−1

. In

particular, ψ̃p = ψp for p prime.

Proposition 5.5. If m 6= 2, the polynomial ψ̃m is in F [X] and its roots are the elements
of x(Em). Moreover, if m is a power of a prime p then the leading coefficient of ψ̃m is p.
Otherwise, the polynomial ψ̃m is monic.

Proof. For m odd, respectively even, the polynomial ψm, respectively ψm

ψ2
, is univariate

with roots the elements of x(E[m]), respectively x(E[m]) \ x(E[2]), see Proposition 5.2.
Then, by induction, for m ≥ 3, the polynomial ψ̃m is univariate with roots the elements
of x(Em). Now, the absolute Galois group GF acts on the m-torsion points, therefore on
the points of order m. Indeed, let P be a point of order m and σ in GF . Suppose that
σ(P ) has order m < n. Then, the point P = σ−1(σ(P )) belongs to E[m], which is a
contradiction. Therefore, the factorisation

ψm =
∏
m|n

ψ̃m

is defined over F . For a polynomial f , let c(f) be its leading coefficient. We have

c(ψ2
m) =

∏
m|n

c(ψ̃2
m).

So, using that c(ψ2
m) = m2 for all m and Remark 5.4, we conclude, by induction that

c(ψ̃pk) = p for p prime and k a positive integer, and so that c(ψ̃m) = 1 if m is divisible by
at least two different primes.

Remark 5.6. Since we know the degree of ψ2
m for all m, we can compute the degree of

ψ̃m, as a polynomial in x, by induction. For example, if m is the product of two distinct
primes p and q, then ψ̃m has degree (m2 − p2 − q2 + 1)/2.

The polynomials ψm and ψ2ψm are in F [x] when m is odd and even respectively, and
ψ2 is not. In particular, F (ψm) is well-defined when m is odd, but not when m is even.

Definition 5.7. For m an even integer, we define F (ψm) := F (ψ2ψm).

Lemma 5.8. For m a positive integer, we have

F (ψm) = F (x(E[m])) = F (x(Em)) = F (ψ̃m).

Proof. The last equality is given by Proposition 5.5.
By Proposition 5.5 and the factorization of ψm, the roots of ψm, for m is odd, are the

elements of x(E[m]). The same is true for ψ2ψm for m even, noting that x(E[2]) are the
roots of ψ2

2, from Propositon 5.2. Then we have the first equality.
Finally, for the second equality, since Em ⊆ E[m], then ψ̃m divides ψm, and we obvi-

ously have F (ψ̃m) ⊆ F (ψm). For the reverse inclusion, let x(P ) ∈ F (x(E[m])) with P of
order m | n. Then n = km for some k, and P = kQ for some point Q of order n. From
Proposition 5.2,

x(P ) = x(kQ) =
ϕk(x(Q))

ψ2
k(x(Q))

,

where ϕk ∈ F [X]. So x(P ) ∈ F (x(Em)) = F (ψ̃m).

In fact, we do not need these formulas to prove that F (x(E[m])) = F (x(Em)): see
Lemma 5.10 for a proof using only Galois theory.
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5.1.2 Galois group of ψ̃m
For a positive integer m, let πn be the canonical projection

πn : GL2(m)→ GL2(m)/{± id},

and define ρE,m = πn◦ρE,m. If ρE,m(GF ) does not contain− id, it is canonically isomorphic
to ρE,m(GF ).

Lemma 5.9. For m ≥ 2, we have ker ρE,m = Gal(F/F (x(Em))).

Proof. If σ ∈ GF satisfies ρE,m(σ) = id, then σ(x(P )) = x(P ) for all P ∈ Em. Now, let
σ ∈ Gal(F/F (x(Em))). For P ∈ Em, we have σ(P ) ∈ {±P}. Suppose that there are two
points P,Q ∈ Em such that σ(P ) = −P and σ(Q) = Q. Then, on the one hand,

σ(P +Q) = −P +Q

and, on the other hand,
σ(P +Q) ∈ {±(P +Q)}.

So either P or Q has order 2, hence m = 2, and in this case P = −P for all P ∈ Em.
Consequently, either σ(P ) = P for all P ∈ Em, or σ(P ) = −P for all P ∈ Em.

Lemma 5.10. For m ≥ 2, we have F (x(Em)) = F (x(E[m])).

Proof. The inclusion F (x(Em)) ⊆ F (x(E[m])) is obvious. Then we have

Gal(F/F (x(E[m])) < Gal(F/F (x(Em)).

Now, take σ ∈ Gal(F/F (x(Em))). By Lemma 5.9, we have ρE,m(σ) = id, hence σ fixes
F (x(E[m])).

Theorem 5.11. Let m ≥ 2.

1. The Galois group of F (ψ̃m) over F is isomorphic to ρE,m(GF ).

2. If ρE,m(GF ) contains − id 6= id, then the extension F (E[m])/F (x(E[m])) has de-
gree 2. Otherwise, F (E[m]) = F (x(E[m])) and the Galois group of F (ψ̃m) is iso-
morphic to ρE,m(GF ).

Proof. Using Lemma 5.9, we obtain

ρE,m(GF ) ' GF / ker ρE,m ' Gal(F (x(Em))/F ) = Gal(F (ψ̃m)/F ).

The second point of the proposition is also an immediate consequence of Lemma 5.9.

When m = p is prime, Reverter and Vila give another sufficient criterion for the Galois
group of ψ̃p = ψp to be ρE,p(GF ).

Theorem 5.12. [RV00, Theorem 1.1] Let E/F be an elliptic curve and p be an odd prime
such that ρE,p(GF ) is conjugates to one of the following groups:(

1 ∗
0 χp(GF )

)
,

(
1 0
0 χp(GF )

)
,

(
χp(GF ) ∗

0 1

)
.

Then Gal(ψp) ' ρE,p(GF ).
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We note that, in the hypothesis of the previous theorem, − id is not in ρE,p(GF ).
Remark 5.13. The hypotheses of the previous theorem are satisfies if E/F is a non-
p-exceptional elliptic curve which admits a rational isogeny of degree p. An elliptic
curve E/F is said to be p-exceptional if

1. E/F has no rational points of order p,

2. There exists an elliptic curve E′/F and a F -isogeny E → E′ of degree p,

3. Every elliptic curve F -isogenous to E with isogeny of degree p has no rational point
of order p.

For the definition of a F -isogeny, F -isogenous elliptic curves and degree over an isogeny,
see [Sil09, Section III.4].

Sutherland proved the following on quadratic twists:

Lemma 5.14 ([Sut16, Lemma 5.24]). Let E/F be an elliptic curve with Weierstrass
equation y2 = f(x), m ≥ 2 be an integer, and d ∈ F ∗\F ∗2 be squarefree. Then

F (E[m]) = F (
√
d, ψm) ⇐⇒ − id /∈ ρE(d),m(GF ).

Corollary 5.15 ([Sut16, Corollary 5.25]). Let E/F be an elliptic curve with Weierstrass
equation y2 = f(x), m ≥ 2 be an integer, and d ∈ F ∗\F ∗2. Then ρE(d),m(GF ) is conjugate
to a subgroup of index 1 or 2 of 〈ρE,m(GF ),− id〉. The index 2 occurs when

1.
√
d ∈ F (E[m]) and

√
d /∈ F (ψm) if − id ∈ ρE,m(GF ),

2.
√
d ∈ F (ψm) if − id /∈ ρE,m(GF ).

5.1.3 Consequence in the case m = 3

Let E/F be an elliptic curve and let G := ρE,3(GF ). We denote by ζ3 a primitive third
root of unity.

We recall the following result. Let m be a positive integer and ζn be a primitive
m-th root of unity. By the Weil pairing, we have F (ζn) ⊆ F (E[m]). Hence, for each
σ ∈ Gal(F (E[m])/F ), there exists an α(σ) ∈ (Z/mZ)∗ such that σ(ζn) = ζ

α(σ)
n . Thanks

to the Weil pairing again, α(σ) satisfies det ◦ρE,m(σ) = α(σ). Then the image of det ◦ρE,m
is equal to the image of the natural embedding of Gal(F (ζn)/F ) in (Z/mZ)∗, which is
surjective if and only if F does not contain any m-th roots of unity. In the case m = 3, it
gives that det ◦ρE,3 has image {±1} if and only if F does not contain ζ3.

Since G is a subgroup of GL2(3), we give a classification of all subgroups of GL2(3), up
to conjugation, in Figure 5.1. Here, Cm is the cyclic group of order m, Sm is the symmetric
group of degree m, D2m is the dihedral group of order 2m, V4 is the Klein group, Q8 is
the quaternion group and D̃16 is the quasi-dihedral group of order 16. The groups 1S3
and 2S3 are both isomorphic to S3 but are not conjugate, and similarly for 1C2 and 2C2,
both isomorphic to C2. The stars ∗ in the matrices means that all choices of elements in
Z/3Z are possible, provided the matrix is invertible. The graph shows directly

• which subgroups contain − id, so, conversely, which images are isomorphic to the
Galois group of ψ3,

• and which subgroups are in SL2(3) or not, which only depends on whether F contains
Q(ζ3).
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Figure 5.1: Subgroup lattice of GL2(3)

GL2(3)

〈(
1 −1
1 1

)
,

(
1 0
0 −1

)〉
D̃16

SL2(3)

(
∗ ∗
0 ∗

)
D12

〈(
1 −1
1 1

)〉
C8

〈(
0 1
−1 0

)
,

(
1 1
1 −1

)〉
Q8

(
∗ 0
0 ∗

)
∪
(
0 ∗
∗ 0

)
D8

(
1 ∗
0 ∗

)
1S3

(
∗ ∗
0 1

)
2S3

〈(
−1 −1
0 −1

)〉
C6

〈(
0 1
−1 0

)〉
C4

(
∗ 0
0 ∗

)
V4

〈− id〉
1C2

(
1 0
0 ∗

)
2C2

〈(
1 1
0 1

)〉
C3

{id}

.

Remark 5.16. Following the classical description of subgroups of GL2(m) given by Serre

in [Ser72, Section 2] or Sutherland in [Sut16],
(
∗ 0
0 ∗

)
is Cs(3), the split Cartan subgroup;(

∗ 0
0 ∗

)
∪
(
0 ∗
∗ 0

)
is Ns(3), the normalizer of Cs(3);

〈(
1 −1
1 1

)〉
is Cns(3), the non split

Cartan subgroup;
〈(

1 −1
1 1

)
,

(
1 0
0 −1

)〉
isNns(3), the normalizer of Cns(3); and

(
∗ ∗
0 ∗

)
is B(3), the full Borel subgroup.

The next two propositions give all possibilities for G, the image of the mod 3 repre-
sentation, depending on the factorization of ψ3.

Theorem 5.17. If F ∩Q(ζ3) = Q, then, using the classification above,

1. If ψ3 is irreducible, then

(a) G = GL2(3) if F (ψ3)/F is generated by exactly three roots of ψ3;
(b) G ' D̃16 if F (ψ3)/F is generated by exactly two roots of ψ3; or
(c) G ' C8 if F (ψ3)/F is cyclic.

2. If ψ3 can be factorized in two irreducible polynomials of degree 2, then G ' D8.

3. If ψ3 has a unique root over F then

(a) G ' D12 if F (E[3])/F (x(E3)) has degree 2; or
(b) G ' 1S3 or 2S3 if F (E[3]) = F (x(E3)).
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4. If ψ3 has exactly two roots over F , then

(a) G ' V4 if F (E[3])/F (x(E[3])) has degree 2; or
(b) G ' 2C2 if F (E[3]) = F (x(E[3])).

Theorem 5.18. If F ∩Q(ζ3) 6= Q, then, using the classification above,

1. If ψ3 is irreducible, then

(a) G = SL2(3); or
(b) G ' Q8 if F (ψ3)/F is cyclic.

2. If ψ3 factors into two irreducible polynomials of degree 2 then G ' C4.

3. If ψ3 has a unique root in F , then

(a) G ' C6 if F (E[3])/F (x(E[3])) has degree 2; or
(b) G ' C3 if F (E[3]) = F (x(E[3])).

4. If ψ3 splits completely over F then

(a) G ' C2 if F (E[3])/F (x(E[3])) has degree 2; or
(b) G ' C1 if F (E[3]) = F (x(E[3])).

Proof. (of Theorems 5.17 and 5.18). We will consider the Galois action on the x-coordinates
on the 3-torsion points, that are the roots of ψ3, as permutations on these roots. Each
σ ∈ GF corresponds to an element of S4, seen as permutation representation, and is
mapped to ρE,3(σ) in G := G/{± id}. So G ' Gal(ψ3) corresponds to a subgroup of
S4 ' Sym({roots of ψ3}). Then, G ⊆ B(3) is equivalent to ψ3 having a root in F . The
action of the groups not in B(3) or Ns(3) is transitive on x(E3), so ψ3 is irreducible.
Consequently, G ⊆ Ns(3) is equivalent to ψ3 factoring into two degree 2 polynomials over
F . Moreover, when G does not contain {− id}, then Gal(ψ3) ' G, by Thereom 5.11.
Otherwise, Gal(ψ3) has index 2 in G.

If F ∩ Q(ζ3) = Q, we consider only the groups in the above graph with surjective
determinant, i.e. not contained in SL2(3). We just observed that, if ψ3 splits over F , then
G ⊆ {± id} ⊆ SL2(3). Hence, this cannot happen if F ∩Q(ζ3) = Q.

If Q(ζ3) ⊆ F , we only consider the groups in the above graph with non surjective
determinant, i.e. contained in SL2(3). If ψ3 has at least two roots in F , then there is a
basis of E[3] such that G ⊆ Cs(3). Since Q(ζ3) ⊆ F , the group G has determinant 1, so
G ⊆ {± id}, hence ψ3 splits over F .

The different items of each proposition are immediate deductions from these observa-
tions.

Corollary 5.19. If ψ3 is irreducible or if ψ3 factors into two irreducible polynomials of
degree 2, then − id belongs to the image.

5.1.4 Polynomials generating the image of ρE,m
If m divides n, the coordinates of points of order m on an elliptic curve E/F are obtained
by adding n/m times a point of order n. The addition of points is given by rational
functions over F , then we have

F (E[m]) = F (Em)

for all positive integers m.
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5.1.4.1 General settings

Let E/F be an elliptic curve defined by a Weierstrass equation wE(x, y) = 0, so we have
F (E) = F (x, y). Let u be a polynomial of degree 1 in x and y such that

F [u, u∗] = F [x, y], (∗)

with u∗ := [−1]∗u = u ◦ [−1]. In particular, we have u 6= u∗. This will be our recurring
hypothesis on u.

Let m be a positive integer. Let

A =
(
F [X,Y ]/(ψ̃m(X,Y ), wE(X,Y )

)
'


F [X]

(ψ̃m)
⊕ F [X]

(ψ̃m)
y if m 6= 2

F [X]
(ψ2

2(X))
if m = 2.

The dimension of A over F is finite, and equal to 2 deg(ψ̃m) for m 6= 2 and to 3 for
m = 2, that is, in all cases, equal to cardinality |Em|. We denote by χu,m the character-
istic polynomial of the multiplication by the polynomial u on the ring A. It is a monic
polynomial of degree |Em| with coefficients in F . We denote by g1, . . . , gs ∈ F [X] the
irreducible and monic factors of ψ̃m, if m 6= 2, or of ψ2

2 if m = 2. The polynomials gi are
coprime because the roots of ψ2

2 and of ψ̃m for m 6= 2 all have multiplicity one. We set
Ai = F [X,Y ]/(gi, wE) and denote by χi the characteristic polynomial of the class of u in
Ai. From the Chinese remainder theorem, we have

A ' A1 × · · · × As.

Lemma 5.20. The roots of χi are u(P ) where P ∈ Em and gi(x(P )) = 0.

Proof. Let S = {P ∈ Em | gi(x(P )) = 0}. We know that the roots of χi are in u(S).
We have to prove the reverse inclusion. Let P ∈ S. If m = 2 then u(P ) ∈ F (x(P )).
Therefore, since the elements of x(S) are conjugate, the elements of u(S) are too. Now,
suppose m ≥ 3. The polynomial wE has degree 2 over the field F [X]/(gi). If wE is
irreducible over F [X]/(gi), take P ′ ∈ S such that u(P ′) is a root of χi. The irreducibility
of gi implies that there exists σ ∈ GF sending x(P ′) to x(P ), and so u(P ′) to u(P ) or
u(−P ). The irreducibility of wE over F (x(P )) implies that there exists τ ∈ GF which
fixes F (x(P )) and sends y(P ) to y(−P ). Therefore u(P ) is conjugates to u(P ′), so it is a
root of χi.

If wE is not irreducible, then wE = (Y − α)(Y − β) with α, β ∈ F [X]/gi(X). So Ai is
the product of two extensions of F , that is

Ai ' (F [X]/gi(X))[Y ]/(Y − α)× (F [X]/gi(X))[Y ]/(Y − β).

And the result follows since, if P ∈ S, then y(P ) is α(x(P )) or β(x(P )) so u(P ) is a root
of χi.

Proposition 5.21. We have

χu,m(T ) =
∏

P∈Em

(T − u(P )).
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Proof. From the isomorphism of F -vector spaces:

A ' A1 × · · · × As,

the matrix of the multiplication by u in A is conjugated to a block matrix in the F -vector
space A1 × · · · × As. The characteristic polynomials of these two matrices are the same,
and each χi is the characteristic polynomial of the block corresponding to Ai. Therefore
χu,m is the product of characteristic polynomials χi for i = 1, . . . , s. The result follows
from Lemma 5.20.

Corollary 5.22. We have F (χu,m) ' F (E[m]) and Gal(χu,m) ' ρE,m(GF ).

Proof. By Proposition 5.21 and assumption on u, we have

F (χu,m) = F (u(Em)) = F (u(Em), u
∗(Em)) = F (x(Em), y(Em))

= F (Em) = F (E[m])

The group isomorphism follows.

Remark 5.23. Let E and E′ be elliptic curves over F and m,n positive integers such that
F (E[m]) = F (E′[n]). Then Corollary 5.22 provides two ways of constructing polynomials
f ∈ F [X] with splitting field F (E[m]) (and Galois group ρE,m(GF )): using the character-
istic polynomial χu,m for some u ∈ F (E) or the characteristic polynomial χu,n for some
u′ ∈ F (E′).

5.1.4.2 Specialization

If Ai is a field, then

• Ai ' F (P ) for P ∈ Em such that gi(x(P )) = 0.

• from Lemma 5.20, the u(P ) with P ∈ Em and gi(x(P )) = 0 are all conjugate.

Therefore, the characteristic polynomial of u(P ) in F (P ) does not depend on the choice
of P ∈ Em such that gi(x(P )) = 0 and it is equal to χi. If A is a field, then A ' F (P ) for
all P ∈ Em and the characteristic polynomial of u(P ) in F (P ) is χu,m. If − id belongs to
ρE,m(GF ) then Ai is a field for all i. If the action of GF on E[m] is transitive, then A is
a field.

Proposition 5.24. Suppose that ρE,m(GF ) contains − id. Then the splitting field of
χi over F is the extension generated by the roots of gi and their y-coordinates. The
compositum of the splitting fields of the χi is F (E[m]), and its Galois group is isomorphic
to ρE,m(GF ).

Proof. Let S = {P ∈ Em | gi(x(P )) = 0}. We have

F (χi) = F (u(S), u∗(S)) = F (x(S), y(S)).

Since K(a, b) = K(a)K(b), the compositum of the extensions generated by the χi is the
extension of F generated by the roots of ψ̃m if m ≥ 3 or of ψ2

2, if m = 2, and the
corresponding y-coordinates, in other words the coordinates of the points of order m.
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5.1.4.3 Condition on u

The function u is linear in x and y so it has the form u = ay + bx + c with a, b, c ∈ F .
What are the conditions on a, b, c in terms of E to have F (u, u∗) = F (x, y)?

Let (ai) be the coefficients of E. If a 6= 0 and 2b− a1a 6= 0 then

x =
u+ u∗ + aa3 − 2c

2b− a1a

and
y =

(b− a1a)u− bu∗ − bab− 3 + a1ac)

(2b− a1a)a
.

So we have F (u, u∗) = F (x, y). We know that the condition a 6= 0 is necessary. Indeed,
if u = bx + c, then u = u∗ by [Sil09, Group Law Alorithm 2.3.(a)] and F (u, u∗) = F (x),
whereas F (x, y)/F (x) has degree 2. What about the condition 2b − a1a 6= 0? Can we
also take (a, b) such that 2b− a1a = 0? The following example shows that this cannot be
always the case.
Example 5.25. Let E be an elliptic curve of j-invariant 0, with Weierstrass equation y2 =
x3 − B, with B ∈ F \ (K∗)3. Let u = y. In particular, with the previous notations,
a 6= 0, b = 0, a1 = 0 and, then, 2b − a1a = 0. Then F (u, u∗) = F (y). The elliptic
curve E admits an automorphism given by (x, y) 7→ (ζ3x, y). The required condition on
B makes the polynomial x3 −B irreducible over F , then ζ3x is conjugate to x over F (y),
and F (x, y)/F (y) has degree 3, and not 1. Hence F (u, u∗) 6= F (x, y).

The required condition for u is F (u, u∗) = F (x, y). Actually, we can assume a weaker
condition to obtain Gal(χu,m) = ρE,m(GF ). For example, if − id is not in ρE,m(GF ), then
we are not forced to take a 6= 0. Indeed, we can take u = x and then χu,m is a scalar
multiple of ψ2

m, and its Galois group is ρE,m(GF ).

5.1.5 Criterion to have − id in the image

The case where the image contains − id or not are clearly distinguished. So we can ask
under which conditions this happens. Before giving a criterion, here is a theorem of Serre
which will be useful. For a prime ideal p of the ring of integers OF of a number field F ,
let kp be the residue field at p.

Theorem 5.26. ([Ser89, IV-5]) Let p be a prime ideal of OF and ℓ be a prime such that ℓ
does not divide char(kp). If E has good reduction at p, then the Frobenius automorphism
above p is defined independently of the chosen prime ideal above p and the characteristic
polynomial of ρE,ℓ(Frobp) is

X2 − ap(E)X +N(p) (mod ℓ)

where ap(E) = N(p) + 1− |Ep(kp)| with Ep the reduction of E modulo p.

We also give the weak version of the Cebotarov density theorem:

Theorem 5.27 ([DS05, Theorem 9.1.2]). Let K/F be a Galois extension. Let σ ∈
Gal(K/F ). Then there are infinitely many prime ideals p of OF such that σ is conju-
gate to Frobp.

Corollary 5.28. Let σ ∈ GF . Then there exists infinitely many primes p such that σ is
conjugate to Frobp for some ideal p of OF above p.
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Proof. Let L/F be a finite Galois extension. From Theorem 5.27, there are infinitely many
prime ideals b of OL such that σ|L = Frobb. Since L/F is finite, there are only finitely
many prime of OL above p, and so infinitely many prime integers p such that σ|L = Frobb
for some prime b above p. The group GF being the inverse limit of the Galois groups
Gal(L/F ) with L/F finite, the results follows.

We obtain the following proposition, with the same notations:

Proposition 5.29. Let ℓ be an odd prime. Let E/F be an elliptic curve. The image
ρE,ℓ(GF ) contains − id if and only if there exists a prime ideal p of good reduction for E
such that N(p) ≡ 1 (mod ℓ) and ap(E) ≡ −2 (mod ℓ).

Proof. Suppose that we have σ ∈ GF such that ρE,ℓ(σ) = − id. Since there is only a
finite number of primes of bad reduction, Cebotarev’s density theorem tell that there exist
(infinitely many) prime ideals p of good reduction such that σ = Frobq for a prime ideal
q of OF above p. Hence, the image of ρE,ℓ contains − id if and only if there exists a
prime p of good reduction such that ρE,ℓ(Frobq) = − id. Since being conjugate to − id
implies being equal to − id, this equality is equivalent to the equality of the corresponding
characteristic polynomials:

X2 − ap(E)X +N(p) ≡ X2 + 2X + 1 (mod ℓ).

The result follows.

Remark 5.30. The proposition gives us a necessary and sufficient condition for ρE,ℓ(GF ) to
contain − id. In particular, it gives a criterion to know whether the image contains − id,
as required. In the other direction, if we know the image of the representation, it gives us
a criterion on the cardinality of Ep(kp) for a certain p.

Remark 5.31. If F is a number field, we also know that ρE,ℓ(GF ) is surjective for almost all
primes ℓ, and so almost always contains − id. In the introduction, we gave some references
about the non surjective cases.

Remark 5.32. For a real x and an integer h, Serre ([Ser81a, Theorem 1.20]) gives an
estimation of the number of primes p ≤ x such that E/Q has good reduction at p and
ap(E) = h. This estimation is

O

((
log(x)

loglog(x)2logloglog(x)

)1/4 ∫ x

2

dt

log(t)

)
,

which does not depend on h. This theorem is valid also on a number field, by [Ser81a, 8.2,
Remarques 2].

Remark 5.33. Let q := N(p). Since we must have q ≡ 1 (mod ℓ), then q is necessary bigger
than ℓ. If ℓ > 2, then q ≥ 2ℓ+ 1. The Hasse-Weil bound

−2√q + q + 1 ≤ |Ep(kp)| ≤ 2
√
q + q + 1.

imposes additional conditions on p.



102 CHAPTER 5. POLYNOMIALS REALIZING MOD M IMAGES

5.1.6 Transitive case

Theorem 5.34. Let E/F be an elliptic curve and let m ≥ 2. Suppose that the Galois
action on Em is transitive. Then

1. The polynomial ψ̃m, if m 6= 2, and ψ2
2, if m = 2, is irreducible and its Galois group

is isomorphic to ρE,m(GF ).

2. The characteristic polynomial of the multiplication by u(P ) in F (P ) is irreducible
and its Galois group is isomorphic to ρE,m(GF ).

Proof. Let P,Q ∈ Em. Since the action is transitive, then F [X,Y ]/(wE , ψ̃m) is a field,
from Subsection 5.1.4.2. In particular, ψ̃m, if m 6= 2, or ψ2

2, if m = 2, is irreducible and
we know its Galois group from Theorem 5.11.

We know that Gal(χu,m) ' ρE,m(GF ), by Proposition 5.22 and Subsection 5.1.4.2.
Therefore, we only have to show that χu,m is irreducible. In other words, it suffices to
prove that its degree, |Em|, is equal to the number of conjugate elements to u(Q), for some
Q ∈ Em. We have

{σ(u(Q)), σ ∈ GF } = {u(P ), P ∈ Em}.

Let us show that the u(P ) are pairwise distinct. Suppose that u(P ) = u(P ′). Let σ ∈ GF
be such that ρE,m(σ) = − id. Then σ(u(P )) = σ(u(P ′)), in other words u(−P ) = u(−P ′)
and

u(P )± u(−P ) = u(P ′)± u(−P ′).

But, by assumption on u, we have u(P ) 6= u(−P ), unless P = −P . Then, in all cases,
x(P ) = x(P ′) and y(P ) = y(P ′), so P = P ′. Therefore, the u(P ) are pairwise distinct, so
their number is the cardinal of Em.

Remark 5.35. In particular, if ρE,m is surjective, then ψ̃m and χu,m are both irreducible
and their Galois groups are respectively GL2(m)/{± id} and GL2(m).

5.2 About the valuation of the coefficients of χu,m
Let E/F be an elliptic curve with Weierstrass equation wE(X,Y ) = 0 where

wE(X,Y ) = Y 2 + a1XY + a3Y −X3 − a2X2 − a4X − a6. (�)

Let m be a positive integer. As in the first section, let u ∈ F (E) be a function of degree
1 in x and y such that F (u, u∗) = F (x, y). We have seen in Subsection 5.1.4.3 that
u = ay + bx+ c for some a, b, c ∈ F with a 6= 0. Theorem 5.22 says that χu,m has Galois
group ρE,m(GF ). This second section gives a minimum for the valuation of the coefficients
of χu,m. As usual, the case m = 2 has to be studied separately.

5.2.1 Case m = 2

From Theorem 5.11, we have Gal(ψ2
2) ' ρE,2(GF ). We can compute ψ2

2:

ψ2
2(x) = 4x3 + (a21 + 4a2)x

2 + (4a4 + 2a1a3)x+ a23 + 4a6.

But the polynomial ψ2
2 is not normalized. We have

χx,2 =
1

4
ψ2
2 = x3 + (

a21
4

+ a2)x
2 + (a4 +

a1a3
2

)x+
a23
4

+ a6 ∈
1

22
Z[ai][x].
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If we have a short Weierstrass equation, that is a1 = a3 = a2 = 0, then we obtain
E : y2 = 1

4ψ
2
2. Then a short Weierstrass equation for E immediately gives a polynomial

realizing ρE,2(GF ). And the coefficients of ψ2
2 have the smallest valuations possible at a

prime ideal p if we take a minimal Weierstrass equation for E at p. The coefficients of
ψ2
2 have the smallest valuation possible at every prime ideal if we take a global minimal

equation for E, that is possible, for example, if F has class number 1.

5.2.2 Minimum of the valuations of the coefficients of χu,m
Proposition 5.36. Let p be a prime and k be an integer. Let E/F be an elliptic curve
given by (�). Let a, b, c ∈ F , with a 6= 0, and R := Z[a1, a2, a3, a4, a6]. Then

χay+bx+c,pk ∈
1

p3
R[a−1, b, c][X],

and, for m a non prime power integer,

χay+bx+c,m ∈ R[a−1, b, c][X].

Proof. We start by showing the result for (b, c) = (0, 0). For P ∈ E(F ), let be the
polynomial

wE(x(P ), Y ) := Y 2 + (a1x(P ) + a3)Y − (x(P )3 + a2x(P )
2 + a4x(P ) + a6.

For P ∈ E(F ), the polynomial wE(x(P ), Y ) ∈ F (x(P ))[Y ] is monic, has degree 2 and has
roots ±y(P ). If P has order m, these are also roots of χy,m. So

∏
P∈Em/⟨− id⟩

wE(x(P ), Y ) and

χy,m(Y ) are monic, both with degree equal to 2 deg ψ̃m, and the same roots by Proposi-
tion 5.21, so they are equal. The resultant ResX(ψ̃m, wE), where ψ̃m and wE are considered
as polynomials in the first variable, belongs to R[Y ]: it is a polynomial in Y with coeffi-
cients in R. Let r be the leading coefficient of ψ̃m. From [Bou81, A IV.75, Corollary 1],
we have:

ResX(ψ̃m, wE) = rdegX(wE)
∏

α roots of ψ̃m

wE(α, Y ) = r3
∏

P∈Em/⟨− id⟩

wE(x(P ), Y ).

Therefore
χy,m ∈

1

r3
R[Y ].

Now, consider the elliptic curve E′/F which is the change of variables of E given by x = x′

and y = a−1(y′ − bx′ − c). Then, we have a Weierstrass equation for E′, and χy′,n has
coefficients in 1

r3
R[a−1, b, c]. So

χay+bx+c,n = χy′,n ∈
1

r3
R[a−1, b, c][Y ].

By Proposition 5.5, we obtain the desired result.

Remark 5.37. The lower bound given in the proposition is a minimum, in the sense where
there exists elliptic curves such that this bound is reached, as we will observe in Exam-
ple 5.43.
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Remark 5.38. The proof of the previous proposition points out the fact that we can com-
pute χu,m in two ways. The first one is, by definition, to compute the characteristic
polynomial of a matrix. The second one is, in view of the above, to compute the resultant
of two polynomials. In the first case, we have to compute the determinant of a matrix of
size 2 deg ψ̃m, and in the second case the determinant of a matrix of size deg ψ̃m+3. Since
degψ3 = 4, the second matrix is always smaller, and the difference of size increases with
m. Moreover, the matrix in the calculus of the resultant is easier to obtain, because we
just have to put the coefficients of ψm and wE and some zeros in the matrix. Whereas,
to obtain the matrix of the multiplication by u, we have to choose a basis (ei) and write
each u ∗ ei in terms of the basis.

If a1 6= 0, then we can choose u = y and χy,m is equal to

Resx(ψ̃m, wE) = det



r 0 0 1 0 · · · 0

× r 0 a2
. . . . . . ...

... × r a4 − a1y
. . . . . . 0

...
... × a6 − a3y − y2

. . . . . . 1

×
...

... 0
. . . . . . a2

0 ×
...

... . . . . . . a4 − a1y
0 0 × 0 · · · 0 a6 − a3y − y2



where r and the crosses are elements of F , here corresponding respectively to the leading
term of the polynomial ψ̃m and its other coefficients.

If a1 = 0, we can choose u = x+ y and χx+y,m is equal to

Resx′(ψ̃
′
m, wE′) = det



r 0 0 1 0 · · · 0

× r 0 a2 − 1
. . . . . . ...

... × r a4 − a3 − 2y
. . . . . . 0

...
... × a6 − a3y − y2

. . . . . . 1

×
...

... 0
. . . . . . a2 − 1

0 ×
...

... . . . . . . a4 − a3 − 2y
0 0 × 0 · · · 0 a6 − a3y − y2



where E′ is an elliptic curve obtained from E setting by the change of variables (x, y) 7→
(x, x + y), and ψ̃′

m is its m-th primitive division polynomial. For comparison, here is the
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matrix of the multiplication by y,

0 0 ··· ··· 0 × a6 0 ··· 0 × × ×

0 0
. . . . . . ... × a4 a6 ··· 0 × × ×

0 0
. . . . . . ...

... a2 a4
. . . ...

...
...

...
... 0

. . . . . . ...
... 1 a2

. . . ...
...

...
...

...
... . . . . . . ...

... 0
. . . . . . ...

...
...

...
0

... . . . . . . 1 ×
... . . . . . . 1 × ×

...
1 0

. . . . . . 0 0 −a3
... . . . 0 0 0

...
0 1

. . . . . . ...
... −a1 −a3

. . . ...
...

...
...

... 0
. . . . . . ...

... 0 −a1
. . . ...

...
...

...
...

... . . . . . . 0
... 0 0

. . . . . . ...
...

...
...

... . . . . . . 1 0
...

... . . . 0 −a1 −a3
...

0 0 ··· ··· 0 1 0 0 ··· 0 0 −a1 ×


and here is the matrix of the multiplication by x+ y

0 0 ··· ··· 0 × a6 0 ··· 0 × × ×

1 0
. . . . . . ... × a4 a6 ··· 0 × × ×

0 1
. . . . . . ...

... a2 a4
. . . ...

...
...

...
... 0

. . . . . . ...
... 1 a2

. . . ...
...

...
...

...
... . . . . . . ...

... 0
. . . . . . ...

...
...

...
0

... . . . . . . 1 ×
... . . . . . . 1 × ×

...
1 0

. . . . . . 0 0 −a3
... . . . 0 0 0

...
0 1

. . . . . . ...
... 1−a1 −a3

. . . ...
...

...
...

... 0
. . . . . . ...

... 0 1−a1
. . . ...

...
...

...
...

... . . . . . . 0
... 0 0

. . . . . . ...
...

...
...

... . . . . . . 1 0
...

... . . . 0 1−a1 −a3
...

0 0 ··· ··· 0 1 0 0 ··· 0 0 1−a1 ×



.

Remark 5.39. Proposition 5.36 tells us that, if we take an equation for E with coefficients
in OF , and u = ay + bx+ c such that a = 1 and b, c ∈ {0, 1,−1}, then

χu,pk ∈
1

p3
OF [X]

if p is prime and k a positive integer, and

χu,m ∈ OF [X]

if m is not a prime power.

5.2.3 Case m = 3

Let b2 = a21+4a2, b4 = 2a4+a1a3, b6 = a23+4a6 and b8 = a21a6+4a2a6−a1a3a4+a2a23−a24.
Since a 3-torsion point (x, y) satisfies [2](x, y) = −(x, y), it satisfies

x4 − b4x2 − 2b6x− b8
4x3 + b22 + 2b4x+ b6

= x.
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Then, after simplification,

ψ3(x) = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8.

If a1 6= 0, then χy,3 has Galois group ρE,3(GF ) from Corollary 5.22 and Subsection 5.1.4.3.
We can compute explicitly χy,3 by two ways: either as a characteristic polynomial, either
as a resultant. In the first way, we compute the determinant of

−X 0 0 0 a6
−b8
3

−b8
3

(a2− b2
3
) A0

0 −X 0 0 a4 a6−b6 −b8
3

−b6(a2− b2
3
) A1

0 0 −X 0 a2 a4−b4 a6−b6−b4(a2− b2
3
) A2

0 0 0 −X 1 a2− b2
3

a4−b4− b2
3
(a2− b2

3
) A3

1 0 0 0 −X−a3 0 0
a1b8

3
0 1 0 0 −a1 −X−a3 0 a1b6
0 0 1 0 0 −a1 −X−a3 a1b4

0 0 0 1 0 0 −a1 −X+
a1b2

3
−a3


with

A0 = −
b8
3

(
−b2

3
(a2 −

b2
3
) + a4 − b4

)
,

A1 = −b6
(
−b2

3
(a2 −

b2
3
) + a4 − b4

)
− b8

3
(a2 −

b2
3
),

A2 = −b4
(
−b2

3
(a2 −

b2
3
) + a4 − b4

)
− b6(a2 −

b2
3
)− b8/3,

A3 = −
b2
3

(
−b2

3
(a2 −

b2
3
) + a4 − b4

)
− b4(a2 −

b2
3
) + a6 − b6.

By the second way, we compute the determinant

Resx(ψ3, wE) = det


3 0 0 −1 0 0 0
b2 3 0 −a2 −1 0 0
3b4 b2 3 a4−a1y −a2 −1 0
3b6 3b4 b2 a6−a3−y2 a4−a1y −a2 −1
b8 3b6 3b4 0 a6−a3−y2 a4−a1y a2
0 b8 3b6 0 0 a6−a3−y2 a4−a1y
0 0 b8 0 0 0 a6−a3−y2

 .

Both methods give the same polynomial χy,3.
Example 5.40. Let E : y2+xy = x3− 4

13 . Its Galois image modulo 3 is the Borel subgroup(
∗ ∗
0 ∗

)
and is isomorphic to the Galois group of

χy,3(x) = x8 − 1

3
x7 − 851

351
x6 +

12

13
x5 +

760

507
x4 +

3076

4563
x3 − 16

169
x2 +

576

2197
x− 6912

28561

If a1 = 0, we can take the function u = x + y for example. With a short Weierstrass
equation E : y2 = x2 +Ax+B, the matrix of the multiplication by x+ y is

0 0 0 A2/3 B A2/3 0 −A3

3
1 0 0 −4B A −3B A2/3 4BA
0 1 0 −2A 0 −A −3B 2A2 +A2/3
0 0 1 0 1 0 −A −3B
1 0 0 0 0 0 0 A2/3
0 1 0 0 1 0 0 −4B
0 0 1 0 0 1 0 −2A
0 0 0 1 0 0 1 0


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and

Resx(ψ
′
3, wE′) =



3 0 0 −1 0 0 0
0 3 0 −1 −1 0 0
6A 0 3 A− 2y −1 −1 0
12B 6A 0 B − y2 A− 2y −1 −1
−A2 12B 6A 0 B − y2 A− 2y −1
0 −A2 12B 0 0 B − y2 A− 2y
0 0 −A2 0 0 0 B − y2


.

We obtain

χx+y,3 = x8 + (4A+ 8B)x6 + (
−32
3
A2 + 8B)x5 + (

8

3
A3 +

10

3
A2 − 40AB + 18B2)x4

+(16AB − 80B2)x3 + (
16

3
A4 − 4

3
A3 +

40

3
A2B + 36AB2 + 16B2)x2

+(
−32
9
A4 +

32

3
A3B − 8

3
A2B − 16AB2 + 72B3)x

−16

27
A6 − 8

9
A5 − 8A3B2 +

1

9
A4 − 8

3
A3B − 6A2B2 − 27B4 − 16B3).

By an appropriate change of variables, we can vary the valuation at a given prime as
follows:

Proposition 5.41. Let p be a prime ideal of OF which does not contain 3, and let m be an
integer. Let E/F be an elliptic curve. We can choose u such that, for i = 0, . . . , deg(χu,3),
the coefficient of degree i of χu,3 has valuation at p greater or equal than 2m(deg(χu,3)−i).

Proof. Let π ∈ p \ p2, and let λ = πm. We have vp(λ) = m. Let the equation y2 =
x3 + Ax + B be minimal for E at p. Take u = λ3y + λ2x. Then χu,3 is equal to χx′+y′,3
where y′2 = x′3 + λ4Ax′ + λ6B. So

χu,3 = x8 + 4λ4(A+ 2λ2B)x6 + 8λ6
(
−4
3
λ2A2 +B

)
x5

+2λ8
(
4

3
λ4A3 +

5

3
A2 − 20λ2AB + 9λ4B2

)
x4 + 16λ10(AB − 5λ2B2)x3

+4λ12
(
4

3
λ4A4 − 1

3
A3 +

10

3
λ2A2B + 9λ4AB2 + 4B2

)
x2

+8λ14
(
−4
9
λ2A4 +

4

3
λ4A3B − 2λ2AB2 + 9λ4AB3 − 8

3
A2B

)
x

+λ16
(−16

27 λ
8A6 − 8

9λ
4A5 − 8λ8A4 + 1

9A
4 − 8

3λ
2A3B − 6λ4A2B2 − 27λ8B4 − 16λ2B2

)
.

The proof of the previous proposition suggests that we can obtain a polynomial with
the smallest possible valuation at a prime p taking a minimal equation at p.
Remark 5.42. Under the same notation as in the previous proposition, we can ask if a
similar result holds for m ≥ 5, with some other equation linking the coefficients and the
associated power of π. But, for that, we certainly have to compute χx+y,m, for m ≥ 5 and
we did not succeed with non-specialized coefficients for E. Nevertheless, we observe that,
for m = 2, a polynomial generating F (E[2]) is χE,2 := x3+Ax+B. If we make the change
of variables (A,B) 7→ (λ4A, λ6B) with λ = πm, we obtain χE,2 = x3 + λ4Ax+ λ6B. This
is an equation for E such that, for all i = 0, . . . , deg(χE,2), the coefficient of degree i of
χE,2 is divisible by π at least 2m(deg(χE,2)− i) times.



108 CHAPTER 5. POLYNOMIALS REALIZING MOD M IMAGES

5.3 More examples
In the previous subsection, we have computed, using Sagemath [The22], the polynomial
χx+y,3, for any E/F an elliptic curve with a short Weierstrass equation.

For m larger than 3, let us start by observing that deg ψ̃5 = 12 = deg ψ̃6. So, thanks
to Theorem 5.11, respectively Theorem 5.22, we can construct polynomials of degree 12,
respectively degree 24, with different Galois group. There are many others such cases, for
example:

deg ψ̃9 = deg ψ̃10 = 36,

deg ψ̃19 = deg ψ̃22 = 180,

deg ψ̃31 = deg ψ̃33 = 480,

deg ψ̃71 = deg ψ̃82 = 2520.

The interesting point is that, thanks to these theorems, a Sagemath program is enough
to compute such polynomials. We remark that an artefact of this method is to find
the Galois group of a polynomial of high degree, just by calculating the characteristic
polynomial of a matrix, which is easy (although sometimes long) for a computer, whereas
numerically finding the Galois group of a polynomial of high degree is not feasible with the
current technology. Thanks to Remark 5.38 it is even easier, since it suffices to compute
a resultant of two well-known polynomials.
Example 5.43. In [Dan15, Theorem 8.1], Daniels gives a curve E/Q(t) and a set S such
that the specialization Et of E at t is a Serre curve over Q if and only if t /∈ S. In particular,
from Theorem 3.24, for t /∈ S, the representation ρEt,m is surjective for all prime, so for
all product of pairwise distinct primes, as well as for 4 and 9. This curve is defined by

E : y2 + xy = x3 + t.

Thanks to computations with Sagemath, we obtain, for each integer m where ρE,m is
surjective (and for which the computation is feasible by a computer), a family of irreducible
polynomials (χu,m)t/∈S with Galois group GL2(m). For example:

χyt,3 = x8 + 1
3x

7 + (8t+ 1
27)x

6 + 3tx5 + (18t2 + 2
3 t)x

4 + (−7t2 + 1
27)x

3 − t2x2 + 9t3x− 27t4

has Galois group GL2(3) for all t /∈ S, and
χyt,4 = x12 − 1

2x
11 +

(
54t+ 1

8

)
x10 − 55

2 tx
9 +

(
891t2 + 99

8 t
)
x8 +

(
27t2 − 2t

)
x7

+
(
2916t3 − 219

4 t
2 + 1

8 t
)
x6 +

(
−1863t3 + 6t2

)
x5

+
(
−24057t4 + 1107

4 t3 + 1
8 t

2
)
x4 +

(
13851

2 t4 + 4t3
)
x3

+
(
39366t5 − 891

8 t
4 − 1

8 t
3
)
x2 − 2187

2 t5x− 19683t6 − 729
8 t

5 − 1
8 t

4

has Galois group GL2(4).
χyt,5 = x24 − x23 +

(
216t+ 3

5

)
x22 +

(
−217t− 3

25

)
x21 +

(
14742t2 + 877

5 t+
1

125

)
x20

+
(
−7695t2 − 1971

25 t
)
x19 +

(
256608t3 + 1477t2 + 506

25 t
)
x18 +

(
−234495t3 − 3459

25 t
2 − 3t

)
x17

+
(
−19899513

5 t4 + 431487
5 t3 + 1287

25 t
2 + 6

25 t
)
x16 +

(
3083670t4 − 324652

25 t3 − 448
25 t

2 − 1
125 t

)
x15

+
(
79046928

5 t5 − 4052754
5 t4 + 190t3 + 62

25 t
2
)
x14 +

(
−23737698

5 t5 + 2105946
25 t4 + 3531

25 t
3 − 3

25 t
2
)
x13

+
(
−88258572

5 t6 − 3661038
5 t5 − 15616

5 t4 − 252
25 t

3
)
x12

+
(
−36256086

5 t6 + 10623798
25 t5 + 11674

25 t4 − 1
25 t

3
)
x11

+
(
−17006112t7 + 29406402

5 t6 − 6267294
125 t5 − 11448

125 t
4
)
x10

+
(
48931938t7 − 22323438

25 t6 + 41099
25 t5 + 5t4

)
x9

+
(
798755823

25 t8 − 384172794
25 t7 + 216756

25 t6 − 1299
25 t

5 − 3
25 t

4
)
x8

+
(
−463947993

5 t8 + 26690148
25 t7 + 103356

25 t6 + 36
5 t

5
)
x7

+
(
114791256

25 t9 + 457452603
25 t8 + 1010394

25 t7 − 4106
25 t

6 − 13
25 t

5
)
x6

+
(
2157119019

25 t9 − 80326323
125 t8 − 796311

125 t7 − 1046
125 t

6 + 1
125 t

5
)
x5

+
(
−86093442

5 t10 − 320458923
25 t9 − 1712421

25 t8 + 54
25 t

7 + 6
25 t

6
)
x4

+
(
−186535791

5 t10 + 6121413
25 t9 + 13122

5 t8 + 22
5 t

7
)
x3 +

(
81310473

25 t10 + 236196
25 t9 − 324

25 t
8 − 1

25 t
7
)
x2

+
(
43046721

5 t11 + 531441
25 t10

)
x+ 387420489

125 t12 + 14348907
125 t11 − 19683

25 t10 − 729
125 t

9 − 1
125 t

8
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has Galois group GL2(5), whereas

χyt,6 = x24 − x23 + (648t+ 1)x22 − 649tx21 +
(
132678t2 + 875t

)
x20 +

(
−68607t2 − 462t

)
x19

+
(
6940080t3 + 25075t2 + 136t

)
x18 +

(
−6152031t3 − 8067t2 − 19t

)
x17

+
(
−317375253t4 + 1723113t3 + 2832t2 + t

)
x16 +

(
256565718t4 + 157736t3 − 400t2

)
x15

+
(
4311049392t5 − 57426246t4 − 117566t3 − 4t2

)
x14

+
(
−2135382426t5 + 2165940t4 + 12647t3 + 3t2

)
x13

+
(
−26822181564t6 + 246120606t5 + 413098t4 − 152t3

)
x12

+
(
10811281410t6 + 22940172t5 + 1918t4 − 33t3

)
x11

+
(
85506731136t7 − 1285601706t6 − 7285302t5 − 9201t4 + 3t3

)
x10

+
(
−30700637982t7 − 33424650t6 + 561395t5 + 1198t4

)
x9

+
(
−159947266329t8 + 3317254722t7 + 20098530t6 + 7890t5 − 49t4

)
x8

+
(
53354019195t8 + 71226216t7 − 1074060t6 − 1875t5 + t4

)
x7

+
(
185847043464t9 − 5354268075t8 − 26764506t7 + 4618t6 + 86t5

)
x6

+
(
−46476109773t9 + 172186884t8 + 1826145t7 + 2342t6 − t5

)
x5

+
(
−134047489194t10 + 2903262183t9 + 3136158t8 − 47952t7 − 89t6

)
x4

+
(
12038732973t10 − 115145550t9 − 572994t8 − 136t7 + t6

)
x3

+
(
55788550416t11 − 1076168025t10 − 2480058t9 + 8019t8 + 17t7

)
x2

+
(
1937102445t11 + 87687765t10 + 367416t9 + 405t8

)
x

−10460353203t12 − 243931419t11 − 2480058t10 − 8019t9 − 8t8

has Galois group GL2(6). As we have underlined before, the polynomials χyt,5 and χyt,6
both have degree 24.

The following two examples were found using the database [LMF24] and come from
[Sut16].
Example 5.44. The elliptic curve

E : y2 + xy = x3 − x2 − 9x+ 3699

is defined over Q, and has surjective Galois image over Q for all primes except for 7. We
have

G := ρE,7(GQ) =

〈(
6 0
0 5

)
,

(
6 6
0 4

)〉
.

Over F = Q(
√
−3), the Galois representation is also surjective for all primes except for 7

and we have
G′ := ρE,7(GF ) =

〈(
1 6
0 2

)
,

(
1 6
0 5

)〉
.

Hence, χx+y,7, which has degree 48, has Galois group G, which has order 84, over Q and
Galois group G′, which has order 42, over Q(

√
−3). In particular, χx+y,7 has a rational

root over Q(
√
−3). Since G′ does not contains − id, the polynomial ψ7, which has degree

24, also has Galois group G over F . It also has a root in Q(
√
−3).

Example 5.45. Let be the elliptic curve E : y2 = f(x) where

f(x) = x3 + ix2 + (2i− 2)x− 2i− 1.

It is defined over F = Q(i). The image of ρE,p is surjective for all primes p except 2 and

5. The image mod 5 is
〈(

0 3
4 0

)
,

(
3 3
2 3

)〉
. Hence, for all primes p except 2 and 5, the

polynomial χx+y,p, which has degree p2 − 1, is irreducible and has Galois group GL2(p),
which has order (p2− 1)(p− 1)p. The polynomial χx+y,5, which has degree 24, has Galois

group
〈(

0 3
4 0

)
,

(
3 3
2 3

)〉
, which has order 96. The image of ρE,2 is

〈(
1 1
1 0

)〉
, which

has order 3, and is the Galois group of f(x). We can find the image modulo 10 from the
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image modulo 2 and modulo 5. Using that the reduction modulo 5, respectively modulo
2, of ρE,10(GF ) is ρE,5(GF ), respectively ρE,2(GF ), we find that

ρE,10(GF ) =

〈(
3 3
7 8

)
,

(
0 3
9 5

)〉
.

Hence χx+y,10, which has degree 72, has Galois group
〈(

3 3
7 8

)
,

(
0 3
9 5

)〉
which has order

288.



Chapter 6

Perspective

6.1 Entanglement and modular curves
In this section, we describe ideas for a future joint work with Anni and Kohel which
expands further on topics presented in Section 3.4. For example, we aim to construct
(3, 4)-entanglement of type A4 using modular curves.

6.2 Entanglement for abelian varieties
Elliptic curves are abelian varieties of dimension 1. Many of the techniques and results
presented for elliptic curves can be generalized to abelian varieties of higher dimension.
Let F be a number field and A/F be an abelian variety of dimension g. For a positive
integer m, the group A[m](F ) of m-torsion points of A(F ) is isomorphic (Z/mZ)2g. As
for elliptic curves, the action of GF on the Tate module give rise to an adelic Galois
representations ρA : GF → GL2g(Ẑ). There is also a Weil pairing

em : A[m]×A[m]→ (Z/mZ)∗.

The Galois invariance of em gives that the image of ρA is contained in a proper subgroup
of GL2g(Ẑ): the symplectic group GSp2g(Ẑ), see [ADRAK+15, Section 2]. For all primes p
and all integers m, we have adelic, p-adic and mod m Galois representations:

ρA : GF → GSp2g(Ẑ)

ρA,p∞ : GF → GSp2g(Zp)

ρA,m : GF → GSp2g(Z/mZ)

As for elliptic curves, the failure to the surjectivity of ρA,m is due to vertical and horizontal
entanglements:

• (Vertical entanglement) The non-surjectivity of ρA,p∞ for some prime p | m,

• (Horizontal entanglement) The non-surjectivity of ρA(GF ) in
∏
p|m
ρA,p∞(GF ).

From here, we suppose that A is principally polarized. There are previous work on
the topic of entanglement of principally polarized abelian varieties, [DLRM23, Section
7]. Instead of the determinant character in case of elliptic curves, we have the similitude
character

ν : GSp2g(Z/mZ)→ (Z/mZ)∗,

111
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which does not always match with the determinant character. The similitude character
satisfies ν ◦ ρA,m = χm. In particular, we have F (ζm) ⊆ F (A[m]) for all integers m. Thus,
we define in a similar way a Weil entanglement:

Definition 6.1. Let T be a non-trivial abelian group. We say that an abelian variety
A/F has a Weil (a, b)-entanglement of type T if Gal(F (A[a]) ∩ F (ζb)/F (ζd)) ' T or
Gal(F (A[b]) ∩ F (ζa)/F (ζd)) ' T .

Theorem 6.2 ([DLRM23, Theorem 7.5]). Let p ≥ 5 be a prime number and g ≥ 1 such
that p− 1 = 2(2g + 1). There exists infinitely many principally polarized abelian varieties
A/Q of dimension g which has a Weil (2, p)-entanglement of type Z/(2g + 1)Z.

In the case of the study of horizontal coincidence, using the type of reduction of the
abelian variety, we can obtain information on the ramification of F (A[m])/F , see [ST68]
and so we can extend some results of Section 4.4.2 to abelian varieties.

Moreover, since GSp2g(Ẑ) is a subgroup of GL2g(Ẑ), Proposition 4.46 also applies in
this case. In other words:

Theorem 6.3. If F (A[pk+1] = F (A[pk]), then F (A[p]) = F (A[p2]) = · · · = F (A[pk+1]) if
p is odd and F (E[4]) = F (E[8]) = · · · = F (A[pk+1] if p = 2.

Again, coincidences correspond to subgroups of GSp2g(m) which are split liftable mod-
ulo a multiple of m.

We can also construct coincidences using Corollary 4.47 which are also valid replacing
E/F by any abelian variety A/F .

With respect to the explicit IGP for images of mod m Galois representation for abelian
varieties, it is not immediate to find an explicit general construction: division polynomials
does exist but there is no known generic formula for them.



Appendix A

Derived groups of GL2(m) and
SL2(m)

In this appendix, we give elementary and detailed proofs of well-known results about the
derived groups of GL2(m) and SL2(m), for any integer m. They are used in Section 4.6
in the case where m is odd. For a group G, we denote by D(G) its commutator subgroup,
generated by all the elements [g, h] = ghg−1h−1 with g, h ∈ G. We know that D(G)
is normal in G and is the smallest group such that G/D(G) is an abelian group: the
abelianization of G.

We recall that SL2(Z) is generated by S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
. They satisfy

S2 = (ST )3 = − id.
Let m | n be positive integers and, for i = n,m, set Xi = SL2(i))/D(SL2(i)). The

following diagram has exact rows and is commutative.

1 // D(SL2(Z)) //

��

SL2(Z) //

����

Z/12Z //

����

0

1 // D(SL2(n)) //

��

SL2(n) //

����

Xn
//

����

0

1 // D(SL2(m)) // SL2(m) // Xm
// 0

(A.1)

Proposition A.1. The quotient group SL2(Z)/D(SL2(Z)) is cyclic of order 12, generated
by the equivalence class of T . Moreover SL2(m)/D(SL2(m)) is cyclic of order m for
m = 2, 3, 4.

Proof. We will show that SL2(Z)/D(SL2(Z)) is generated by the equivalence class of T
and that its order divides 12 on the one hand, and on the other hand that m divides the
order of SL2(m)/D(SL2(m)) for m = 2, 3, 4. Then, the results follows from diagram A.1
and from the fact that SL2(2) ' S3.

Let S̄ and T̄ the classes of S and T in SL2(Z)/D(SL2(Z)) respectively. Since the group
SL2(Z)/D(SL2(Z)) is abelian, we have S̄T̄ = T̄ S̄. Hence (S̄T̄ )3 = S̄3T̄ 3 = S̄2, which gives
S̄ = T̄−3 and T̄ 12 = S̄4 = id. It follows that T̄ generated SL2(Z)/D(SL2(Z)) and has order
dividing 12.

Now, we define the commutators

A =

[(
−1 −1
0 −1

)
,

(
1 −2
1 −1

)]
=

(
3 −1
1 0

)
,
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B =

[(
−1 −1
0 −1

)
,

(
0 −1
1 0

)]
=

(
2 1
1 1

)
.

Let G = 〈A,B〉 ⊆ SL2(Z). For m = 2, 3, 4, let Gm be the image of G is SL2(m). By
computing explicitely G2, G3 and G4, we find that they have respectively order 3, 8 and
12, and they are normal subgroups of SL2(m). Then SL2(m)/Gm is an abelian group of
order m. Hence the abelianization of SL2(m) has order divisible by m.

Proposition A.2. Let m be a positive integer. The abelianization of SL2(m) is isomorphic
to Z/ gcd(m, 12)Z. In particular, if m is coprime to 6, then SL2(m) is perfect.

Proof. By Diagram (A.1) and Proposition A.1, the image of T in SL2(m) generates the
abelianization of SL2(m), whose order divides 12. Moreover, the image of T in SL2(m)
has order m. Hence the abelianization of SL2(m) has order dividing gcd(m, 12). To prove
that its order is exactly gcd(m, 12), it suffices to prove it for m = 2, 3 and 4, which is the
result of Proposition A.1.

Proposition A.3. For an odd integer m, the derived group of GL2(m) is SL2(m), and so
its abelianization is isomorphic to (Z/mZ)∗. If m is even, the derived group of GL2(m)
has index 2 in SL2(m).

Proof. For A,B ∈ GL2(m), we have det(ABA−1B−1) = 1. So [A,B] ∈ SL2(m). Therefore

D(SL2(m)) ≤ D(GL2(m)) ≤ SL2(m).

For m coprime to 6, we have proven that D(SL2(m)) = SL2(m), and so D(GL2(m)) =
SL2(m). For m = 3k, we know that D(SL2(3

k)) has index 3 in SL2(3
k), and so D(GL2(3

k))
is either SL2(3

k) or D(SL2(3
k)). For k = 1, D(SL2(3)) is explicitly know by the proof of

Proposition A.1 and[(
1 −1
1 1

)
,

(
1 1
0 −1

)]
=

(
1 1
−1 0

)
/∈ D(SL2(3)).

It follows that D(GL2(3)) = SL2(3). We obtain the diagram below:

D(SL2(3
k)) D(GL2(3

k)) SL2(3
k)

D(SL2(3)) D(GL2(3)) SL2(3)index 3

showing that D(SL2(3
k)) 6= D(GL2(3

k)) and so D(GL2(3
k)) = SL2(3

k). For m = 2k, we
use the same strategy. From Proposition A.1, we already know that D(GL2(2)) has index 2
in SL2(2). We have the following diagram:

D(SL2(2
k)) D(GL2(2

k)) SL2(2
k)

D(SL2(4)) D(GL2(4)) SL2(4)

D(SL2(2)) D(GL2(2)) SL2(2)index 2
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The group D(SL2(4)) is known by the proof of Proposition A.1, and we have[(
0 1
1 0

)
,

(
2 1
−1 1

)]
=

(
0 −1
1 1

)
∈ D(GL2(4))\D(SL2(4)).

Using that D(SL2(2
k)) has index 4 in SL2(2

k) for k ≥ 2, we obtain that D(GL2(4)) has
exactly index 2 in SL2(4) and D(GL2(2

k)) has exactly index 2 in SL2(2
k) for all k ≥ 2.

The result follows, since the Chinese remainder theorem gives

D(GL2(m)) '
∏
pk||m
p prime

D(GL2(p
k)).
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Appendix B

Modular curves

This appendix is based on [Maz06, Section 2] and [Sik19].
Let H = {τ ∈ C | Im(τ) > 0} be the upper-half plane. The group SL2(Z) acts on the

left on H by Möbius transformations: for τ ∈ H and
(
a b
c d

)
∈ SL2(Z) we have(

a b
c d

)
τ =

aτ + b

cτ + d
.

In the same way, SL2(Z) acts on P1(Q). Therefore SL2(Z) acts on H∗ := H ∪ P1(Q).
Remark B.1. The matrix − id acts trivially on H∗.

To a point τ ∈ H, we associate a lattice Λτ = Z + Zτ ⊆ C and an elliptic curve
Eτ ' C/Λτ (isomorphism of Riemann surfaces which is also a group homomorphism).
Every lattice Λ of C is homothetic to Λτ for some τ ∈ H∗ i.e. there exists α ∈ C such that
αΛ ⊆ Λτ . We have the following bijections

{
elliptic curve over C
up to isomorphism

}
←→

{
lattices in C
up to homothety

}
←→ SL2(Z)\H

≃−→
j

C

Eτ ←→ Λτ ←→ τ 7−→ j(Eτ )

For the first arrow, see [Sil09, VI, Proposition 3.6], [Sil09, VI, Corollary 5.1.1] and [Sil09,
VI, Corollary 4.1.1]. The second arrow is easy to check. The surjectivity of the last map
follows from:

Theorem B.2 ([Sil09, C, Proposition 12.11]). We set X(1) := SL2(Z)\H∗. The map

j : X(1)→ P1(C)

is a complex analytic isomorphism of compact Riemann surfaces.

For N ≥ 1, we define

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
We also define the following typical congruence subgroups:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) | b ≡ 0 mod N

}

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N, b ≡ 0 mod N

}
.
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Definition B.3. Let Γ ≤ SL2(Z). We say that Γ is a congruence subgroup of SL2(Z) if
it contains Γ(N) for some N ≥ 1. In this case, the smallest N satisfying this property is
called the level of Γ.

Definition B.4. Let G ≤ GL2(N). We associate to G the congruence subgroup

ΓG := {A ∈ SL2(Z) | A mod N ∈ G} ⊇ Γ(N).

Proposition B.5 ([DS05, Section 2.4]). Let G ≤ GL2(N). The quotient ΓG\H∗ is a
compact Riemann surface.

Definition B.6. Let G ≤ GL2(N). The modular curve associated to G is XG := ΓG\H∗.
The level of XG is the level of ΓG. A model for XG is a projective curve isomorphic to
XG. The points of SL2(Z)\Q ⊆ XG are called the cusps of XG.

We recall that Gal(Q(ζN )/Q) ' (Z/NZ)∗ and that detG ≤ (Z/NZ)∗. Let Q(ζN )
detG

be the fixed field of the image of detG in Gal(Q(ζN )/Q).

Theorem B.7 ([Maz06, Maz-9]). Let G ≤ GL2(N). The modular curve XG has a model
defined over the field Q(ζN )

det(G).

We have a natural surjective morphism of Riemann surfaces ΓG\H∗ → Γ(1)\H∗ which
induces a non-constant morphism of curves jG : XG → X(1), again defined over Q(ζN )

det(G).
For G ≤ GL2(N) with determinant (Z/NZ)∗, the modular curve XG parameterizes

isomorphism classes of elliptic curves with image of mod N Galois representation contained
in G. A level N -structure on E is an isomorphism E[N ] → (Z/NZ)2, in other words a
choice of a Z/NZ-basis for E[N ]. Let E1, E2 be elliptic curves provided with level N -
structures α1, α2. We say that the pairs (E1, α1) and (E2, α2) are G-isomorphic if there
exists an isomorphism ϕ : E1 → E2 and an element g ∈ G such that

α1 = g ◦ α2 ◦ ϕ.

This defines an equivalence relation, and we denote by [(E,α)]G the G-isomorphism class
of (E,α).

Theorem B.8 ([Maz06, Maz-9]). Let G ≤ GL2(N). There is a bijection between the
G-isomorphism classes and the points of XG. For any elliptic curve E/F such that
ρE,N (GF ) ≤ G, there exists a non-cuspidal point Q ∈ XG(F ) such that jG(Q) = j(E).
Conversally, for any non-cuspidal point Q ∈ XG(F ) such that jG(Q) 6= 0, 1728, there
exists an elliptic curve E/F such that ρE,N (GF ) ≤ G and jG(Q) = j(E).

Typical examples are the modular curves

X(N) = XΓ(N), X0(N) = XΓ0(N) and X1(N) = XΓ1(N),

which parameterize elliptic curves with mod N image contained in a subgroup of GL2(N)
conjugate to

{id},
(
∗ ∗
0 ∗

)
, and

(
1 ∗
0 1

)
respectively, see for example [Sil09, Appendix C, Theorem 13.1]). In the context of entan-
glement, we focus on other examples, which appear in the manuscript, see below.
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Example B.9. Let X+
ns(3) = XG where G = C+

ns(3) is the normalizer of the non-split
Cartan subgroup of GL2(3). From [Che99, Proposition 4.1], the modular curve X+

ns(3) has
genus 0 and the corresponding j-line is given by

X+
ns(3)→ X(1) t 7→ t3.

In other words, a non-cuspidal point t ∈ X+
ns(3)(F ) corresponds to an elliptic curve over F

with j-invariant t3 and mod 3 Galois image contained in C+
ns(3), and conversely. From the

graph 5.1, the group C+
ns(3) is conjugate to〈(

1 −1
1 1

)
,

(
1 0
0 −1

)〉
.

Let E/F be an elliptic curve. As an elliptic curve over F (E[3]), it has trivial mod 3 Galois
image, so contained in C+

ns(3). In particular, we have j(E)
1
3 ∈ F (E[3]). Conversely, if

j(E)
1
3 ∈ F , then E/F has mod 3 image contained in C+

ns(3). These facts are used in the
proof of Proposition 4.78.

Example B.10 (Section 2.4.1, [Elk06]). Let G =

〈(
0 5
7 0

)
,

(
4 1
−3 4

)〉
≤ SL2(9). The

group G is a split lifting of SL2(3), see Section 4.5.4. Elkies defines X9 = XG
1. This

modular curve has genus 0 and the corresponding j-map

X9 → X(1) x 7→ f(x)

is given in [Elk06, Section 2]. The points of X9(Q) correspond to elliptic curves E/Q
satisfying ρE,9(GQ) ∩ SL2(9) ≤ G. In particular, using (4.3), we obtain that

33 = [SL2(9) : G] | [SL2(9) : ρE,9(GQ) ∩ SL2(9)] | [GL2(9) : ρE,9(GQ)].

Elkies shows that there exist elliptic curves E/Q with j(E) = f(x) for some x ∈ P1(Q)
and ρE,3 surjective. This provides examples of elliptic curves E/Q with surjective mod 3
Galois representation but not mod 9. We observe that in the above case, i2i1 = 33 where ik
is defined in Section 4.5.3 and taking p = 3.

We say that G ≤ GL2(m) is a group of entanglement if there exist a, b coprime such
that ab = m and G does not surject on the product Ga×Gb where Ga and Gb are the images
of G in GL2(a) and GL2(b) respectively. In the manuscript are mentioned modular curves
corresponding to groups of entanglement: X ′(6) in Theorem 3.46, and XG6 = X ′(6), XG10 ,
XG15 and XG18 in Theorem 3.48. They all have genus 0 and the corresponding j-maps are
given in [JM22, Theorem 1.8].

We focus now on the case of coincidences. As seen in Section 4.1, we can reduce the
question to (m, pkm)-coincidence where m is an integer and p is a prime, as formulated in
Question 4.3. In this case, if an elliptic curve E/F has an (m, pkm)-coincidence, then the
group G := ρE,pkm(GF ) must be isomorphic to its image in GL2(m). Hence, the study of
coincidences amounts to find such groups G and then F -rational points on XG.
Remark B.11. In Example B.10, the group G ≤ GL2(9) is isomorphic to its image
in GL2(3), which is SL2(3), but does not correspond to a coincidence for some elliptic
curve over Q since it has non surjective determinant. However, over a number field F such
that ζ9 ∈ F , the points on X9(F ) could give elliptic curves over F with a (3, 9)-coincidence.

1n [Elk06], the group G is not defined in this way, but it seems to be a typo since the chosen S̃, T̃ do
not satisfy (S̃T̃ )3 = − id.
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Example B.12. If an elliptic curve over F has a (2, 3)-coincidence, then it has a (2, 6)-
coincidence and a (3, 6)-coincidence. Therefore, the image mod 6 must be a subgroup G
of GL2(6) which is isomorphic to its image in GL2(2) and in GL2(3). In case where
F ∩ Q(ζ6) = Q, the subgroup G must have surjective determinant and, from [DLR23,
Section 6, end], there are only two possibilities for G:

G1 =

〈(
−1 −1
0 1

)
,

(
2 5
1 3

)〉
and G2 =

〈(
1 1
0 −1

)
,

(
2 −1
1 3

)〉
.

In both case XG has genus 0. Thus, if an elliptic E/F with F ∩ Qcyc = Q has a (2, 3)-
coincidence, then j(E) = jG1(t) or j(E) = jG2(t) for some t ∈ F . The parametrization of
such elliptic curves is given in Theorem 4.7.
Example B.13 ([RZB15]). Let

G =

〈(
1 0
3 3

)
,

(
3 3
1 0

)〉
⊆ GL2(4).

Any subgroup of GL2(4) isomorphic to its image in GL2(2) is, up to conjugation, a sub-
group of G. The modular curve XG corresponds to X20b is the notation of Rouse and
Zureick-Brown. It has genus 0 and the j-line jG : XG → P1 maps t to

jG(t) =
−4t8 + 32t7 + 80t6 − 288t5 − 504t4 + 864t3 + 1296t2 − 864t− 1188

t4 + 4t3 + 6t2 + 4t+ 1

In particular, X20b gives a parametrization of elliptic curves with a (2, 4)-coincidence,
which is given in Theorem 4.4. Since there are no CM j-invariant in Q on X20b, then
there are no elliptic curves over Q with CM and a (2, 4)-coincidence. We can use the same
approach to see if they are CM j-invariant over more general number field F which maps
to jG(t) for some t ∈ F .



Nomenclature

[m] multiplication by m map, page 36

χcyc adelic cyclotomic character, page 31

χm mod m cyclotomic character, page 31

χp∞ p-adic cyclotomic character, page 31

∆sf(E) squarefree part of ∆E , page 51

Γ(N) principal congruence subgroup of level N , page 117

ΓG congruence subgroup associated to G, page 118

fE conductor ideal of E, page 35

G(E/F ) maximal adelic subgroup, page 45

G(E/F,m) maximal mod m subgroup, page 45

G(E/F, p∞) maximal p-adic subgroup, page 45

GF,m maximal mod m subgroup, page 39

GF,p∞ maximal p-adic subgroup, page 39

GF maximal adelic subgroup, page 39

O point at infinity, page 33

ψm m-th division polynomial, page 92

ρE,m mod m Galois representation of E, page 37

ρE,p∞ p-adic Galois representation of E, page 37

ρE adelic Galois representation of E, page 37

σ(P ) the point with coordinates (x(P ), y(P )), page 37

ψ̃m m-th primitive division polynomial, page 92

ap(E) trace of Frobenius at p, page 35

D(G) commutator subgroup of G, page 113

E[p∞] group of pk torsion points of E for k ≥ 1, page 36
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E(d) quadratic twist of E by d, page 34

Etors group of torsion points of E, page 36

fE conductor of E/Q, page 35

M∆ Serre number associated to ∆, page 59

ME adelic level of E, page 40

Nδ,ϕ(Ẑ) Cartan normalizer subgroup, page 46

Nδ,ϕ(m) Cartan normalizer subgroup, page 46

Nδ,ϕ(p
∞) Cartan normalizer subgroup, page 46

Sn symmetric group of degree n, page 24

T (E) adelic Tate module of E, page 36

Tp(E) p-adic Tate module of E, page 36

XG modular curve associated to G, page 118

∆(E) discriminant of E, page 34

F (E[m]) m-division field of E/F , page 37

j(E) j-invariant of E, page 34

vp(a) p-adic valuation of a, page 35
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G-isomorphic, 118
p-adic valuation, 35
j-invariant of an elliptic curve, 34
p-adic Galois representation of an elliptic

curve, 37
p-adic depth, 40
p-adic level, 40
p-exceptional elliptic curve, 95

Abelian coincidence, 68
Abelian entanglement, 61
Abelianisation of a group, 87, 113
Additive reduction, 35
Adelic Galois representation of an elliptic

curve, 37
Adelic index, 40
Adelic level, 40

Bad reduction, 35

CM field, 45
Coincidence, 67
Coincidence in towers, 75
Complex multiplication, 36
Conductor of an elliptic curve, 35
Conductor of an order, 45
Cyclotomic (a, b)-entanglement, 32
Cyclotomic character, 31

Discriminant entanglement, 61
Discriminant of an elliptic curve, 34
Division field, 37
Division polynomials, 92

Elliptic curve, 33
Entanglement, 50
Entanglement field, 50
Entanglement type, 60
Exceptional prime, 40
Exceptional subgroups of GL2(p), 40
Explained and non-explained entanglement,

62
Explained entanglement, 62

Fake CM entanglement, 61

Galois extension, 23
Geometric realization, 29
Global Galois representation of an elliptic

curve, 37
Global minimal equation of an elliptic curve,

35
Good reduction, 35

Horizontal CM entanglement, 53
Horizontal coincidence, 68
horizontal coincidence, 72
Horizontal entanglement, 50

Index of entanglement, 50
Inverse Galois problem (IGP), 23
Inverse system, 30

Linearly disjoint extensions, 25
Linearly independant extensions, 25

Maximal image, 39, 46
Minimal base change, 76
Minimal discriminant, 35
Minimal equation of an elliptic curve, 35
Minimal exceptional integer, 59
Mod m Galois representation of an elliptic

curve, 37
Modular curve associated to G, 118
Mutliplicative reduction, 35

Naive height of an elliptic curve, 34

Point at infinity, 33
Primitive division polynomial, 92
Profinite group, 30

Quadratic twist, 34

Realizable as a Galois group, 23
Realizable as a Galois group by a polyno-

mial, 23

Semi-direct product, 76
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Semistable elliptic curve, 35
Serre curve, 56
Serre entanglement, 51, 61
Serre number, 59
Serre’s open image theorem, 40
Serre’s uniformity bound, 42
Short Weiertrass equation, 34
Similitude character, 111
Split exact sequence, 76
Split liftable, 83
Split liftable subgroup, 83
Split lifting of a subgroup, 43
Supersingular elliptic curve, 29

Tame inverse Galois problem, 24
Tamely ramified extension, 24
Tate module of an elliptic curve, 36

Unexplained entanglement, 62

Vertical coincidence, 68, 75
Vertical collapsing, 50
Vertical entanglement, 50
Vertical tanglement, 50

Weierstrass equation, 33
Weil coincidence, 68
Weil entanglement, 61
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