Coincidences of an elliptic curve over a number field

Zoé Yvon

Aix-Marseille Université

July 4th, 2025

Zoé Yvon (Aix-Marseille Université)

July 4th, 2025 1/22

Context: Inverse Galois problem

Let F be a number field. We say that a (finite) group G is *realizable as Galois group over* F if

 $G \simeq \operatorname{Gal}(L/F)$

for some Galois extension L/F.

Inverse Galois problem

Which groups are realizable as Galois group over F?

Theorem (Dirichlet, Hilbert)

Finite abelian groups, symmetric groups, alternating groups are realizable as Galois group over \mathbb{Q} .

This talk: subgroups of $\operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z})$, over a general number field.

Torsion points of an elliptic curve

Let *m* be a positive integer. Let E/F be an elliptic curve defined over *F*.

Definition (Group of *m*-torsion points)

$$\boldsymbol{E}[\boldsymbol{m}] := \{ \boldsymbol{P} \in \boldsymbol{E}(\overline{\boldsymbol{F}}) \mid \boldsymbol{m} \boldsymbol{P} = \underbrace{\boldsymbol{P} + \cdots + \boldsymbol{P}}_{\boldsymbol{m} \text{ times}} = \boldsymbol{O} \}.$$

Proposition

$$E[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}, \quad \operatorname{Aut}(E[m]) \simeq \operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z}).$$

Definition (*m*-division field)

$$F(E[m]) := F(\{x, y \mid (x, y) \in E[m]\})$$

Galois representations of elliptic curves

For $(x_0, y_0) \in E[m]$ and $\sigma \in Gal(\overline{F}/F)$, we have $(\sigma(x_0), \sigma(y_0)) \in E[m]$. Hence $Gal(\overline{F}/F) \oplus E[m]$.

Definition (Galois representations associated to E/F) $\rho_{E,m} : \operatorname{Gal}(\overline{F}/F) \to \operatorname{Aut}(E[m]) \simeq \operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z}) \pmod{m}$ $\rho_{E,p^{\infty}} : \operatorname{Gal}(\overline{F}/F) \to \operatorname{Aut}(\varprojlim E[p^k]) \simeq \operatorname{GL}_2(\mathbb{Z}_p) \pmod{p\text{-adic, } p \text{ prime}}$ $\rho_E : \operatorname{Gal}(\overline{F}/F) \to \operatorname{Aut}(\varprojlim E[m]) \simeq \operatorname{GL}_2(\hat{\mathbb{Z}}) \pmod{p\text{-adic, } p \text{ prime}}$

$$\operatorname{Gal}(\overline{F}/F)/\operatorname{ker}(\rho_{E,m}) = \operatorname{Gal}(\overline{F}/F)/\operatorname{Gal}(\overline{F}/F(E[m]))$$

$$\operatorname{I2} \qquad \qquad \operatorname{I2} \qquad \qquad \operatorname{I2} \qquad \qquad \operatorname{I2} \qquad \qquad \operatorname{Gal}(F(E[m])/F)$$

Zoé Yvon (Aix-Marseille Université)

Cyclotomic character

Let (ζ_m) be a compatible system of *m*-th roots of unity *i.e.* $\zeta_{km}^k = \zeta_m$. For any $\sigma \in \text{Gal}(\overline{F}/F)$, there is a unique $\chi_m(\sigma) \in (\mathbb{Z}/m\mathbb{Z})^*$ such that

$$\sigma(\zeta_m) = \zeta_m^{\chi_m(\sigma)}.$$

Definition (cyclotomic character mod *m*)

 $\chi_m : \operatorname{Gal}(\overline{F}/F) \to (\mathbb{Z}/m\mathbb{Z})^* \quad \sigma \mapsto \chi_m(\sigma).$

$$\operatorname{Gal}(\overline{F}/F)/\operatorname{ker}(\chi_m) = \operatorname{Gal}(\overline{F}/F)/\operatorname{Gal}(\overline{F}/F(\zeta_m))$$

$$\downarrow \wr \qquad \qquad \downarrow \wr$$

$$\operatorname{Im}(\chi_m) \simeq \operatorname{Gal}(F(\zeta_m)/F)$$

Weil pairing

Proposition

 $\det \circ \rho_{E,m} = \chi_m$

Corollary

$$\operatorname{Im}(\det \circ \rho_{E,m}) \simeq \operatorname{Gal}(F(\zeta_m)/F)$$
 and $F(\zeta_m) \subseteq F(E[m])$

Definition

We say that $\operatorname{Im}(\rho_{E,m})$ is maximal if it is equal to the largest subgroup G of $\operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z})$ such that $\det(G) = \operatorname{Im}(\chi_m)$.

Some results

Theorem (Serre's open image theorem, 1972)

If E/F does not have complex multiplication (CM), then it has maximal p-adic images for almost all prime p.

Theorem (Jones and Zywina, 2010)

Almost all* elliptic curves over F have maximal p-adic images for any p.

Theorem (Jones and Zywina, 2010)

For almost all elliptic curves E/\mathbb{Q} , $\operatorname{Im}(\rho_E)$ has index 2 in $\operatorname{GL}_2(\hat{\mathbb{Z}})$. If $F \neq \mathbb{Q}$, then almost all elliptic curves over F have maximal adelic image.

$\hat{\mathbb{Z}} \ \simeq \ \mathbb{Z}_2 \ \times \ \mathbb{Z}_3 \ \times \ \mathbb{Z}_5 \ \times \ \mathbb{Z}_7 \ \times \ \mathbb{Z}_{11} \ \times \ \cdots$ $\mathbb{Z}/2^4\mathbb{Z}$ $\mathbb{Z}/3^4\mathbb{Z}$. . . $\mathbb{Z}/2^3\mathbb{Z}$ $\mathbb{Z}/3^3\mathbb{Z}$ $\mathbb{Z}/5^3\mathbb{Z}$. . . $\mathbb{Z}/2^2\mathbb{Z}$ $\mathbb{Z}/3^2\mathbb{Z}$ $\mathbb{Z}/5^2\mathbb{Z}$ $\mathbb{Z}/7^2\mathbb{Z}$ ¥ \downarrow \downarrow $\mathbb{Z}/2\mathbb{Z}$ $\mathbb{Z}/3\mathbb{Z}$ $\mathbb{Z}/5\mathbb{Z}$ $\mathbb{Z}/7\mathbb{Z}$ $\mathbb{Z}/11\mathbb{Z}$. . .

 $\operatorname{GL}_2(\hat{\mathbb{Z}})$

$\mathrm{GL}_2(\hat{\mathbb{Z}}) \ \simeq \ \mathrm{GL}_2(\mathbb{Z}_2) \ \times \ \mathrm{GL}_2(\mathbb{Z}_3) \ \times \ \mathrm{GL}_2(\mathbb{Z}_5) \ \times \ \mathrm{GL}_2(\mathbb{Z}_7) \ \times \ \mathrm{GL}_2(\mathbb{Z}_{11}) \ \times \ \cdots$

Entanglement

 $\operatorname{Im}(\rho_{E}) \hookrightarrow \operatorname{Im}(\rho_{E,2^{\infty}}) \times \operatorname{Im}(\rho_{E,3^{\infty}}) \times \operatorname{Im}(\rho_{E,5^{\infty}}) \times \operatorname{Im}(\rho_{E,7^{\infty}}) \times \operatorname{Im}(\rho_{E,11^{\infty}}) \times \cdots$

Linearly disjoint extension

Two Galois extensions L/F and M/F are *linearly disjoint* if the injective morphism

$$\operatorname{Gal}(LM/F) \hookrightarrow \operatorname{Gal}(L/F) \times \operatorname{Gal}(M/F)$$

is an isomorphism, equivalently $L \cap M = F$.

The non-linear disjointness of the family $(F(E[p^{\infty}])/F)$ is the cause of the non-surjectivity of

$$\operatorname{Im}(\rho_E) \hookrightarrow \prod_{p \text{ prime}} \operatorname{Im}(\rho_{E,p^{\infty}}).$$

Entanglement and Coincidence

Definition

Let m, n be coprime integers. We say that E/F has (m, n)-entanglement if one of the following equivalent conditions hold

- $\operatorname{Im}(\rho_{E,mn}) \hookrightarrow \operatorname{Im}(\rho_{E,m}) \times \operatorname{Im}(\rho_{E,n})$ is not an isomorphism
- $\operatorname{Gal}(F(E[mn])/F) \hookrightarrow \operatorname{Gal}(F(E[m])/F) \times \operatorname{Gal}(F(E[n])/F)$ is not an isomorphism
- $F(E[m]) \cap F(E[n]) \neq F$.

Definition

Let m, n be integers. We say that E/F has an (m, n)-coincidence if F(E[m]) = F(E[n]).

Example

Example: $E: y^3 = x^3 - 36x + 84$

$$\begin{split} \mathrm{Im}(\rho_{E,6}) & \underset{\mathsf{index}\ 6}{\hookrightarrow} \mathrm{GL}_2(\mathbb{Z}/6\mathbb{Z}) \simeq \mathrm{GL}_2(\mathbb{Z}/2\mathbb{Z}) \times \mathrm{GL}_2(\mathbb{Z}/3\mathbb{Z}) \\ & \mathrm{Gal}(\mathbb{Q}(E[6])/\mathbb{Q}) \xrightarrow{\hookrightarrow}_{\mathsf{index}\ 6} \mathrm{Gal}(\mathbb{Q}(E[2])/\mathbb{Q}) \times \mathrm{Gal}(\mathbb{Q}(E[3])/\mathbb{Q}) \\ & \mathrm{Thus}\ [\mathbb{Q}(E[6]):\mathbb{Q}] = [\mathbb{Q}(E[3]):\mathbb{Q}] \text{ and, since } \mathbb{Q}(E[6]) = \mathbb{Q}(E[2])\mathbb{Q}(E[3]), \\ & \text{we have} \end{split}$$

 $\mathbb{Q}(E[3]) = \mathbb{Q}(E[6]) \quad i.e. \quad \mathbb{Q}(E[2]) \cap \mathbb{Q}(E[3]) = \mathbb{Q}(E[2]) \neq \mathbb{Q}.$

Thus E/F has a (2,3)-entanglement and a (3,6)-coincidence.

Brau&Jones (2016), Daniels&Lozano-Robledo&Morrow (2021): classified (2, 3), (2, 4) and (3, 6)-coincidence.

It is expected that these are the only possible coincidences over \mathbb{Q} .

Over a general number field: aim of my thesis

If F(E[n]) = F(E[m]) then $F(\zeta_n) \subseteq F(E[m])$.

- They do not require any assumption on the ground field,
- **2** There is no distinction between CM and non-CM case.

Maximal image

If $F(\zeta_n) \subseteq F(E[m])$ then $F(\zeta_n) \subseteq F(E[m]) \cap F^{ab}$. We have

 $\operatorname{Gal}(F(\zeta_m)/F) \simeq \det(\operatorname{Im}(\rho_{E,m})) \simeq \operatorname{Im}(\rho_{E,m})/(\operatorname{SL}_2(\mathbb{Z}/m\mathbb{Z}) \cap \operatorname{Im}(\rho_{E,m}))$

and

$$\operatorname{Gal}(F(E[m]) \cap F^{\operatorname{ab}}/F) \simeq \operatorname{Im}(\rho_{E,m})/D(\operatorname{Im}(\rho_{E,m})).$$

 \rightarrow study of the **derived group** $D(\text{Im}(\rho_{E,m}))$.

Theorem (Y., 2025)

Suppose that 72 | m and $SL_2(\mathbb{Z}/m\mathbb{Z}) \leq Im(\rho_{E,m})$. Then

 $F(E[m]) \cap F^{\mathrm{ab}} = F(\zeta_m).$

In particular, if E/F has an (m, n)-coincidence, then $F(\zeta_n) \subseteq F(\zeta_m)$.

Prime divisors

Let \mathfrak{f}_E be the conductor ideal of E, and $N(\mathfrak{f}_E)$ be its norm.

Theorem (Y., 2024) If $F(\zeta_n) \subseteq F(E[m])$ then, for all primes p such that $v_p(m) < v_p(n)$: $p \mid 2 \cdot \Delta_F \cdot N(\mathfrak{f}_E).$

If $p \mid m, n$: other part of my thesis.

If $p \mid n$ and $p \nmid m$, ramification considerations: we must have, for $\mathfrak{p} \mid p$,

 $e_{\mathfrak{p}}(F(\zeta_{p^{v_{\mathcal{P}}(n)}})/F) \mid e_{\mathfrak{p}}(F(E[m])/F).$

Ramification tables

Sufficient condition on E/F	$t = e_{\mathfrak{p}}(F(E[m])/F)$
good red. at p	t = 1
mult. red. at p with p odd	
split mult. red. at \mathfrak{p} with $p = 2$	$v_p(t) = 0$
add. red. at $\mathfrak{p}, p > 3$	
add., no pot. good red. at \mathfrak{p} with $p = 3$	
(non split) mult. red. at \mathfrak{p} with $p = 2$	$v_{ ho}(t) \leq 1$
add., pot. good red. at \mathfrak{p} with $p = 3$	
add. red. at \mathfrak{p} with $p = 2$	$v_p(t) \leq 3$

$s = e_{\mathfrak{p}}(F(\zeta_{p^k})/F)$	Necessary condition on $e_{p}(F/\mathbb{Q})$
s = 1	$\varphi(p^k) \mid e_\mathfrak{p}(F/\mathbb{Q})$
$v_p(s) = 0$	$v_{ ho}(e_{\mathfrak{p}}(F/\mathbb{Q}))\geq k-1$
$v_p(s) \leq 1$	$v_{ ho}(e_{\mathfrak{p}}(F/\mathbb{Q}))\geq k-2$
$v_p(s) \leq 3$	$v_{ ho}(e_{\mathfrak{p}}(F/\mathbb{Q}))\geq k-4$

Theorem (Campagna-Stevenhagen, 2022)

Suppose E/F is non-CM and S is the set of primes p dividing $2 \cdot 3 \cdot 5 \cdot \Delta_F \cdot N(\mathfrak{f}_E)$, then $(F(E[p^{\infty}]))_{p \notin S}$ is linearly disjoint over F.

Corollary

Suppose E/F is non-CM and has an (m, n)-coincidence. If $p \mid m$ and $p \nmid n$ then $p \mid 2 \cdot 3 \cdot 5 \cdot \Delta_F \cdot N(\mathfrak{f}_E)$.

Theorem (Y., 2024)

If F(E[m]) = F(E[n]) then, for all primes p such that $v_p(m) \neq v_p(n)$:

$$p \mid 2 \cdot \Delta_F \cdot \mathrm{N}(\mathfrak{f}_E).$$

Theorem (Campagna-Stevenhagen, 2022)

Suppose E/F is non-CM and S is the set of primes p dividing $2 \cdot 3 \cdot 5 \cdot \Delta_F \cdot N(\mathfrak{f}_E)$, then $(F(E[p^{\infty}]))_{p \notin S}$ is linearly disjoint over F.

Corollary

Suppose E/F is non-CM and has an (m, n)-coincidence. If $p \mid m$ and $p \nmid n$ then $p \mid 2 \cdot 3 \cdot 5 \cdot \Delta_F \cdot N(\mathfrak{f}_E)$.

Theorem (Y., 2024)

If F(E[m]) = F(E'[n]) then, for all primes p such that $v_p(m) \neq v_p(n)$:

 $p \mid 2 \cdot \Delta_F \cdot \mathrm{N}(\mathfrak{f}_E) \cdot \mathrm{N}(\mathfrak{f}_{E'}).$

Generalisations to abelian varieties

We can state analogous results replacing E/F by a principally polarized abelian variety A/F: there are relations between the ramification of F(A[m])/F and the reduction type of A at $p \nmid m$, and we also have $F(\zeta_m) \subseteq F(A[m])$.

The end

Thank you everyone !

Merci à tous !