Determinantal Point Processes and applications in imaging

Agnès Desolneux

CNRS et Centre Borelli (ENS Paris-Saclay)

Marseille, FRUMAM, Journée Processus Ponctuels, 1er décembre 2022

Travail en collaboration avec **Claire Launay** (Albert Einstein College of Medicine, New-York) et **Bruno Galerne** (Université d'Orléans).

école ———
normale
supérieure ———
paris-saclay

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Determinantal Point Processes

Determinantal Point Processes (DPP) provide a family of models of random configurations that favor **diversity** or **repulsion** between points :

On continuous domains : Introduced by Macchi (1975) for modeling fermions, regain of interest in spatial statistics (Lavancier, Møller, Rubak, 2015).

Determinantal Point Processes

I went to this place two weeks ago with my aunt and my cousins. It was a lovely sunny afternoon. We had a chocolate cake and drank an apricot juice. The employees were charming and really helpful. We stayed there the whole afternoon, laughing, playing and enjoying the nice weather. Thanks gain ! I definitely recommend it !

- On discrete domains : Various applications in machine learning based on selection of diverse subsets :
 - Recommendation systems (Wilhelm et al., 2018).
 - Text summarization (Kulesza, Taskar, 2012; Dupuy, Bach, 2017).
 - Feature selection (Belhadji, Bardenet, Chainais, 2018).
 - ▶ ..
- Advantages of (discrete) DPPs (compared to Gibbs processes) :
 - Similarity between points encoded in a matrix K called kernel
 - Moments and marginal probabilities have closed form formulas
 - Exact simulation algorithm

Discrete determinantal point processes

In this talk we work on a discrete set made of *N* elements that we identify with $\mathcal{Y} = \{1, \dots, N\}$.

Definition

Let *K* be a Hermitian matrix of size $N \times N$ such that

 $0 \preceq K \preceq I.$

The random subset $Y \subset \mathcal{Y}$ defined by the inclusion probabilities

 $\forall A \subset \mathcal{Y}, \quad \mathbb{P}(A \subset Y) = \det(K_A)$

is determinantal point process of kernel K.

One writes $Y \sim DPP(K)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The diagonal coefficients K_{ii} define the inclusion probability of each element i :

h element
$$i$$
:
 $\mathbb{P}(i \in Y) = K_{ii}$.
 $K = \begin{pmatrix} K_{ii} \\ K_{ii} \end{pmatrix}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $\{\lambda_1, \ldots, \lambda_N\} \in \mathbb{R}$ be the eigenvalues of *K*.

The diagonal coefficients K_{ii} define the inclusion probability of each element i:

 $\mathbb{P}(i \in Y) = K_{ii}.$

The off-diagonal coefficients K_{ij} gives the repulsion between the points i and j:

 $\mathbb{P}(\{i,j\} \subset Y) = \mathbb{P}(i \in Y)\mathbb{P}(j \in Y) - |K_{ij}|^2.$

- A DPP is repulsive since P({i,j} ⊂ Y) is always smaller than in the case of independent point selection (Bernoulli process).
- By construction, DPPs are simple random sets.

Let $\{\lambda_1, \ldots, \lambda_N\} \in \mathbb{R}$ be the eigenvalues of *K*.

 $K = \begin{pmatrix} & & \\ & &$

(日) (日) (日) (日) (日) (日) (日)

 $K = \begin{pmatrix} & & \\ & &$

Cardinality : it satisfies
$$|Y| \sim \sum_{i \in \mathcal{V}} \mathcal{B}er(\lambda_i)$$

(sum of independent Bernoulli random variables of parameter λ_i). Hence

$$\mathbb{E}(|Y|) = \sum_{i \in \mathcal{Y}} \lambda_i = \operatorname{Tr}(K) = \sum_{i \in \mathcal{Y}} K_{ii}$$
$$\operatorname{Var}(|Y|) = \sum_{i \in \mathcal{Y}} \lambda_i (1 - \lambda_i)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Cardinality : it satisfies
$$|Y| \sim \sum_{i \in \mathcal{V}} \mathcal{B}er(\lambda_i)$$

(sum of independent Bernoulli random variables of parameter λ_i). Hence

$$\mathbb{E}(|Y|) = \sum_{i \in \mathcal{Y}} \lambda_i = \operatorname{Tr}(K) = \sum_{i \in \mathcal{Y}} K_{ii}$$
$$\operatorname{Var}(|Y|) = \sum_{i \in \mathcal{Y}} \lambda_i (1 - \lambda_i)$$

(日) (日) (日) (日) (日) (日) (日)

Two examples of DPP :

Bernoulli Point Process :

 Y_i are independent following some Bernoulli distribution with parameter p_i . This is a DPP for the diagonal kernel $K = \text{diag}(p_1, \dots, p_N)$.

Projection DPP :

$$\forall i \in \mathcal{Y}, \quad \lambda_i = 0 \text{ or } 1.$$

Notice that for projection DPP the cardinality |Y| is fixed : $|Y| = \sum_{i} \lambda_{i}$.

Cardinality : it satisfies
$$|Y| \sim \sum_{i \in \mathcal{V}} \mathcal{B}er(\lambda_i)$$

(sum of independent Bernoulli random variables of parameter λ_i). Hence

$$\mathbb{E}(|Y|) = \sum_{i \in \mathcal{Y}} \lambda_i = \operatorname{Tr}(K) = \sum_{i \in \mathcal{Y}} K_{ii}$$
$$\operatorname{Var}(|Y|) = \sum_{i \in \mathcal{Y}} \lambda_i (1 - \lambda_i)$$

Two examples of DPP :

Bernoulli Point Process :

 Y_i are independent following some Bernoulli distribution with parameter p_i . This is a DPP for the diagonal kernel $K = \text{diag}(p_1, \dots, p_N)$.

Projection DPP :

$$\forall i \in \mathcal{Y}, \quad \lambda_i = 0 \text{ or } 1.$$

Notice that for projection DPP the cardinality |Y| is fixed : $|Y| = \sum_{i} \lambda_{i}$.

Exact sampling algorithm using the spectral decomposition of *K* (Hough-Krishnapur-Peres-Virág)

Motivation

Take advantage of the repulsive nature of DPP to :

- Sample subsets of well-spread pixels in image domain and use them for texture modeling based on shot noise.
- Subsample the set of patches of an image to efficiently summarize the diversity of the patches.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Determinantal pixel processes (DPixP)

Framework for images :

Image domain : a discrete grid Ω of size $N_1 \times N_2$, then $N = N_1 N_2$ is the total number of pixels.

We consider a DPP *Y* defined on Ω , with kernel *K*, a matrix of size $N \times N$.

Hypothesis : Y is stationary (with periodic boundary conditions)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Determinantal pixel processes (DPixP)

Framework for images :

Image domain : a discrete grid Ω of size $N_1 \times N_2$, then $N = N_1 N_2$ is the total number of pixels.

We consider a DPP *Y* defined on Ω , with kernel *K*, a matrix of size $N \times N$.

Hypothesis : *Y* is **stationary** (with periodic boundary conditions)

► *K* is a block-circulant matrix with circulant blocks : There exists a function $C: \Omega \to \mathbb{C}$ s.t.

$$\forall x, y \in \Omega, \quad K_{xy} = C(x - y).$$

► *K* is diagonalized in the 2D Discrete Fourier transform and the eigenvalues of *K* are the Fourier coefficients of *C*.

Kernel function C

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

The 2D discrete Fourier transform

Let $f : \Omega \to \mathbb{C}$ be a function defined on $\Omega = \{0, \dots, N_1 - 1\} \times \{0, \dots, N_2 - 1\}$. Its discrete Fourier transform \hat{f} is the function defined on Ω by

$$\forall \xi \in \Omega, \ \widehat{f}(\xi) = \sum_{x \in \Omega} f(x) e^{-2i\pi \langle x, \xi \rangle},$$

where for $x = (x_1, x_2) \in \Omega$ and $\xi = (\xi_1, \xi_2) \in \Omega$, we denote the scalar product

$$\langle x,\xi\rangle = \frac{x_1\xi_1}{N_1} + \frac{x_2\xi_2}{N_2}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The 2D discrete Fourier transform

Let $f : \Omega \to \mathbb{C}$ be a function defined on $\Omega = \{0, \dots, N_1 - 1\} \times \{0, \dots, N_2 - 1\}$. Its discrete Fourier transform \hat{f} is the function defined on Ω by

$$\forall \xi \in \Omega, \ \widehat{f}(\xi) = \sum_{x \in \Omega} f(x) e^{-2i\pi \langle x, \xi \rangle},$$

where for $x = (x_1, x_2) \in \Omega$ and $\xi = (\xi_1, \xi_2) \in \Omega$, we denote the scalar product

$$\langle x, \xi \rangle = \frac{x_1 \xi_1}{N_1} + \frac{x_2 \xi_2}{N_2}$$

1. **Inversion :** we can recover f from \hat{f} , by the inverse discrete Fourier transform

$$\forall x \in \Omega, \ f(x) = \frac{1}{|\Omega|} \sum_{\xi \in \Omega} \widehat{f}(\xi) e^{2i\pi \langle x, \xi \rangle}.$$

2. Parseval Theorem :

$$||f||_{2}^{2} = \sum_{x \in \Omega} |f(x)|^{2} = \frac{1}{|\Omega|} \sum_{\xi \in \Omega} |\widehat{f}(\xi)|^{2} = \frac{1}{|\Omega|} ||\widehat{f}||_{2}^{2}$$

3. Convolution/Product : The (periodic) convolution being defined by

$$\forall x \in \Omega, \ f \star g(x) = \sum_{y \in \Omega} f(y)g(x-y), \text{ then } \forall \xi \in \Omega, \ \widehat{f \star g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi).$$

Determinantal pixel processes (DPixP)

Definition

Let $C: \Omega \to \mathbb{C}$ be a function defined on Ω such that

 $\forall \xi \in \Omega, \quad \widehat{C}(\xi) \text{ is real and } 0 \leqslant \widehat{C}(\xi) \leqslant 1.$

Such a function will be called an admissible kernel. A random set $X \subset \Omega$ is called a determinantal pixel process (DPixP) with kernel *C*, if

$$\forall A \subset \Omega, \quad \mathbb{P}(A \subset X) = \det(K_A),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with K_A the matrix of size $|A| \times |A|$ s.t. $K_A = (C(x - y))_{x,y \in A}$.

$$\begin{split} & \textbf{Cardinality:} |X| \sim \sum_{\xi \in \Omega} \mathcal{B}\text{er}(\widehat{C}(\xi)) \text{ and in particular} \\ & \mathbb{E}(|X|) = \sum_{\xi \in \Omega} \widehat{C}(\xi) = |\Omega| C(0) \quad \text{and} \quad \text{Var}(|X|) = \sum_{\xi \in \Omega} \widehat{C}(\xi) (1 - \widehat{C}(\xi)) \end{split}$$

$$\begin{split} & \textbf{Cardinality:} |X| \sim \sum_{\xi \in \Omega} \mathcal{B}\text{er}(\widehat{C}(\xi)) \text{ and in particular} \\ & \mathbb{E}(|X|) = \sum_{\xi \in \Omega} \widehat{C}(\xi) = |\Omega| C(0) \quad \text{and} \quad \text{Var}(|X|) = \sum_{\xi \in \Omega} \widehat{C}(\xi) (1 - \widehat{C}(\xi)) \end{split}$$

Two examples :

- 1. Bernoulli Process : $C(0) = p \text{ and } C(x) = 0, \forall x \in \Omega \setminus \{0\}$ $\Leftrightarrow \quad \forall \xi \in \Omega, \widehat{C}(\xi) = p.$ \widehat{C} Realization
- 2. Projection DPixP :

$$\forall \xi \in \Omega, \quad \widehat{C}(\xi)(1-\widehat{C}(\xi))=0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Remark : Bernoulli point processes have the property of being the processes such that Var(|X|) is maximal among all DPixP with same $\mathbb{E}(|X|)$.

Indeed, let $p \in [0, 1]$ and let *C* be any admissible kernel such that $\mathbb{E}(|X|) = \sum_{\xi \in \Omega} \widehat{C}(\xi) = p|\Omega|$. Then, by Cauchy-Schwarz inequality,

$$\begin{aligned} \operatorname{Var}(|X|) &= \sum_{\xi \in \Omega} \widehat{C}(\xi) - \sum_{\xi \in \Omega} \widehat{C}(\xi)^2 = p|\Omega| - \sum_{\xi \in \Omega} \widehat{C}(\xi)^2 \\ &\leqslant p|\Omega| - \frac{1}{|\Omega|} \left(\sum_{\xi \in \Omega} \widehat{C}(\xi) \right)^2 = p(1-p)|\Omega|. \end{aligned}$$

And the equality holds when all $\widehat{C}(\xi)$ are equal to *p*, i.e. $C = p\delta_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Sequential simulation of a DPixP

Let us denote, for $\xi \in \Omega$, the function φ_{ξ} defined on Ω by

$$\forall x \in \Omega, \ \varphi_{\xi}(x) = \frac{1}{\sqrt{MN}} e^{2i\pi \langle x, \xi \rangle}.$$

Then $\{\varphi_{\xi}\}_{\xi\in\Omega}$ is an orthonormal basis of $L^{2}(\Omega;\mathbb{C})$.

Algorithm : Sequential simulation of a DPixP

- Sample a random field $U = (U_{\xi})_{\xi \in \Omega}$ where the U_{ξ} are i.i.d. uniform on [0, 1].
- Define the "active frequencies" {ξ₁,...,ξ_n} = {ξ ∈ Ω; U(ξ) ≤ C(ξ)}, and denote,

$$\forall x \in \Omega, \ v(x) = (\varphi_{\xi_1}(x), \dots, \varphi_{\xi_n}(x)) \in \mathbb{C}^n.$$

- For k = 1 to n do :
 - Sample X_1 uniform on Ω , and define $e_1 = v(X_1)/||v(X_1)||$.
 - For k = 2 to *n*, sample X_k from the probability density p_k on Ω , defined by

$$\forall x \in \Omega, \ p_k(x) = \frac{1}{n-k+1} \left(\frac{n}{MN} - \sum_{j=1}^{k-1} |e_j^* v(x)|^2 \right)$$

• Define $e_k = w_k / ||w_k||$ where $w_k = v(X_k) - \sum_{j=1}^{k-1} e_j^* v(X_k) e_j$.

• Return $X = (X_1, ..., X_n)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(で)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

DPixP and hard-core repulsion

Can we impose a minimal distance between points of a DPixP? What are the consequences on the kernel *C*?

Proposition

Let us consider $X \sim DPixP(C)$ on Ω and $e \in \Omega$. Then the following propositions are equivalent :

- 1. For all $x \in \Omega$, the probability that x and x + e belong simultaneously to X is zero.
- For all *x* ∈ Ω, the probability that *x* and *x* + λ*e* belong simultaneously to *X* is zero for λ ∈ Q such that λ*e* ∈ Ω.
- 3. There exists $\theta \in \mathbb{R}$ such that the only frequencies $\xi \in \Omega$ such that $\widehat{C}(\xi)$ is nonzero are located on the discrete line defined by $\langle e, \xi \rangle = \theta$.
- 4. *X* contains almost surely at most one point on every discrete line of direction *e*.

This is called directional repulsion.

DPixP and hard-core repulsion

Example : Horizontal repulsion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

DPixP and hard-core repulsion

Example : Horizontal repulsion

Conclusion on hard-core repulsion : The only DPixP imposing a minimum distance between the points is the degenerate DPixP made of a single pixel.

・ コット (雪) (小田) (コット 日)

Shot noise and texture modeling

The **spot noise** was introduced by J. van Wijk (*Computer Graphics*, 1991) for texture synthesis. Using a Poisson points process $\{x_i\} \subset \mathbb{R}^2$, it has the form

$$\forall x \in \mathbb{R}^2, \quad S(x) = \sum_i \beta_i g(x - x_i).$$

Lagae et al. "Procedural noise using sparse Gabor convolution", SIGGRAPH 2009

Galerne, Leclaire, Moisan, "Texton noise", CGF 2017, based on Gaussian limit of Poisson shot noise.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition : Shot noise driven by a DPixP

Let *C* be an admissible kernel, and let *g* be a function defined on Ω . Then, the shot noise random field *S* driven by the DPixP of kernel *C* and the spot *g* is defined by

$$\forall x \in \Omega, \ S(x) = \sum_{x_i \in X} g(x - x_i),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $X = \{x_i\}$ is a DPixP of kernel *C*.

Definition : Shot noise driven by a DPixP

Let *C* be an admissible kernel, and let *g* be a function defined on Ω . Then, the shot noise random field *S* driven by the DPixP of kernel *C* and the spot *g* is defined by

$$\forall x \in \Omega, \ S(x) = \sum_{x_i \in X} g(x - x_i),$$

where $X = \{x_i\}$ is a DPixP of kernel *C*.

To compute the moments (mean, variance, kurtosis, etc.) of *S*, we first need to have a "Mecke-Campbell-Slivnyak" type formula in the DPixP framework.

Proposition : Moments formula

Let *X* be a DPixP of kernel *C*, let $k \ge 1$ be an integer, and let *f* be a function defined on Ω^k . Then

$$\mathbb{E}\left[\sum_{x_{i_1},\ldots,x_{i_k}\in X}^{\neq} f(x_{i_1},\ldots,x_{i_k})\right] = \sum_{y_1,\ldots,y_k\in\Omega} f(y_1,\ldots,y_k) \det(C(y_i-y_j)_{1\leqslant i,j\leqslant k})$$

Shot noise driven by a DPixP : Moments

1. Mean value :

$$\mathbb{E}(S(0)) = C(0) \sum_{y \in \Omega} g(y) = C(0)\widehat{g}(0).$$

2. Covariance : (assume $\hat{g}(0) = 0$)

 $\forall x \in \Omega, \ \ \Gamma_{S}(x) := \operatorname{Cov}(S(0), S(x)) = C(0)g \star g_{-}(x) - (g \star g_{-} \star |C|^{2})(x),$

where $g_{-}(x) := g(-x)$. And therefore

$$\operatorname{Var}(S(0)) = C(0) \sum_{y \in \Omega} g(y)^2 - (g \star g_- \star |C|^2)(0)$$

and
$$\widehat{\Gamma_s}(\xi) = |\widehat{g}(\xi)|^2 (C(0) - \widehat{|C|^2}(\xi)).$$

The variance depends on the spot g and the DPP kernel C in a non trivial way.

$$\begin{aligned} \operatorname{Var}(S(0)) &= C(0) \sum_{y \in \Omega} g(y)^2 - (g \star g_- \star |C|^2)(0) \\ &= \frac{n}{|\Omega|^2} \sum_{\xi \in \Omega} |\widehat{g}(\xi)|^2 - \frac{1}{|\Omega|^2} \sum_{\xi, \xi' \in \Omega} |\widehat{g}(\xi - \xi')|^2 \widehat{C}(\xi) \widehat{C}(\xi'). \end{aligned}$$

Proposition : Shot noise with extreme variance

Consider a spot function $g : \Omega \to \mathbb{R}^+$ and $n \in \mathbb{N}$ an expected cardinality for the DPixP.

Maximal variance : The DPixP with expected cardinality *n* associated with the *spot g* reaching maximal variance is the **Bernoulli process**.

Minimal variance : The DPixP with expected cardinality *n* associated with the *spot g* reaching minimal variance is the **projection DPixP** of *n* points, such that the *n* frequencies $\{\xi_1, ..., \xi_n\}$ associated with the non-zero Fourier coefficients are localized to maximize $\sum_{\xi, \xi' \in \{\xi_1, ..., \xi_n\}} |\widehat{g}(\xi - \xi')|^2$.

To approximate the maximization of the quadratic functional we use a simple greedy algorithm.

Spot g

Spot g

Shot noise with maximal variance (BPP)

Spot g

Shot noise with maximal variance (BPP)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Fourier Coefficients from greedy algorithm

Spot g

Shot noise with maximal variance (BPP)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Fourier Coefficients from greedy algorithm

Kernel C

Spot g

Shot noise with maximal variance (BPP)

Fourier Coefficients from greedy algorithm

Kernel C

Spot g

Shot noise with maximal variance (BPP)

Fourier Coefficients from greedy algorithm

Kernel C

A realization of DPixP(C)

Shot noise with minimal variance

Spot g

Shot noise with maximal variance (BPP)

Fourier Coefficients from greedy algorithm

Kernel C de ce DPixP

Shot noise with minimal variance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Spot g

Shot noise with maximal variance (BPP)

Fourier Coefficients from greedy algorithm

Kernel C de ce DPixP

Shot noise with minimal variance

Inference : We look for a kernel *C* that would correspond to one (or several) realizations of a subset of pixels.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Inference : We look for a kernel *C* that would correspond to one (or several) realizations of a subset of pixels.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Identifiability of the problem :

What is the equivalence class of a given kernel C?

Inference for DPixP - Identifiability

Proposition

Let C_1 , C_2 be two kernels defined on Ω , satisfying some *reasonable hypotheses*¹.

Then, $DPixP(C_1) = DPixP(C_2)$ if and only if the Fourier coefficients of C_2 are **translated and/or symmetric with respect to** (0,0) from the Fourier coefficients of C_1

Three DPixP kernels belonging the same equivalence class : they parameterize the same DPixP

^{. &}lt;sup>1</sup> Hartfiel, D. J., and Loewy, R. On matrices having equal corresponding principal minors. (Apr. 1984).

- Input : J realizations, Y₁,...,Y_J, from the same DPiXP with unknown C kernel.
- Empirical estimator of the cardinality $n = \frac{1}{I}(|Y_1| + \cdots + |Y_J|)$

Let us consider the conditional distribution

$$p_C(x) = \begin{cases} \mathbb{P}(x \in X | 0 \in X) = C(0) - \frac{|C(x)|^2}{C(0)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Using stationarity an empirical estimator of p_C is

$$\theta_J(x) = \begin{cases} \frac{1}{nJ} \sum_{i=1}^J \sum_{y \in \Omega} \mathbf{1}_{Y_i}(y) \mathbf{1}_{Y_i}(y+x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Input : J realizations, Y₁,...,Y_J, from the same DPiXP with unknown C kernel.
- Empirical estimator of the cardinality $n = \frac{1}{J}(|Y_1| + \cdots + |Y_J|)$

Let us consider the conditional distribution

$$p_C(x) = \begin{cases} \mathbb{P}(x \in X | 0 \in X) = C(0) - \frac{|C(x)|^2}{C(0)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Using stationarity an empirical estimator of p_C is

$$\theta_J(x) = \begin{cases} \frac{1}{nJ} \sum_{i=1}^J \sum_{y \in \Omega} \mathbf{1}_{Y_i}(y) \mathbf{1}_{Y_i}(y+x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- We propose to solve $\min_C ||p_C \theta_J||_2^2$ under the set of admissible kernels with expected cardinality *n* using projected gradient descent.
- Convex constraint but highly non convex functional, a careful initialization is important (heuristic).

Inference of the Fourier coefficients from 1, 10 and 100 realizations. (ℓ^2 distance)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Inference of the Fourier coefficients from 1, 10 and 100 realizations. (ℓ^2 distance)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Inference of the Fourier coefficients from 1, 10 and 100 realizations. (ℓ^2 distance)

Conclusion : Satisfying results for projection DPixP, using a fast estimation algorithm.

Subsampling image patches using DPP

DPPs are widely used in statistics and in machine learning for selecting diverse subsets of points : k-means initialization, text summary (Kulesza-Taskar, Dupuy-Bach ...,), feature selections (Belhadji-Bardenet-Chainais), etc.

Patches of an image are seen as points in patch space ¹.

Question : What is the best kernel *K* to subsample image patches?

^{1.} Houdard, A., Some advances in patch-based image denoising, Thèse de doctorat, 2018.

Discrete DPPs and L-ensembles

- ▶ Back to the general discrete setting with 𝒴 = {1,...,N} and a matrix K to determine Y ~ DPP(K).
- \blacktriangleright K is Hermitian and has its eigenvalues in the interval [0, 1].
- ▶ If 1 is not an eigenvalue of *K*, one sets $L = K(I K)^{-1}$ and one has the marginal probability

$$\forall A \subset \mathcal{Y}, \quad \mathbb{P}(Y = A) = \frac{\det(L_A)}{\det(I + L)}.$$

- Conversely, given any Hermitian matrix $L \succeq 0$ defines a DPP by setting $K = L(L+I)^{-1}$ the spectrum of which is within [0, 1). This is called an *L*-ensemble.
- An L-ensemble kernel L is easier to manipulate for parametric modeling (e.g. rescale by multiplying by any constant etc.). K and L share the same eigenvectors.

Subsampling image patches using DPP

We define on the set of patches $\mathcal{P} = \{p_i, 1 \leq i \leq N\}$ an admissible matrix *K* or an *L*-ensemble kernel *L* to define $K = L(L + I)^{-1}$. We consider several examples of kernels :

Gaussian kernel based on the intensity of the patches :

$$L_{ij} = \exp\left(-\frac{\|p_i - p_j\|_2^2}{s^2}\right)$$

The parameter *s* is fixed as the median of the distances of intensities between the patches.

Gaussian kernel based on the k first PCA components of patches :

$$L_{ij} = \exp\left(-\frac{\|PCA_i - PCA_j\|_2^2}{s^2}\right)$$

► Kernel based on a quality/diversity decomposition, where $q_i \in \mathbb{R}^+$, $\phi_i \in \mathbb{R}^D$, s.t. $\|\phi_i\|_2 = 1$, $L_{ij} = q_i \phi_i^T \phi_j q_j$

Projection kernel K obtained in maximizing a reconstruction evaluation

$$\mathbb{E}\left(\sum_{p_i \in \mathcal{P}} \sum_{\mathcal{Q} \in \mathcal{Q}} \mathbf{1}_{\|p_i - \mathcal{Q}\|_2 \leqslant \alpha}\right), \text{ where } \mathcal{Q} \sim \mathrm{DPP}(K).$$

(ロ) (同) (三) (三) (三) (○) (○)

Subsampling image patches using DPP

Each patch is replaced by

its nearest neighbor in Y

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Reconstruction of an image from patches sampled by DPP :

Each patch in the image is replaced by its closest representative in the subset $Y \sim DPP(K)$ (nearest neighbor for the ℓ_2 -distance).

Expected cardinality of the DPP : 5 patches.

Each patch in the image is replaced by its closest representative in the subset $Y \sim \text{DPP}(K)$ (nearest neighbor for the ℓ_2 -distance).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ●

Expected cardinality of the DPP : 25 patches.

Each patch in the image is replaced by its closest representative in the subset $Y \sim \text{DPP}(K)$ (nearest neighbor for the ℓ_2 -distance).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Expected cardinality of the DPP : 100 patches.

Each patch in the image is replaced by its closest representative in the subset $Y \sim \text{DPP}(K)$ (nearest neighbor for the ℓ_2 -distance).

Reconstruction errors for the previous image VS. expected cardinality

- $\{p_i, 1 \leq i \leq N\}$, patches of the image
- ▶ Q ~ DPP(K), subset of patches sampled using the given DPP

Conclusion :

- Uniform sampling lags always behind.
- Qual/div and optimized kernels are not competitive and limited in cardinal by construction.
- Intensity and PCA kernels are the best choice for every measurements.

(ロ) (同) (三) (三) (三) (○) (○)

Conclusion and perspectives

- (Fast) sampling algorithms for DPPs?
- Many questions for texture modeling : from an image, estimate the spot function and the kernel of the DPP ?
- Selecting the « best » kernel for representing the patches of an image depending on the final task (compression, denoising, texture synthesis, etc.).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Geometry of the shot noise driven by a DPP?

Conclusion and perspectives

- (Fast) sampling algorithms for DPPs?
- Many questions for texture modeling : from an image, estimate the spot function and the kernel of the DPP ?
- Selecting the « best » kernel for representing the patches of an image depending on the final task (compression, denoising, texture synthesis, etc.).
- Geometry of the shot noise driven by a DPP?

MERCI!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

References

- Determinantal Point Processes for Image Processing, C. Launay, B. Galerne, A. Desolneux, SIAM Journal on Imaging Sciences, 14(1), March 2021.
- Exact Sampling of Determinantal Point Processes without Eigendecomposition, C. Launay, B. Galerne, A. Desolneux, Journal of Applied Probability, vol. 57, no. 4, Décembre 2020.
- Determinantal Patch Processes for Texture Synthesis, C. Launay, A. Leclaire. Communication pour le GRETSI 2019.
- Étude de la Répulsion des Processus Pixelliques Déterminantaux, A. Desolneux, B. Galerne, C. Launay. Communication pour le GRETSI 2017.
- Papers and some associated codes are available online².

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

^{2.} https://claunay.github.io/

Spectral sampling algorithm

Exact sampling algorithm using spectral decomposition of *K* (Hough-Krishnapur-Peres-Virág)

- Eigendecomposition (λ_j, v^j) of the matrix *K*.
- ► Select active frequencies : Sample a Bernoulli process $\mathbf{X} \in \{0, 1\}^N$ with parameter $(\lambda_j)_j$. Denote *n* the number of active frequencies, $\{\mathbf{X} = 1\} = \{j_1, \ldots, j_n\}$. and the matrix $V = (v^{j_1} v^{j_2} \cdots v^{j_n}) \in \mathbb{R}^{N \times n}$ with $V_k \in \mathbb{R}^n$ the *k*-th row of *V*, for $k \in \mathcal{Y}$.
- Output the sequence Y = {y₁, y₂, ..., y_n} sequentionally sampled as follows : For l = 1 to n :
 - **b** Draw a point $y_l \in \mathcal{Y}$ from the probability distribution

$$p_k^l = \frac{1}{n-l+1} \left(\|V_k\|^2 - \sum_{m=1}^{l-1} |\langle V_k, e_m \rangle|^2 \right), \forall k \in \mathcal{Y}.$$

• If l < n, define $e_l = \frac{w_l}{\|w_l\|} \in \mathbb{R}^n$ where $w_l = V_{y_l} - \sum_{m=1}^{l-1} \langle V_{y_l}, e_m \rangle e_m$.

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● ● ● ●

Shot noise driven by a DPixP : Limit theorems

- Law of large numbers and central limit theorem exist for shot noise based on DPixP.
- One needs to use increasing-domain asymptotics : Expand the DPP to \mathbb{Z}^2 and let the support of the kernel grow $3: S_M(y) = \frac{1}{M^2} \sum_{x \in Y} g\left(y \frac{x}{M}\right)$.

Shot noise driven by a DPixP : Limit theorems

For limit theorems, one needs to use increasing-domain asymptotics : Expand the DPP to \mathbb{Z}^2 and let the support of the kernel grow $^4.$ Proposition

Let *g* be a continuous function on \mathbb{R}^2 with compact support, $X \sim \text{DPixP}(C)$ and S_M the shot noise : $S_M(y) = \frac{1}{M^2} \sum_{x \in X} g\left(y - \frac{x}{M}\right), \forall y \in \mathbb{Z}^2$. Then, $S_M(0) = \frac{1}{M^2} \sum_{x \in X} g\left(-\frac{x}{M}\right) \xrightarrow[M \to \infty]{} C(0) \int_{\mathbb{R}^2} g(x) dx$, a.s and in L^1 . (1)

If g has zero mean, $\forall x_1, ..., x_m \in \mathbb{Z}^2$,

$$\sqrt{M^2} \left(S_M(x_1), \cdots, S_M(x_m) \right) \xrightarrow[M \to \infty]{\mathcal{L}} \mathcal{N}(0, \Sigma(C))$$
(2)

with, for all $k, l \in \{1, \cdots, m\}$,

$$\Sigma(C)(k,l) = \left(C(0) - \|C\|_2^2\right) R_g(x_l - x_k).$$

where R_g is the autocorrelation of g.

^{4.} Shirai, Takahashi, 2003. Soshnikov, 2002.

Inference for DPixP - Identifiability

Proposition

Let C_1 , C_2 be two kernels defined on Ω , satisfying some *reasonable hypotheses*¹ with associated matrices K_1 and K_2 s.t. K_1 is irreducible. If $N \ge 4$, we suppose also that, for all partition of \mathcal{Y} in two subsets α , β , $|\alpha| \ge 2$, $|\beta| \ge 2$, rank $(K_1)_{\alpha \times \beta} \ge 2$. Then, $DPixP(C_1) = DPixP(C_2)$ if and only if the Fourier coefficients of C_2 are

translated and/or symmetric with respect to (0,0) from the Fourier coefficients of C_1 that is

$$\begin{split} \mathrm{DPixP}(C_1) &= \mathrm{DPixP}(C_2) \Longleftrightarrow \exists \ \tau \in \Omega \text{ s.t. either } \forall \xi \in \Omega, \ \widehat{C}_2(\xi) = \widehat{C}_1(\xi - \tau) \\ & \mathsf{ou} \ \forall \xi \in \Omega, \ \widehat{C}_2(\xi) = \widehat{C}_1(-\xi - \tau). \end{split}$$

Two cases if K_1 do not satisfy the hypotheses :

- ► K_1 is irreducible but there exists a partition (α, β) s. t. the rank $(K_1)_{\alpha \times \beta} = 1$.
- K₁ is similar by permutation of a block diagonal matrix with similar blocks : This is a degenerate case e.g. with intermixed independent copies of the same DPP on a smaller grid.

Texture synthesis by example

Generate a texture image visually similar to an input texture image

- ► Strategy⁵:
 - Generate a Gaussian random field U with same mean and covariance as the input texture⁶.
 - Define an optimal transport map T to correct the Gaussian patch distribution from the empirical patch distribution of the original texture.
 - ▶ Use *T* to correct the local features of the Gaussian image *U*.

^{5.} Galerne, Leclaire, Rabin. A texture synthesis model based on semi-discrete optimal transport in patch space (2018).

^{6.} Galerne., Gousseau, Morel, Random Phase Textures : Theory and Synthesis (2011) 😑 🛌 🚍

Acceleration of a texture synthesis by example algorithm

Synthesis time is highly dependent on the size of the patch distribution.

- Initial strategy : uniform selection of 1000 patches.
- Contribution⁷: Subsampling of the patch space using a DPP to better represent the patch set.

Proposition : Select only 100 or 200 patches thanks to a DPP of kernel $K = L(L + I)^{-1}$ with

$$\forall i, j \in \{1, \dots, I\}, \quad L_{ij} = \exp\left(-\frac{\|p_i - p_j\|_2^2}{s^2}\right)$$

^{7.} C. Launay, A. Leclaire., Determinantal Patch Processes for Texture Synthesis, In GRETSI 2019.

Acceleration of a texture synthesis by example algorithm

Selection of a subset of patches with the DPP

$$\mathcal{Q} = \{q_j, 1 \leq j \leq J\} \sim \mathrm{DPP}(K).$$

Estimation of the summarized patch distribution

$$\nu^* = \sum_{j=1}^J \nu_j^* \delta_{q_j}$$

with weights ν_j^* obtained by minimizing the Wasserstein distance between ν and the empirical distribution of all the patches.

DPP simulation : Done only once during the estimation of the transport map T.

Acceleration : To synthesize an image of size 1024×1024 :

- Original algorithm : 1000 patches. Time : 1.7".
- Proposed DPP-based strategy :

Nb of patches	50	100	200
Time	0.19"	0.28"	0.47"

(ロ) (同) (三) (三) (三) (○) (○)

Acceleration of a texture synthesis by example algorithm

Original

Unif-1000

Unif-100

DPP-100

Comparaisons - 1000 patchs / 100 patchs sampled with DPP

Original texture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Comparaisons - 1000 patchs / 100 patchs sampled with DPP

1000 patches sampled uniformly

(日)

Comparaisons - 1000 patchs / 100 patchs sampled with DPP

100 patches sampled with DPP

In general the visual quality is maintained, but one observe some detail loss for complex textures.