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Determinantal Point Processes

Determinantal Point Processes (DPP) provide a family of models of random
configurations that favor diversity or repulsion between points :

(a) Realization of a DPP (b) Realization of a Bernoulli process

I On continuous domains : Introduced by Macchi (1975) for modeling
fermions, regain of interest in spatial statistics (Lavancier, Møller, Rubak,
2015).



Determinantal Point Processes

I On discrete domains : Various applications in machine learning based
on selection of diverse subsets :
I Recommendation systems (Wilhelm et al., 2018).
I Text summarization (Kulesza, Taskar, 2012 ; Dupuy, Bach, 2017).
I Feature selection (Belhadji, Bardenet, Chainais, 2018).
I . . .

I Advantages of (discrete) DPPs (compared to Gibbs processes) :
I Similarity between points encoded in a matrix K called kernel
I Moments and marginal probabilities have closed form formulas
I Exact simulation algorithm



Discrete determinantal point processes

In this talk we work on a discrete set made of N elements that we identify with
Y = {1, . . . ,N}.
Definition

Let K be a Hermitian matrix of size N × N such that

0 � K � I.

The random subset Y ⊂ Y defined by the inclusion probabilities

∀A ⊂ Y, P(A ⊂ Y) = det(KA)

is determinantal point process of kernel K.

One writes Y ∼ DPP(K).



Properties of DPP

I The diagonal coefficients Kii define the inclusion
probability of each element i :

P(i ∈ Y) = Kii.

I The off-diagonal coefficients Kij gives the
repulsion between the points i and j :

P({i, j} ⊂ Y) = P(i ∈ Y)P(j ∈ Y)− |Kij|2.

I A DPP is repulsive since P({i, j} ⊂ Y) is always
smaller than in the case of independent point
selection (Bernoulli process).

I By construction, DPPs are simple random sets.

K	=
Kii

i

i

{i,j}

{i,j}

K	=
Kii

KjjK ij
Kij

Let {λ1, . . . , λN} ∈ R be the eigenvalues of K.
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Properties of DPP

Cardinality : it satisfies |Y| ∼
∑
i∈Y

Ber(λi)

(sum of independent Bernoulli random variables of pa-
rameter λi). Hence

E(|Y|) =
∑
i∈Y

λi = Tr(K) =
∑
i∈Y

Kii

Var(|Y|) =
∑
i∈Y

λi(1− λi)

K	=
Kii

K11

KNN

Two examples of DPP :
I Bernoulli Point Process :

Yi are independent following some Bernoulli distribution with parameter
pi. This is a DPP for the diagonal kernel K = diag(p1, . . . , pN).

I Projection DPP :
∀i ∈ Y, λi = 0 or 1.

Notice that for projection DPP the cardinality |Y| is fixed : |Y| =
∑

i λi.

Exact sampling algorithm using the spectral decomposition of K
(Hough-Krishnapur-Peres-Virág)
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Motivation

Take advantage of the repulsive nature of DPP to :

I Sample subsets of well-spread pixels in image domain and use them for
texture modeling based on shot noise.

I Subsample the set of patches of an image to efficiently summarize the
diversity of the patches.



Determinantal pixel processes (DPixP)

Framework for images :
Image domain : a discrete grid Ω of size N1 × N2, then N = N1N2 is the total
number of pixels.

We consider a DPP Y defined on Ω, with kernel K, a matrix of size N × N.

Hypothesis : Y is stationary (with periodic boundary conditions)

I K is a block-circulant matrix with circulant blocks : There exists a function
C : Ω→ C s.t.

∀x, y ∈ Ω, Kxy = C(x− y).

I K is diagonalized in the 2D Discrete Fourier transform and the
eigenvalues of K are the Fourier coefficients of C.

Kernel function C Fourier coefficients Ĉ

N

N1

2

A sample
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The 2D discrete Fourier transform
Let f : Ω→ C be a function defined on Ω = {0, . . . ,N1 − 1} × {0, . . . ,N2 − 1}.
Its discrete Fourier transform f̂ is the function defined on Ω by

∀ξ ∈ Ω, f̂ (ξ) =
∑
x∈Ω

f (x)e−2iπ〈x,ξ〉,

where for x = (x1, x2) ∈ Ω and ξ = (ξ1, ξ2) ∈ Ω, we denote the scalar product

〈x, ξ〉 =
x1ξ1

N1
+

x2ξ2

N2
.

1. Inversion : we can recover f from f̂ , by the inverse discrete Fourier
transform

∀x ∈ Ω, f (x) =
1
|Ω|

∑
ξ∈Ω

f̂ (ξ)e2iπ〈x,ξ〉.

2. Parseval Theorem :

‖f‖2
2 =

∑
x∈Ω

|f (x)|2 =
1
|Ω|

∑
ξ∈Ω

|̂f (ξ)|2 =
1
|Ω| ‖f̂‖

2
2.

3. Convolution/Product : The (periodic) convolution being defined by

∀x ∈ Ω, f ? g(x) =
∑
y∈Ω

f (y)g(x− y), then ∀ξ ∈ Ω, f̂ ? g(ξ) = f̂ (ξ)ĝ(ξ).
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Determinantal pixel processes (DPixP)

Definition

Let C : Ω→ C be a function defined on Ω such that

∀ξ ∈ Ω, Ĉ(ξ) is real and 0 6 Ĉ(ξ) 6 1.

Such a function will be called an admissible kernel. A random set X ⊂ Ω is
called a determinantal pixel process (DPixP) with kernel C, if

∀A ⊂ Ω, P(A ⊂ X) = det(KA),

with KA the matrix of size |A| × |A| s.t. KA = (C(x− y))x,y∈A.



Properties of DPixP

Cardinality : |X| ∼
∑
ξ∈Ω

Ber(Ĉ(ξ)) and in particular

E(|X|) =
∑
ξ∈Ω

Ĉ(ξ) = |Ω|C(0) and Var(|X|) =
∑
ξ∈Ω

Ĉ(ξ)(1− Ĉ(ξ))

Two examples :

1. Bernoulli Process :

C(0) = p and C(x) = 0, ∀x ∈ Ω \ {0}

⇔ ∀ξ ∈ Ω, Ĉ(ξ) = p.
Ĉ Realization

2. Projection DPixP :

∀ξ ∈ Ω, Ĉ(ξ)(1− Ĉ(ξ)) = 0.

Ĉ Realization
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Properties of DPixP

Remark : Bernoulli point processes have the property of being the processes
such that Var(|X|) is maximal among all DPixP with same E(|X|).

Indeed, let p ∈ [0, 1] and let C be any admissible kernel such that
E(|X|) =

∑
ξ∈Ω Ĉ(ξ) = p|Ω|. Then, by Cauchy-Schwarz inequality,

Var(|X|) =
∑
ξ∈Ω

Ĉ(ξ)−
∑
ξ∈Ω

Ĉ(ξ)2 = p|Ω| −
∑
ξ∈Ω

Ĉ(ξ)2

6 p|Ω| − 1
|Ω|

∑
ξ∈Ω

Ĉ(ξ)

2

= p(1− p)|Ω|.

And the equality holds when all Ĉ(ξ) are equal to p, i.e. C = pδ0.



Sequential simulation of a DPixP

Let us denote, for ξ ∈ Ω, the function ϕξ defined on Ω by

∀x ∈ Ω, ϕξ(x) =
1√
MN

e2iπ〈x,ξ〉.

Then {ϕξ}ξ∈Ω is an orthonormal basis of L2(Ω;C).

Algorithm : Sequential simulation of a DPixP
I Sample a random field U = (Uξ)ξ∈Ω where the Uξ are i.i.d. uniform on

[0, 1].
I Define the “active frequencies” {ξ1, . . . , ξn} = {ξ ∈ Ω; U(ξ) 6 Ĉ(ξ)}, and

denote,
∀x ∈ Ω, v(x) = (ϕξ1 (x), . . . , ϕξn (x)) ∈ Cn.

I For k = 1 to n do :
I Sample X1 uniform on Ω, and define e1 = v(X1)/‖v(X1)‖.
I For k = 2 to n, sample Xk from the probability density pk on Ω, defined by

∀x ∈ Ω, pk(x) =
1

n− k + 1

 n
MN
−

k−1∑
j=1

|e∗j v(x)|2


I Define ek = wk/‖wk‖ where wk = v(Xk)−
∑k−1

j=1 e∗j v(Xk)ej.

I Return X = (X1, . . . ,Xn).



Sequential simulation of a DPixP : example

Kernel C



Sequential simulation of a DPixP : example

In the frequency domain : Ĉ



Sequential simulation of a DPixP : example

Sequential sampling at step 2



Sequential simulation of a DPixP : example

Sequential sampling at step 5



Sequential simulation of a DPixP : example

Sequential sampling at step 13



DPixP and hard-core repulsion

Can we impose a minimal distance between points
of a DPixP? What are the consequences on the
kernel C ?

Proposition

Let us consider X ∼ DPixP(C) on Ω and e ∈ Ω. Then the following propositions
are equivalent :

1. For all x ∈ Ω, the probability that x and x + e belong simultaneously to X
is zero.

2. For all x ∈ Ω, the probability that x and x + λe belong simultaneously to X
is zero for λ ∈ Q such that λe ∈ Ω.

3. There exists θ ∈ R such that the only frequencies ξ ∈ Ω such that Ĉ(ξ) is
nonzero are located on the discrete line defined by 〈e, ξ〉 = θ.

4. X contains almost surely at most one point on every discrete line of
direction e.

This is called directional repulsion.



DPixP and hard-core repulsion

Example : Horizontal repulsion

Ĉ Real part of C Density during Realization
sampling

Conclusion on hard-core repulsion : The
only DPixP imposing a minimum distance
between the points is the degenerate DPixP
made of a single pixel.
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Shot noise and texture modeling
The spot noise was introduced by J. van Wijk (Computer Graphics, 1991) for
texture synthesis. Using a Poisson points process {xi} ⊂ R2, it has the form

∀x ∈ R2, S(x) =
∑

i

βig(x− xi).

Lagae et al. “Procedural noise using sparse Gabor convolution”, SIGGRAPH
2009

Galerne, Leclaire, Moisan, “Texton noise”,
CGF 2017, based on Gaussian limit of Pois-
son shot noise.



Shot noise driven by a DPixP

Definition : Shot noise driven by a DPixP

Let C be an admissible kernel, and let g be a function defined on Ω. Then, the
shot noise random field S driven by the DPixP of kernel C and the spot g is
defined by

∀x ∈ Ω, S(x) =
∑
xi∈X

g(x− xi),

where X = {xi} is a DPixP of kernel C.

To compute the moments (mean, variance, kurtosis, etc.) of S, we first need
to have a “Mecke-Campbell-Slivnyak” type formula in the DPixP framework.

Proposition : Moments formula

Let X be a DPixP of kernel C, let k > 1 be an integer, and let f be a function
defined on Ωk. Then

E

 6=∑
xi1 ,...,xik∈X

f (xi1 , . . . , xik )

 =
∑

y1,...,yk∈Ω

f (y1, . . . , yk) det(C(yi − yj)16i,j6k)
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Shot noise driven by a DPixP : Moments

1. Mean value :
E(S(0)) = C(0)

∑
y∈Ω

g(y) = C(0)ĝ(0).

2. Covariance : (assume ĝ(0) = 0)

∀x ∈ Ω, ΓS(x) := Cov(S(0), S(x)) = C(0)g ? g−(x)− (g ? g− ? |C|2)(x),

where g−(x) := g(−x). And therefore

Var(S(0)) = C(0)
∑
y∈Ω

g(y)2 − (g ? g− ? |C|2)(0)

and Γ̂S(ξ) = |ĝ(ξ)|2(C(0)− |̂C|2(ξ)).

The variance depends on the spot g and the DPP kernel C in a non trivial way.



Shot noise driven by a DPixP

Var(S(0)) = C(0)
∑
y∈Ω

g(y)2 − (g ? g− ? |C|2)(0)

=
n
|Ω|2

∑
ξ∈Ω

|ĝ(ξ)|2 − 1
|Ω|2

∑
ξ,ξ′∈Ω

|ĝ(ξ − ξ′)|2Ĉ(ξ)Ĉ(ξ′).

Proposition : Shot noise with extreme variance

Consider a spot function g : Ω→ R+ and n ∈ N an expected cardinality for the
DPixP.
Maximal variance : The DPixP with expected cardinality n associated with the
spot g reaching maximal variance is the Bernoulli process.
Minimal variance : The DPixP with expected cardinality n associated with
the spot g reaching minimal variance is the projection DPixP of n points,
such that the n frequencies {ξ1, ..., ξn} associated with the non-zero Fourier
coefficients are localized to maximize

∑
ξ,ξ′∈{ξı,...,ξn}

|ĝ(ξ − ξ′)|2.

To approximate the maximization of the quadratic functional we use a simple
greedy algorithm.



Shot noise driven by a DPixP

Spot g

Shot noise with maximal
variance (BPP)

Fourier Coefficients Kernel C A realization Shot noise with
from greedy algorithm of DPixP(C) minimal variance
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Inference for DPixP

Inference : We look for a kernel C that would correspond to one (or several)
realizations of a subset of pixels.

A given realization

?

Which is the
corresponding

DPixP(C)?

Identifiability of the problem :
What is the equivalence class of a given kernel C ?
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Inference for DPixP - Identifiability

Proposition

Let C1, C2 be two kernels defined on Ω, satisfying some reasonable hypo-
theses1.
Then, DPixP(C1) = DPixP(C2) if and only if the Fourier coefficients of C2 are
translated and/or symmetric with respect to (0, 0) from the Fourier coeffi-
cients of C1

Three DPixP kernels belonging the same equivalence class : they
parameterize the same DPixP

Ĉ1 Ĉ2 Ĉ3

. 1 Hartfiel, D. J., and Loewy, R. On matrices having equal corresponding principal minors. (Apr.
1984).



Inference for DPixP

I Input : J realizations, Y1, . . . , YJ , from the same DPiXP with unknown C
kernel.

I Empirical estimator of the cardinality n = 1
J (|Y1|+ · · ·+ |YJ |)

I Let us consider the conditional distribution

pC(x) =

P(x ∈ X| 0 ∈ X) = C(0)− |C(x)|2

C(0)
if x 6= 0,

0 if x = 0.

I Using stationarity an empirical estimator of pC is

θJ(x) =


1
nJ

J∑
i=1

∑
y∈Ω

1Yi (y)1Yi (y + x) if x 6= 0,

0 if x = 0.

.

I We propose to solve minC ‖pC − θJ‖2
2 under the set of admissible kernels

with expected cardinality n using projected gradient descent.
I Convex constraint but highly non convex functional, a careful initialization

is important (heuristic).
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Inference for DPixP

Inference of the Fourier coefficients from 1, 10 and 100 realizations. (`2 distance)

12.7 10.5 7.1

a)
24.3 12.6 8.0

b)
21.8 21.2 17.3

c)
23.5 20.4 15.4

d)
Ĉ Realization J = 1 J = 10 J = 100
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Inference of the Fourier coefficients from 1, 10 and 100 realizations. (`2 distance)

16.3 16.2 15.7

a)
17.8 17.0 14.2

b)
18.8 18.5 15.7

c)
Ĉ Realization J = 1 J = 100 J = 800

Conclusion : Satisfying results for projection DPixP, using a fast estimation
algorithm.
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Subsampling image patches using DPP

DPPs are widely used in statistics and in machine learning for selecting
diverse subsets of points : k-means initialization, text summary
(Kulesza-Taskar, Dupuy-Bach ..,), feature selections
(Belhadji-Bardenet-Chainais), etc.

ℝ
ω2

ω

ω

Patches of an image are seen as points in patch space 1.

Question : What is the best kernel K to subsample image patches?

1. Houdard, A., Some advances in patch-based image denoising, Thèse de doctorat, 2018.



Discrete DPPs and L-ensembles

I Back to the general discrete setting with Y = {1, . . . ,N} and a matrix K
to determine Y ∼ DPP(K).

I K is Hermitian and has its eigenvalues in the interval [0, 1].
I If 1 is not an eigenvalue of K, one sets L = K(I − K)−1 and one has the

marginal probability

∀A ⊂ Y, P(Y = A) =
det(LA)

det(I + L)
.

I Conversely, given any Hermitian matrix L � 0 defines a DPP by setting
K = L(L + I)−1 the spectrum of which is within [0, 1). This is called an
L-ensemble.

I An L-ensemble kernel L is easier to manipulate for parametric modeling
(e.g. rescale by multiplying by any constant etc.). K and L share the
same eigenvectors.



Subsampling image patches using DPP
We define on the set of patches P = {pi, 1 6 i 6 N} an admissible matrix K
or an L-ensemble kernel L to define K = L(L + I)−1.
We consider several examples of kernels :
I Gaussian kernel based on the intensity of the patches :

Lij = exp

(
−‖pi − pj‖2

2

s2

)
The parameter s is fixed as the median of the distances of intensities
between the patches.

I Gaussian kernel based on the k first PCA components of patches :

Lij = exp

(
−‖PCAi − PCAj‖2

2

s2

)
I Kernel based on a quality/diversity decomposition, where

qi ∈ R+, φi ∈ RD, s.t. ‖φi‖2 = 1, Lij = qiφ
T
i φjqj

I Projection kernel K obtained in maximizing a reconstruction evaluation

E

∑
pi∈P

∑
Q∈Q

1‖pi−Q‖26α

 , where Q ∼ DPP(K).



Subsampling image patches using DPP

Reconstruction of an image from patches sampled by DPP :
Each patch in the image is replaced by its closest representative in the
subset Y ∼ DPP(K) (nearest neighbor for the `2-distance).



Comparison of the different kernels for patch subsampling

Expected cardinality of the DPP : 5 patches.
Each patch in the image is replaced by its closest representative in the
subset Y ∼ DPP(K) (nearest neighbor for the `2-distance).

Original

Uniform select. Intensity kernel PCA kernel Qual-div kernel Optim. kernel

PSNR 19.1 17.8 20.2 18.0 17.6



Comparison of the different kernels for patch subsampling

Expected cardinality of the DPP : 25 patches.
Each patch in the image is replaced by its closest representative in the
subset Y ∼ DPP(K) (nearest neighbor for the `2-distance).

Original

Uniform select. Intensity kernel PCA kernel Qual-div kernel Optim. kernel

PSNR 21.3 24.3 24.4 22.6 22.5



Comparison of the different kernels for patch subsampling

Expected cardinality of the DPP : 100 patches.
Each patch in the image is replaced by its closest representative in the
subset Y ∼ DPP(K) (nearest neighbor for the `2-distance).

Original

Uniform select. Intensity kernel PCA kernel Qual-div kernel Optim. kernel

PSNR 23.4 28.6 27.4 27.4 25.1



Comparison of the different kernels for patch subsampling

Reconstruction errors for the previous image VS. expected cardinality
I {pi, 1 6 i 6 N}, patches of the image
I Q ∼ DPP(K), subset of patches sampled using the given DPP
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N
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d(pi,Q)2 (c) PSNR

Conclusion :
I Uniform sampling lags always behind.
I Qual/div and optimized kernels are not competitive and limited in

cardinal by construction.
I Intensity and PCA kernels are the best choice for every measurements.



Conclusion and perspectives

I (Fast) sampling algorithms for DPPs?
I Many questions for texture modeling : from an image, estimate the spot

function and the kernel of the DPP?
I Selecting the � best� kernel for representing the patches of an image

depending on the final task (compression, denoising, texture synthesis,
etc.).

I Geometry of the shot noise driven by a DPP?

MERCI !
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Spectral sampling algorithm

Exact sampling algorithm using spectral decomposition of K
(Hough-Krishnapur-Peres-Virág)

I Eigendecomposition (λj, vj) of the matrix K.
I Select active frequencies : Sample a Bernoulli process X ∈ {0, 1}N with

parameter (λj)j.
Denote n the number of active frequencies, {X = 1} = {j1, . . . , jn}.
and the matrix V =

(
vj1 vj2 · · · vjn

)
∈ RN×n with Vk ∈ Rn the

k-th row of V, for k ∈ Y.
I Output the sequence Y = {y1, y2, . . . , yn} sequentionaly sampled as

follows :
For l = 1 to n :
I Draw a point yl ∈ Y from the probability distribution

pl
k =

1
n− l + 1

(
‖Vk‖2 −

l−1∑
m=1

|〈Vk, em〉|2
)

, ∀k ∈ Y.

I If l < n, define el = wl
‖wl‖

∈ Rn where wl = Vyl −
∑l−1

m=1〈Vyl , em〉em.



Shot noise driven by a DPixP : Limit theorems

I Law of large numbers and central limit theorem exist for shot noise
based on DPixP.

I One needs to use increasing-domain asymptotics : Expand the DPP to

Z2 and let the support of the kernel grow 3 : SM(y) =
1

M2

∑
x∈X

g
(

y− x
M

)
.

(a) Spot (b) SM, M = 1 (c) SM, M = 2

(d) SM, M = 3 (e) SM, M = 6 (f) N (0,Σ(C))

3. Shirai, Takahashi, 2003. Soshnikov, 2002.



Shot noise driven by a DPixP : Limit theorems

For limit theorems, one needs to use increasing-domain asymptotics :
Expand the DPP to Z2 and let the support of the kernel grow 4.
Proposition

Let g be a continuous function on R2 with compact support, X ∼ DPixP(C)

and SM the shot noise : SM(y) =
1

M2

∑
x∈X

g
(

y− x
M

)
, ∀y ∈ Z2. Then,

SM(0) =
1

M2

∑
x∈X

g
(
− x

M

)
−−−−→
M→∞

C(0)

∫
R2

g(x)dx, a.s and in L1. (1)

If g has zero mean, ∀x1, ..., xm ∈ Z2,
√

M2 (SM(x1), · · · , SM(xm))
L−−−−→

M→∞
N (0,Σ(C)) (2)

with, for all k, l ∈ {1, · · · ,m},

Σ(C)(k, l) =
(

C(0)− ‖C‖2
2

)
Rg(xl − xk).

where Rg is the autocorrelation of g.

4. Shirai, Takahashi, 2003. Soshnikov, 2002.



Inference for DPixP - Identifiability

Proposition

Let C1, C2 be two kernels defined on Ω, satisfying some reasonable hypo-
theses1 with associated matrices K1 and K2 s.t. K1 is irreducible. If N > 4, we
suppose also that, for all partition of Y in two subsets α, β, |α| > 2, |β| > 2,
rank (K1)α×β > 2.
Then, DPixP(C1) = DPixP(C2) if and only if the Fourier coefficients of C2 are
translated and/or symmetric with respect to (0, 0) from the Fourier coeffi-
cients of C1 that is

DPixP(C1) = DPixP(C2)⇐⇒ ∃ τ ∈ Ω s.t. either ∀ξ ∈ Ω, Ĉ2(ξ) = Ĉ1(ξ − τ)

ou ∀ξ ∈ Ω, Ĉ2(ξ) = Ĉ1(−ξ − τ).

Two cases if K1 do not satisfy the hypotheses :
I K1 is irreducible but there exists a partition (α, β) s. t. the

rank(K1)α×β = 1.
I K1 is similar by permutation of a block diagonal matrix with similar

blocks : This is a degenerate case e.g. with intermixed independent
copies of the same DPP on a smaller grid.



Texture synthesis by example

Generate a texture image visually similar to an input texture image

I Strategy 5 :

I Generate a Gaussian random field U with same mean and covariance as the
input texture 6.

I Define an optimal transport map T to correct the Gaussian patch distribution
from the empirical patch distribution of the original texture.

I Use T to correct the local features of the Gaussian image U.

5. Galerne, Leclaire, Rabin. A texture synthesis model based on semi-discrete optimal transport in
patch space (2018).
6. Galerne., Gousseau, Morel, Random Phase Textures : Theory and Synthesis (2011)



Acceleration of a texture synthesis by example algorithm

I Synthesis time is highly dependent on the size of the patch distribution.

I Initial strategy : uniform selection of 1000 patches.

I Contribution 7 : Subsampling of the patch space using a DPP to better
represent the patch set.

Proposition : Select only 100 or 200 patches thanks to a DPP of kernel
K = L(L + I)−1 with

∀i, j ∈ {1, . . . , I}, Lij = exp

(
−‖pi − pj‖2

2

s2

)

7. C. Launay, A. Leclaire., Determinantal Patch Processes for Texture Synthesis, In GRETSI 2019.



Acceleration of a texture synthesis by example algorithm
I Selection of a subset of patches with the DPP

Q = {qj, 1 6 j 6 J} ∼ DPP(K).

I Estimation of the summarized patch distribution

ν∗ =

J∑
j=1

ν∗j δqj

with weights ν∗j obtained by minimizing the Wasserstein distance
between ν and the empirical distribution of all the patches.

I DPP simulation : Done only once during the estimation of the transport
map T.

Acceleration : To synthesize an image of size 1024× 1024 :
I Original algorithm : 1000 patches. Time : 1.7”.
I Proposed DPP-based strategy :

Nb of patches 50 100 200
Time 0.19” 0.28” 0.47”



Acceleration of a texture synthesis by example algorithm

Original Unif-1000 Unif-100 DPP-100



Comparaisons - 1000 patchs / 100 patchs sampled with DPP

Original texture

In general the visual quality is maintained, but one observe some detail
loss for complex textures.



Comparaisons - 1000 patchs / 100 patchs sampled with DPP

1000 patches sampled uniformly

In general the visual quality is maintained, but one observe some detail
loss for complex textures.



Comparaisons - 1000 patchs / 100 patchs sampled with DPP

100 patches sampled with DPP

In general the visual quality is maintained, but one observe some detail
loss for complex textures.
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