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Data from cellular biology

From spatial data...
Proteins inside a living cell, acquired by fluorescence microscopy.
These proteins are involved in the exocytosis process.

Langerin proteins Rab11 proteins
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1 Birth-death-move point processes



Heuristic

The state space of the birth-death-move process (Xt)t≥0 is

E =
+∞⋃
n=0

En

for disjoint spaces En and E0 = {∅}.

Main example: En = {point configurations in S ⊂ Rd with cardinality n}

Starting from X0 ∈ En for some n :

Move step: (Xt)t≥0 moves according to a continuous Markov process in En

up to a random jump time T1

Jump (birth or death): at t = T1, there is a birth (then XT1 ∈ En+1) or a
death (then XT1 ∈ En−1)

Move step: (Xt)t≥T1 moves according to a continuous Markov process in
the new space (En+1 or En−1) up to a random jump time T2

Jump (birth or death): at t = T2, there is a birth or a death

and so on.



Example : spatial birth-death processes (Preston, 1975)

En : space of point configurations in [0, 1]2 with cardinality n
No move between jumps




Example : Brownian displacements

En : space of point configurations in [0, 1]2 with cardinality n
Independent Brownian motions between jumps




Example : interacting particles

En : space of point configurations in [0, 1]2 with cardinality n
Langevin diffusion (Lennard-Jones potential) between jumps




Example : growth-interaction process (Renshaw and Särkkä, 2001)

En : space of marked point configurations in [0, 1]2 × [0,∞[ with cardinality n
The move is a growing process that only applies to the marks




Ingredients to define a birth-death-move process

E =
⋃+∞

n=0 En for disjoint spaces En and E0 = {∅}.

The birth-death-move process (Xt)t≥0 on (E , E) depends on 3 ingredients:

1. β : E → R+ and δ : E → R+ : the birth and death intensity functions

−→ β and δ are assumed to be continuous on E and δ(∅) = 0.

We let α = β + δ be the total jump intensity function.
We denote by T1,T2, . . . the sequence of jump times and T0 = 0.

2. Kβ : E × E → [0, 1] and Kδ : E × E → [0, 1] : the transition kernel for a
birth and for a death

−→ For all x ∈ E , Kβ(x ,En+1) = 1x∈En and Kδ(x ,En−1) = 1x∈En .

3. A continuous Markov process (Y
(n,j)
t )t≥0 in En that drives the motion of

Xt ∈ En between two jumps Tj and Tj+1:

Xt = Y
(n,j)
t−Tj

for Tj ≤ t < Tj+1.

−→ We assume that the law of Y
(n,j)
t only depends on n : ∀j , (Y

(n,j)
t )

L
= (Y

(n)
t )
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Iterative construction

Inputs : β(x), δ(x), Kβ(x , .), Kδ(x , .) for any x ∈ E , and (Y
(n)
t )t≥0 for any n.

Recall that T0 = 0 and α(x) = β(x) + δ(x).

Starting from an initial configuration X0 ∈ En,

Generate Y
(n)
t for t ≥ 0 conditionally on Y

(n)
0 = X0.

Given (Y
(n)
t )t≥0, generate the first waiting time T1 − T0 according to

P(T1 − T0 < t) = 1− exp

(
−
∫ t

0

α(Y (n)
s )ds

)

For t ∈ [0,T1), Xt = Y
(n)
t

The jump at t = T1 is a birth with probability β(Y
(n)
T1

)/α(Y
(n)
T1

) and it is a
death otherwise.

The post-jump configuration XT1 is generated according to Kβ(Y
(n)
T1
, .) if

the jump is a birth, and according to Kδ(Y
(n)
T1
, .) if it is a death.

We start a new motion from t = T1, and so on.
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2 Some probabilistic properties



Markov property

Theorem

A spatial birth-death-move process is a time-homogeneous Markov process.

This is because:

There is a “renewal” of the process after each jump Tj

(Y
(n)
t )t≥0 is a continuous Markov process

The (conditional) waiting time before the next jump has an exponential
form

P(Tj+1 − Tj > t) = exp

(
−
∫ t

0

α(Y (n)
s )ds

)
,

leading to a kind of memoryless property.



Geometric ergodicity

Let βn = supx∈En β(x) and δn = infx∈En δ(x).

We assume :

(H1) For all n ≥ 1, δn > 0 and there exists n∗ such that βn = 0 for all n ≥ n∗.

In light of this assumption, we set E =
n∗⋃
n=0

En.

Proposition

Under (H1), (Xt)t≥0 admits a unique invariant probability measure µ∞ and
there exist a > 0 and c > 0 such that

sup
y∈E

sup
F∈E
|P(Xt ∈ F |X0 = y)− µ∞(F )| ≤ ae−ct .

For birth-death process the existence of µ∞ is due to Preston (1975) and the
rate of convergence to Møller (1989), both using coupling arguments.

The proof for general birth-death-move processes exploits the same kind of
arguments.



Martingale properties

Let Nt be the number of jumps before t, i.e. Nt = Card{j ≥ 1 : Tj ≤ t}.
Let Ft = σ(Xs , s ≤ t) be the natural filtration of the process (Xt)t≥0.

Proposition

The intensity of Nt with respect to Ft is α(Xt−).

Corollary

For any measurable bounded function g, the process (Mt)t≥0 defined by

Mt =

∫ t

0

g(Xs−)[dNs − α(Xs)ds]

is a martingale with respect to Ft and for all t ≥ 0

E(M2
t ) = E

(∫ t

0

g 2(Xs)α(Xs)ds

)
.

Same results for the number of jumps (with β instead of α) and for the number
of deaths (with δ instead of α).



More...

Same kind of probabilistic results under more general assumptions

Some connections with branching processes

The stationary distribution µ∞ can be characterised in some particular
cases (specific moves, specific jumps) as a Gibbs measure.



3 Statistical problem



For x ∈ E , we consider the estimation of the intensities α(x), β(x) and δ(x)

Two possible statistical frameworks:

1 Continous time:
We observe all the process up to time T , that is (Xs)0≤s≤T

2 Discrete time:
We observe the process at discrete times t0 < · · · < tm.

In the following, we focus on α(x) in continuous time.
The estimation of β(x) and δ(x) can be treated similarly.

Importantly: No need to specify the diffusion process between the jumps, nor
the birth and death transition kernels.
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Kernel estimator

Assume we observe (Xs)0≤s≤T (continuous-time observations).

For a given x ∈ E , the idea to estimate α(x) is

α̂(x) ≈ number of jumps when the process is in configuration x

time spent by the process in configuration x
.

Formally, let (kT )T≥0 be a family of bounded non-negative functions on E × E .
For x ∈ E and y ∈ E , kT (x , y) quantifies the proximity of x and y .

α̂(x) =

∑NT
j=1 kT (x ,X

T−
j

)

T̂ (x)
,

where

T̂ (x) =

∫ T

0

kT (x ,Xs)ds.



Examples of kernels

Typically

kT (x , y) = k

(
d(x , y)

hT

)
, x , y ∈ E ,

where k is a symmetric density function, d(., .) is a (pseudo)-distance on E and
hT > 0 is a bandwidth.

In a pure non-parametric setting :

d(., .) can be the Hausdorff distance:

d(x , y) = max{max
u∈x

min
v∈y
‖u − v‖,max

v∈y
min
u∈x
‖v − u‖}

or an optimal matching distance (for some κ > 0):
for x = {x1, . . . , xn(x)}, y = {y1, . . . , yn(y)} with n(x) ≤ n(y),

dκ(x , y) =
1

n(y)

min
π

n(x)∑
i=1

(‖xi − yπ(i)‖ ∧ κ) + κ(n(y)− n(x))

 .
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Examples of kernels

Typically

kT (x , y) = k

(
d(x , y)

hT

)
, x , y ∈ E ,

where k is a symmetric density function, d(., .) is a (pseudo)-distance on E and
hT > 0 is a bandwidth.

Or assuming structural hypothesis on α :

If we assume that n(x) = n(y)⇒ α(x) = α(y), we can choose:

d(x , y) = |n(x)− n(y)|

or even kT (x , y) = 1n(x)=n(y) in which case we recover the “standard”
estimator

α̂(x) = α̂(n(x)) =
#{configurations with n(x) points}

“Time spent in these configurations”

More generally, if f (x) = f (y)⇒ α(x) = α(y) for some feature f ∈ Rp.
We can choose: d(x , y) = ‖f (x)− f (y)‖



Consistency

We assume

(H1) For all n ≥ 1, δn > 0 and there exists n∗ such that βn∗ = 0.

(H2) α(.) and kT (., .) bounded

(H3) Setting vT (x) =
∫
E

kT (x , z)µ∞(dz),

TvT (x)→∞ and wT (x) :=
1

vT (x)

∫
E

(α(z)−α(x))kT (x , z)µ∞(dz)→ 0

Theorem

Under these assumptions,

α̂(x)− α(x) = Op

(
1

TvT (x)
+ wT (x)2

)
P−→ 0.

Remark:
1/(TvT (x)) can be seen as a variance term and wT (x) as a bias term.

[The proof exploits Markov property + Ergodicity + Martingales properties.]



(H3) is an assumption on the rate of convergence of the bandwidth.

Illustration: If kT (y , z) = 1d(y,z)<hT , then

vT (x) =

∫
E

kT (x , z)µ∞(dz) =

∫
E

1d(x,z)<hTµ∞(dz) = µ∞(B(x , hT ))

and if moreover α is Lipshitz then

|wT (x)| =
1

vT (x)

∣∣∣∣∫
E

(α(z)− α(x))kT (x , z)µ∞(dz)

∣∣∣∣
≤ Lip(α)

vT (x)

∫
E

d(x , z)1d(x,z)<hTµ∞(dz)

≤ Lip(α)

vT (x)
hT

∫
E

1d(x,z)<hTµ∞(dz)

= Lip(α)hT .

So (H3) reduces in this case to

hT → 0 and Tµ∞(B(x , hT ))→∞.

Remark :
If f (y) = f (z)⇒ α(y) = α(z) for some feature f ∈ Rp, and we choose
d(y , z) = ‖f (y)− f (z)‖ in kT , then vT (x) = O(hp

T ).
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Cross-validation to choose the bandwidth

Standard CV methods (plug-in, least-squares) rely on second order moments.
−→ They are unkown for α̂(x).

Partial likelihood cross-validation
Remember: the intensity of Nt with respect to Ft is α(Xt−).

So the log-likelihood of (Nt)0≤t≤T with respect to the unit rate Poisson
counting process on [0,T ] is

T −
∫ T

0

α(Xs)ds +

NT∑
j=1

logα(X
T−
j

).

Bandwidth selection by partial likelihood amounts to choose h as

ĥ = argmax
h

NT∑
j=1

log α̂
(−)
h (X

T−
j

)−
∫ T

0

α̂
(−)
h (Xs)ds

where α̂
(−)
h (Xs) is the estimator without using the observation Xs .

To carry out this removal, we discard all observations in [TNs ,TNs+1].
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Partial likelihood cross-validation
Remember: the intensity of Nt with respect to Ft is α(Xt−).

So the log-likelihood of (Nt)0≤t≤T with respect to the unit rate Poisson
counting process on [0,T ] is

T −
∫ T

0

α(Xs)ds +

NT∑
j=1

logα(X
T−
j

).

Bandwidth selection by partial likelihood amounts to choose h as

ĥ = argmax
h

NT∑
j=1

log α̂
(−)
h (X

T−
j

)−
∫ T

0

α̂
(−)
h (Xs)ds

where α̂
(−)
h (Xs) is the estimator without using the observation Xs .

To carry out this removal, we discard all observations in [TNs ,TNs+1].



1 Birth-death-move point processes

2 Some probabilistic properties

3 Statistical problem
Kernel estimator
Simulations

4 Application to real data from cellular biology



We start at t = 0 with ≈ 100 points.
The jump rate is

α(x) = exp

(
5

(
n(x)

100
− 1

))

100 120 140 160

0
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25

A jump is a birth with probability 1/2, otherwise it is a death.
Births and deaths occur uniformly in space.



We observe the following realisation. It contains 1530 jumps.
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Left: n(XTi ) for i = 1, . . . , 1530. This is observed

Right: α(XTi ) = α(n(XTi )) for i = 1, . . . , 1530. We would like to estimate this.



Estimation in the continuous case

First estimator:
Pure non-parametric setting using the Hausdorff distance:

α̂1(x) =
1

T̂ (x)

NT∑
j=1

k

(
d(x ,X

T−
j

)

hT

)

where d(., .) is the Hausdorff distance
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Estimation in the continuous case

Second estimator:
Pure non-parametric setting using the optimal matching distance:

α̂2(x) =
1

T̂ (x)

NT∑
j=1

k

(
dκ(x ,X

T−
j

)

hT

)

where dκ(., .) is the optimal matching distance
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Estimation in the continuous case

Third estimator:
Assuming (rightly) that α(x) only depends on n(x):

α̂3(x) = α̂3(n(x)) =
#{configurations with n(x) points}

“Time spent in these configurations”
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Estimation in the continuous case

Fourth estimator:
Assuming (rightly) that α(x) only depends on n(x):

α̂4(x) = α̂4(n(x)) =
1

T̂ (x)

NT∑
j=1

k

( |n(x)− n(X
T−
j

)|

hT

)
.
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Estimation in the continuous case

0 500 1000 1500

0
2

4
6

8
10

0 500 1000 1500

0
2

4
6

8
10
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kT (x , y) = 1n(x)=n(y) d(x , y) = |n(x)− n(y)|



Estimation in the continuous case

In practice, we do not know whether α(x) only depends on n(x) or not.
Starting from the pure non-parametric estimator, we may question this property.

Scatterplot of (n(XTi ), α̂1(XTi )) and (n(XTi ), α̂2(XTi )) for i = 1, . . . , 1530.

●

●●

●●●
●

●

●
●

●

●●
●

●

●
●

●
●

●
●●●●●

●

●
●●
●●
●

●●

●
●●

●●

●
●

●●
●●

●

●
●

●

●●

●●

●

●
●

●●●
●

●
●

●
●

●

●

●

●
●

●●●

●●
●

●
●

●●

●●●●●
●●●●

●●

●●
●

●
●

●

●

●●
●●

●●●
●

●
●

●

●

●

●

●

●●●
●

●
●

●
●●

●●
●●●●
●

●●●●●●

●●●●●●
●●●●●●

●
●

●●●●

●●
●

●●

●

●●●●
●

●●●●

●

●●

●
●

●●
●●●

●●●
●

●●●
●●

●

●
●●

●
●●●●●

●
●

●
●●●●●

●

●●

●●
●●●

●
●●

●●

●

●

●●

●
●

●●

●

●
●

●●●
●

●

●●●●●

●
●

●
●●

●

●●

●
●

●

●●

●
●●

●●

●

●●●●●●
●

●
●

●●
●

●●●●
●

●●

●
●

●
●

●●
●●●

●●●●●●●●●
●●●

●●
●●●●
●

●
●

●●
●●●

●
●

●

●●
●●●

●●●
●●

●●
●

●
●●
●

●
●

●

●●

●●●●
●

●
●

●
●

●

●
●

●
●

●
●●●

●

●

●●
●

●●
●●●

●●●

●●●
●

●●

●

●●

●●●●●●

●
●●
●●
●

●

●●●
●

●●●●
●

●
●●

●
●●

●●●

●

●
●●●●●●

●

●●●

●●●

●
●

●●●
●

●
●●

●●●●●●●
●●●

●●●
●●●●
●●

●●●●●
●●

●●●

●●

●●●
●●

●
●●●

●

●
●●●●●●●●●

●●
●

●

●
●

●

●
●

●
●

●
●

●

●●
●

●
●●●●

●
●

●
●

●●

●●

●
●●●●●

●●
●●●

●●●●●●●●
●

●●●●
●

●
●●●

●

●●●

●●
●●

●

●●●●●●
●

●

●

●●
●●●●●●

●●●●

●
●

●●

●●●

●
●●

●●

●
●●

●●●●●●●

●●
●

●

●

●●
●

●●
●●

●
●●

●
●

●

●●●

●

●●●

●●

●●

●
●

●

●●

●
●

●●●

●
●

●●

●●●●●

●
●●
●●●

●●●●
●●

●

●●●
●●●

●
●

●

●

●●

●

●●
●

●
●

●●●●●●●●

●
●

●●●●●

●●
●●
●●●●●

●●
●

●●●●●
●

●●
●

●●●●●●●
●●

●●●●●●
●

●●●
●

●●

●●●
●

●

●

●●
●●

●●●●
●

●●

●

●

●●

●

●●●

●
●

●
●●

●●

●●
●

●

●
●●●

●

●
●●●

●

●

●
●

●
●

●
●●

●

●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●●
●

●●

●●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●●

●

●●●●●●●
●

●
●●

●●●●●

●●

●●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●●
●●
●●●●●

●
●●●●●●●●●

●
●

●●●

●●●

●
●

●
●

●●

●

●

●

●
●

●

●●●
●

●●

●
●●●●●●

●●

●●●●●●●●●●

●●

●
●

●

●
●

●●●

●●●
●

●●

●●●●●
●

●
●

●●
●●●

●●
●

●●
●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●●●

●
●●●

●
●

●

●●

●

●●●

●

●

●●
●

●

●●●

●●
●

●

●●
●

●
●

●

●

●●
●●●●

●●●●●

●●

●
●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●
●●
●●
●●●

●

●●

●

●

●

●
●

●●●●
●●●

●

●●
●

●●●

●
●

●

●
●

●
●●●

●

●

●

●

●
●●

●●●

●

●●

●
●●

●

●●

●

●

●

●
●

●

●●●
●

●●
●

●●●

●●

●●●●●

●

●
●

●
●

●
●

●
●

●

●●

●

●●

●

●

●●

●

●
●

●

●
●●

●

●

●●●

●●
●

●

●●

●●●
●

●
●

●

●●
●

●

●●

●
●●●

●●
●

●

●●
●

●

●●●●●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●●●

●

●

●
●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●
●●
●●

●●●

●

●

●
●

●

●

●
●

●
●

●●●

●●●●●

●

●
●

●
●

●

●●

●●
●

●●

●●●

●

●
●

●

●
●

●
●●

●

●●●

●●

●

●

●

●
●●
●

●

●

●●●
●●●●●

●

●

●

●
●

●

●
●

●●

●●

●
●

●
●

●

●
●●

●

●
●

●

●

●

●
●

●●
●

●

●●●
●

●●

●
●●

●

●

●

●

●

●●●

●●

●
●

●●
●

●
●

●
●●●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●
●●●●●

●●

●●●●●●

●

●●●
●●

●
●

●

●●●●
●●

●●●●

●●●

●
●

●●●

●●

●●●●

●

●
●●

●
●

●

●

●
●●●●●●●●●

●
●

●●
●

●●

●●
●

●●

●

●

●●●●●

●●●

80 90 100 110 120 130 140 150

0
2

4
6

8
10

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●

80 90 100 110 120 130 140 150

2
4

6
8



1 Birth-death-move point processes

2 Some probabilistic properties

3 Statistical problem
Kernel estimator
Simulations

4 Application to real data from cellular biology



Application to data from cellular biology

1200 frames observed at t0, . . . , tm.

Langerin proteins Rab11 proteins
1.26 jumps in average 0.85 jumps in average





Application to data from cellular biology

The birth intensity β(.) seems constant in both channels

For the death intensity δ(.): estimation of δ(Xti ) for i = 0, . . . ,m

using dκ

using d(x , y) = |n(x)− n(y)|
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Application to data from cellular biology

Scatterplots of (n(Xti ), δ̂(Xti ))
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Application to data from cellular biology

Cross-correlation between the two types of proteins
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Conclusion

Birth-death-move processes: particles appear, move and disappear.

Simple assumptions for their ergodic properties.

We established the consistency of the kernel estimator of their intensities

In practice, the choice of d(., .) allows to introduce structural hypothesis.

Partial-likelihood cross-validation to choose the bandwidth.

Perspectives: estimation of the transition kernels; generalisation to
multitype processes; testing procedures;...

THANK YOU!
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Idea of proof for the consistency Theorem

Remember that

α̂(x) =
1

T̂ (x)

∫ T

0

kT (x ,Xs−)dNs with T̂ (x) =

∫ T

0

kT (x ,Xs)ds

For the proof we use the decomposition

α̂(x)− α(x) =

1

T̂ (x)

∫ T

0

kT (x ,Xs−)(dNs − α(Xs)ds) +
1

T̂ (x)

∫ T

0

(α(Xs)− α(x))kT (x ,Xs−)ds

We need to control

1- MT =
∫ T

0
kT (x ,Xs−)dAs where At = Nt −

∫ t

0
α(Xs)ds

2-
∫ T

0
(α(Xs)− α(x))kT (x ,Xs)ds

3- T̂ (x) =
∫ T

0
kT (x ,Xs)ds, the time spent by (Xs)0≤s≤T “at” x .



Idea of proof for the consistency Theorem

Remember that

α̂(x) =
1

T̂ (x)

∫ T

0

kT (x ,Xs−)dNs with T̂ (x) =

∫ T

0

kT (x ,Xs)ds

For the proof we use the decomposition

α̂(x)− α(x) =

1

T̂ (x)

∫ T

0

kT (x ,Xs−)(dNs − α(Xs)ds) +
1

T̂ (x)

∫ T

0

(α(Xs)− α(x))kT (x ,Xs−)ds

We need to control

1- MT =
∫ T

0
kT (x ,Xs−)dAs where At = Nt −

∫ t

0
α(Xs)ds

2-
∫ T

0
(α(Xs)− α(x))kT (x ,Xs)ds

3- T̂ (x) =
∫ T

0
kT (x ,Xs)ds, the time spent by (Xs)0≤s≤T “at” x .



Idea of proof for the consistency Theorem

Remember that

α̂(x) =
1

T̂ (x)

∫ T

0

kT (x ,Xs−)dNs with T̂ (x) =

∫ T

0

kT (x ,Xs)ds

For the proof we use the decomposition

α̂(x)− α(x) =

1

T̂ (x)

∫ T

0

kT (x ,Xs−)(dNs − α(Xs)ds) +
1

T̂ (x)

∫ T

0

(α(Xs)− α(x))kT (x ,Xs−)ds

We need to control

1- MT =
∫ T

0
kT (x ,Xs−)dAs where At = Nt −

∫ t

0
α(Xs)ds

−→ At and MT are martingales. We deduce E(M2
t ).

2-
∫ T

0
(α(Xs)− α(x))kT (x ,Xs)ds

−→ Ergodicity + (H3)

3- T̂ (x) =
∫ T

0
kT (x ,Xs)ds, the time spent by (Xs)0≤s≤T “at” x .

−→ Ergodicity: E(T̂ (x)) ∼ TvT (x) and V(T̂ (x)) ≤ cTvT (x)



Discrete-time observations

We observe Xt0 , . . . ,Xtm at t0, . . . , tm with t0 = 0 and tm = T .

Remember that in the continuous case:

α̂(x) =

∫ T

0
kT (x ,Xs−)dNs∫ T

0
kT (x ,Xs)ds

.

A Riemann approximation at t0, . . . , tm would give :∑m−1
j=0 (Ntj+1 − Ntj )kT (x ,Xtj )∑m−1
j=0 (tj+1 − tj)kT (x ,Xtj )

.

Problem : we do not observe the exact number of jumps Ntj+1 − Ntj .

Solution : approximation by an “observed” number of jumps Dj

α̂(d)(x) =

∑m−1
j=0 DjkT (x ,Xtj )∑m−1

j=0 (tj+1 − tj)kT (x ,Xtj )

(H4): Dj = Ntj+1 − Ntj when Ntj+1 − Ntj ≤ 1, but Dj ≤ Ntj+1 − Ntj otherwise.
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Discrete-time observations

Let ∆m = maxj=1...m(tj+1 − tj).

(H5) ∆m/v 2
T (x)→ 0

(H6) There exist `T (x) ≥ 0 and a > 0 such that for any s, t satisfying
|s − t| < ∆m and for all y ∈ E ,

E
[
|kT (x ,Ys)− kT (x ,Yt)|

∣∣Y0 = y
]
≤ `T (x)|s − t|a

with limT→∞
∆a

m`T (x)

v2
T

(x)
→ 0.

Theorem

Assume (H1)-(H6), then

α̂(d)(x)− α(x) = Op

(
1

TvT (x)
+ w 2

T (x) +
∆m

v 2
T (x)

+
∆a

m`T (x)

v 2
T (x)

)
P−→ 0.

(H5)-(H6) demand that the inter-jump diffusion (Yt)t≥0 be regular enough and
∆m → 0 fast enough.



Simulation in the discrete-time case

In the discrete case, we start from the same simulation as in the continuous
case but we only observe the process at m instants t0, . . . , tm equally spaced
between t0 = 0 and tm = T .

Example with m = 100




Simulation in the discrete-time case

m = 5000 observations, i.e. 0.3 jumps in average between two observations.

In blue : non-parametric estimator based on dκ
In red : estimator based on d(x , y) = |n(x)− n(y)|
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m = 1000 observations, i.e. 1.5 jumps in average between two observations.

In blue : non-parametric estimator based on dκ
In red : estimator based on d(x , y) = |n(x)− n(y)|
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m = 100 observations, i.e. 15 jumps in average between two observations.

In blue : non-parametric estimator based on dκ
In red : estimator based on d(x , y) = |n(x)− n(y)|

0 20 40 60 80 100

0
2

4
6

8
10

●
●

●
●

●●
●●

●
● ●●
●●●

●●

●●●●●●
●●●

● ●●●● ●●● ●

●

●
●

●●

●
●

●●
●

●

●

●●

●
●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●
● ●●● ●

●

●

●

●

● ●●●

●

●
●●

●●

●

●

●

●
●

●●●
●

●

●

●

●

80 90 100 110 120 130 140 150

1
2

3
4

5
6

7
●

●

●
●

●●

●●
●

● ●●
●●●

●●

●●●●●●
●●

●
● ●●●● ●●● ●

●

●
●

●●

●
●

●●
●

●

●

●
●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●●● ●

●

●

●

●

● ●●●

●

●

●
●

●●

●

●

●

●

●
●●

●
●

●
●

●

●



m = 30 observations, i.e. 51 jumps in average between two observations.

In blue : non-parametric estimator based on dκ
In red : estimator based on d(x , y) = |n(x)− n(y)|
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