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Paradigm of a M/EEG experiment

❖ Brain constitution:  
60% white matter, 40% grey matter

❖ Grey matter: in the brain, forms the cortex 
and is composed mainly of neuronal cell 
bodies and synapses

❖ White matter: found in deeper regions, 
composed of bundles of axons and 
connects one part of the brain to another

Composition of the brain and scheme of a neuron
Source: thepartnershipineducation.com3

http://thepartnershipineducation.com


Paradigm of a M/EEG experiment

❖ The reception of neurotransmitters from 
another neuron at the synaptic gap triggers 
an electrical signal that travels along the 
axon.

❖ The magneto and electro signals derive 
from the net effect of ionic currents flowing 
in the dendrites of neurons during synaptic 
transmission.

Synaptic interaction
Source: thepartnershipineducation.com
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Paradigm of a M/EEG experiment
❖ A group of neurons in the gray matter form a current 

generator that produces an electrical and a magnetic field.
❖ A large number of simultaneously active neurons (~ 50 000) 

are needed to generate a measurable M/EEG signal [2]. 
❖ Magneto- and electro-encephalography (M/EEG): non-

invasive recording methods to capture magnetic & electric 
fields produced by brain neurons, at a high temporal 
resolution (often between 250 and 1000 Hz).

❖ Non-invasive: unlike ectrocorticography (ECoG) that uses 
electrodes placed directly on the exposed surface of the 
brain.

[1] Alexandre Gramfort. Lecture notes in M/EEG: Functional brain imaging with MEG, EEG and sEEG 
[2] Saskia Helbling. Lecture notes in SPM course: What are we measuring with M/EEG?, May 2014. 

Source: [1] 5



Paradigm of a M/EEG experiment
❖ M/EEG high temporal resolution: attractive for 

functional study of the brain
❖ Rather poor spatial resolution: only a few 

hundred data positions can be acquired 
simultaneously (MEG: ~ 300/400 sensors; EEG: 
up to 250 electrodes)   

❖ Recordings last from few minutes (active 
experiment) to several hours (sleep stages 
analysis).

❖ During a task experiment, some (external) stimuli 
are presented to the subject (auditory and/or 
visual signals, somatosensory, etc.) and active 
tasks may be asked (e.g., cues to press a button) Person undergoing an MEGAn EEG recording setup
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Data from a M/EEG experiment
❖ Observed signal:  with  

sensors over  timestamps

❖ Raw signals are too long and noisy 
(heavy noise bursts, low signal-to-
noise ratio) to be directly analyzed

❖ Some artifact may be present in the 
signals, thus corrupting the data (here, 
clear presence of the heartbeat artifact)

❖ Pre-processing is necessary
❖ Artifact can be manually identified 

and removed using ICA

X ∈ ℝP×T P
T

Raw signals over some M/EEG sensors
Source: MNE sample dataset 7



Paradigm of a M/EEG experiment

Stimuli: visual, auditory, somatosensory, etc.
Task: attend/ignore, detect + react, etc.
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Paradigm of a M/EEG experiment

Stimuli: visual, auditory, somatosensory, etc.
Task: attend/ignore, detect + react, etc.

MEG 
recording

Multiple stimuli presented to the subject

Stimuli events

Sensors 
(~300)
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Identify recurring patterns

❖ Neural time-series data contain a wide variety of 
prototypical signal waveforms

❖ Using dictionary learning, neural signals are 
decomposed as combinations of time-invariant 
patterns, called atoms.

❖ Applied to neuroscience, atoms have one spatial 
representation (which sensors are the most activated) 
and one temporal representation (the temporal form 
of the signal)

Spatial and temporal pattern learned using CDL with python 
alphacsc package [1] on MNE somato dataset
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[1] Dupré La Tour, T., Moreau, T., Jas, M., & Gramfort, A. (2018). Multivariate Convolutional Sparse Coding 
for Electromagnetic Brain Signals. Advances in Neural Information Processing Systems (NIPS).



Principle of  Convolutional Dictionary Learning
Signal X Atom D

0 s 2 s 5 s

Activation Z

Decomposition of a noiseless univariate signal X (blue) as the convolution Z ∗ D 
between a temporal pattern D (orange) and a sparse activation signal Z

 X = Z * D + ε
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Multivariate CSC [1]:

❖ : observed signals

❖ : the spatio-temporal atoms 

❖ : the sparse activations associated with , 

❖ : regularization parameter

{Xn}N
n=1 ⊂ ℝP×T

{Dk}K
k=1 ⊂ ℝP×L

{zn
k }K
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[1] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant sparse coding for 
audio classification. In 23rd Conference on Uncertainty in Artificial Intelligence, 2007. 
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Multivariate CSC [1]:

Bi-convex optimization problem solved with alternate 
minimization:

1. given  fixed atoms  and a regularization parameter 
, retrieve the activation signals  by locally greedy 

coordinate descent (LGCD);

2. then, given  fixed activation signals , update the 
 atoms , and so forth until convergence.

K Dk
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CDL with rank-1 constraint
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Multivariate CSC with rank-1 constraint [1]:

 

❖ : pattern over the channels (sensors); 

❖ : pattern over time.

uk ∈ ℝP

vk ∈ ℝL

min
uk,vk,zn

k

N

∑
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1
2 Xn −

K

∑
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k * (ukv⊤

k )
2

2

+ λ
K

∑
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k 1

,

 s.t.  uk
2
2

≤ 1, vk
2
2
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[1] Dupré La Tour, T., Moreau, T., Jas, M., & Gramfort, A. Multivariate 
Convolutional Sparse Coding for Electromagnetic Brain Signals. NIPS, 2018.
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Spatial and temporal patterns of 3 handpicked atoms extracted using CDL with 
rank-1 constraint on MNE somato dataset.

Dk = ukvk⊤ ∈ ℝP×L

Python package: alphacsc

Remark: each atom comes along with its sparse 
activation vector



Convolutional Dictionary Learning

How the atoms’ onsets are link to the stimuli events?

CDL

Atoms
Atom’s onsets

Stimuli events
14
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Background on Point Processes

Temporal point process (TPP): a stochastic, or random, process 
composed of a time series of binary events that occur in continuous 
time;  the time interval [1].

❖ A realization of a TPP is a set of distinct time points  
occurring before .

❖ To , we associate the counting process  , i.e., the 
number of points in the time interval .

❖  : a random process which evolves over time by jumps of size 1.

❖ Studying TPP  analyzing when this jumps occur.

S = [0,T )
ξ = {t1, …tn}

T

ξ Nt = ∑t∈ξ 1ti≤t
[0,t]

Nt

⇔

16

[1] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Volume I: Elementary 
theory and methods. Probability and Its Applications. Springer-Verlag New York, 2003. 



Background on Point Processes

Temporal point process (TPP): a stochastic, or random, process 
composed of a time series of binary events that occur in continuous 
time;  the time interval [1].

❖ A realization of a TPP is a set of distinct time points  
occurring before .

❖ To , we associate the counting process  , i.e., the 
number of points in the time interval .

❖  : a random process which evolves over time by jumps of size 1.

❖ Studying TPP  analyzing when this jumps occur.

S = [0,T )
ξ = {t1, …tn}

T

ξ Nt = ∑t∈ξ 1ti≤t
[0,t]

Nt

⇔

16

[1] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Volume I: Elementary 
theory and methods. Probability and Its Applications. Springer-Verlag New York, 2003. 



Background on Point Processes

Temporal point process (TPP): a stochastic, or random, process 
composed of a time series of binary events that occur in continuous 
time;  the time interval [1].

❖ A realization of a TPP is a set of distinct time points  
occurring before .

❖ To , we associate the counting process  , i.e., the 
number of points in the time interval .

❖  : a random process which evolves over time by jumps of size 1.

❖ Studying TPP  analyzing when this jumps occur.

S = [0,T )
ξ = {t1, …tn}

T

ξ Nt = ∑t∈ξ 1ti≤t
[0,t]

Nt

⇔

17

[1] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Volume I: Elementary 
theory and methods. Probability and Its Applications. Springer-Verlag New York, 2003. 



Background on Point Processes
Intensity function 

Homogeneous Poisson process: , 

Inhomogeneous Poisson process: 

Goal: find a statistical model to uncover the underlying generating model 

λ (t |ℱt) ≡ λ* (Nt+Δt − Nt) ∼ Poisson (Δt)

λ (t |ℱt) ≡ λ*(t) ≥ 0

λ (t |ℱt) = lim
dt→0

ℙ (Nt+dt − Nt = 1 |ℱt)
dt

Nt = ∑
t∈ξ

1ti≤t the counting process, ℱt = {ti, ti < t}
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Background on Point Processes

❖ Homogeneous Poisson process: 

, 

, where  is the 
Lebesgue measure on 

λ (t |ℱt) ≡ λ (Nt+Δt − Nt) ∼ Poisson (Δt)

∀B ∈ ℬ(ℝ), M(B) = λ |B | | ⋅ |
(S, ℬ(ℝ))

19

, the mean measure  
is the expected number of events in .
∀B ∈ ℬ(ℝ) M(B) = 4 [N (B)]

B

Simulation of a homogeneous Poisson process of parameter λ = 0.5
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Background on Point Processes

❖ Inhomogeneous Poisson process: 

λ (t |ℱt) ≡ λ*(t)

∀B ∈ ℬ(ℝ), M(B) = ∫B
λ*(x)dx

20

, the mean measure  
is the expected number of events in .
∀B ∈ ℬ(ℝ) M(B) = 4 [N (B)]

B Simulation of a inhomogeneous Poisson process



Multivariate Hawkes Processes

❖ Model interaction between multiple PP:

λi (t |ℱt) = μi +
K

∑
j=1

∫
t

−∞
ϕi,j(t − s)dN( j)

s , μi ≥ 0

 : influence of j on i

e.g., 

ϕi,j

ϕi,j(t) = αi,jβ exp (−βt), αi,j > 0,β > 0
21

Source: Bompaire M., Machine learning 
based on Hawkes processes and 
stochastic optimization, thesis, 2019

Python package: tick



Multiple usages for multi-dimensional 
Hawkes processes:

❖ Earthquake propagation and replicas 
[Vere-Jones, 1970; Ogata 1999];

❖ Market stocks [Bacry et al., 2013 & 2015];

❖ Social network interactions [Crane and 
Sornette, 2008; Mitchell and Cates, 
2009];

❖ etc.
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DriPP, or how to link two Point Processes
1. During an M/EEG experiment, several stimuli (auditory, visual, etc.) are presented to the subject;

2. Using Convolutional Dictionary Learning (CDL), recurrent patterns called atoms are extracted from the raw signal;

3. Each atom comes along with its sparse activation vector and is composed of a spatial and a temporal 
representation.

Signal X Atom D

0 s 2 s 5 s

Activation Z
Stimulus ti

24

How to uncover the link between stimuli (green) and atom’s activations (black)?

 X = Z * D + ε



DriPP, or how to link two Point Processes
❖ Intensity function that links a PP k to a potential set of 

triggering PP , called drivers:

❖ Use of a truncated Gaussian kernel,  to capture some 
latency:

❖ Derived an EM algorithm to learn the few parameters 

6

λk,6 = μk + ∑
p∈6

∑
i,t(p)

i ≤t

αk,pκk,p (t − t(p)
i ), μk ≥ 0,αk,p ≥ 0

Θk,6 = (μk, αk,6, mk,6, σk,6) Probability density functions for the truncated 
normal distribution for different sets of 
parameters. In all cases, a = 0 and b = 2.

κk,p = 8[a,b] (mk,p, σ2
k,p)
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DriPP - EM algorithm
Define the negative log-likelihood as the loss function:

26

ℒk,6 (Θk,6) = μkT + ∑
p∈6

αk,pnp − ∑
t∈:k

log μk + ∑
p∈6

∑
i,t(p)

i ≤t

αk,pκk,p (t − t(p)
i )

where  denotes the set of events of  stochastic process .

Recall that we defined the intensity by , hence,

:k k

λk,6 = μk + ∑
p∈6

∑
i,t(p)

i ≤t

αk,pκk,p (t − t(p)
i )

ℒk,6 (Θk,6) = ∫
T

0
λk,6(t)dt − ∑

t∈:k

log λk,6(t)

By cancelling the loss derivatives with respect to each parameters, we obtained the EM update equations.



DriPP - EM algorithm

❖ Expectation step: compute the events’ assignation, i.e., 
the probability that an event comes from either the 
kernel or the baseline intensity. 

❖ Maximisation step: we fix the probabilities  and 
, and cancel the loss with respect to each parameter. 

  and 

P(n)
k =

μ(n)
k

λ(n)
k,6(t)

and ∀p ∈ 6, P(n)
p =

α(n)
k,6 ∑i,t(p)

i <t κ(n)
k,6 (t − t(p)

i )
λ(n)

k,6(t)

P(n)
k

P(n)
p

μ(n+1) = 1
T ∑

t∈:k

P(n)
k (t) α(n+1) = πℝ+

1
np ∑

t∈:k

P(n)
p (t)
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Pseudo-code of the EM algorithm

μ(MLE)
k = #:k /T



DriPP - EM algorithm

28

Moment-matching initialization: parameters are initialized based on their « role » in the model

      and      

 

where  the set of all empirical delays possibly linked to the driver , and 

 the timestamp of the last event on the driver  that occurred before time 

m(0)
k,p = 1

#;k,p ∑
d∈;k,p

d σ(0)
k,p = 1

#;k,p ∑
d∈;k,p

|d − m(0)
k,p |2

μ(0)
k =

#:k − #(⋃p∈6 ;k,p)
T − λ (⋃p∈6 ⋃t′ ∈>p

[t′ + a, t′ + b])
α(0)

k,p =
#;k,p

λ (⋃t′ ∈>p
[t′ + a, t′ + b])

− μ(0)
k , ∀p ∈ 6

;k,p = {t − t(p)
* (t), t ∈ :k} ∩ [a, b] p

t(p)
* (t) = max {t′ , t′ ∈ >p, t′ ≤ t} p t



How to link two Point Processes

An intensity function is fitted between the 
stimuli PP (green) and the activations PP (black).

Signal X Atom D

0 s 2 s 5 s

µ

Activation Z
Stimulus ti

Intensity ∏

 X = Z * D + ε

29



From the M/EEG recording to DriPP 

❖ Paradigm of a M/EEG experiment

❖ Convolutional Dictionary Learning  for recurrent 
patterns identification in M/EEG signals 

❖ Background on Point Processes 

❖ Methodology of DriPP

❖ Results on synthetic and real datasets

30



0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

1.0

1.5

2.0

2.5

µ = 0.8, Æ = 0.8, m = 0.4, æ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

2

4

6

µ = 0.8, Æ = 0.8, m = 0.4, æ = 0.05

Ground truth
Estimated

DriPP - Results on synthetic data

❖ Intensity with 2 drivers: wide and sharp 
kernels

❖ Data simulation following Lewis’ thinning 
algorithm [1], for multiple process duration 
and data intensity.

❖  Relative norm: 

❖ The accuracy of the EM estimates increases 
with longer and denser processes. 

| |λ* − ̂λ | |∞ /λ*max
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[1] PA W Lewis and Gerald S Shedler. Simulation of nonhomogeneous Poisson 
processes by thinning. Naval research logistics quarterly, 26(3):403–413, 1979. 



DriPP - Results on real data
Results on 3 real MEG datasets:

❖ MNE sample: checkerboard patterns are presented to the subject in the left and right 
visual field, interspersed by tones to the left or right ear; 4.6 min long; 70 stimuli per 
type. 

❖ MNE somato(sensory): 111 stimulations of a human subject left median nerve; 15 min

❖ Cam-CAN [1]: 643 human subjects submitted to audio and visual stimuli (120 bimodal 
audio/visual trials and eight unimodal trials); 4 min

32

[1] Shafto et al., The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: 
a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing, 2014



DriPP - Results on audio-visual paradigm

Spatial and temporal patterns of 4 atoms from MNE sample dataset, 
and their respective estimated intensity functions following an 
auditory or visual stimulus. Stimuli happen at time = 0 s.

❖ Subject is randomly exposed to either visual or 
auditory stimuli for 6 mins.

❖ MEG Data collected on 306 sensors, 40 atoms of 
0.5 s extracted 
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DriPP - Results on audio-visual paradigm

Spatial and temporal patterns of 4 atoms from MNE sample dataset, 
and their respective estimated intensity functions following an 
auditory or visual stimulus. Stimuli happen at time = 0 s.

❖ Subject is randomly exposed to either visual or 
auditory stimuli for 6 mins.

❖ MEG Data collected on 306 sensors, 40 atoms of 
0.5 s extracted 

❖ A visual stimulus will induce a neural response 
of pattern atom 6, with a 187 ms latency in 
average

❖ Heartbeat (atom 0) and eye-blink (atom 1) 
artifacts are not link to any stimuli.
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DriPP - Results on MNE somato(sensory)

❖ The eye-blink artifact (atom 0) and the α-wave (atom 7) are 
not linked to the stimulus.

❖ A somatosensory stimulus will induce a neural response 
similar to atom 2, with a mean latency of 1 s. 

❖ Atoms 1, 2 and 4 correspond to a -waves and their respective 
intensity functions characterize an induced response.

μ
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DriPP - Results on Cam-CAN

❖ catch_0: with 4 auditory unimodal 
stimuli

❖ catch_1: with 4 visual unimodal 
stimuli 

❖ atom 0: heartbeat artefact

35

subject CC520597, a 64.25-year-old male
Atoms are ordered by their bigger ratio  α/μ



From TG to RC
❖ A drawback of Truncated Gaussian kernel: 

the support  need to be pre-
determined 

❖ Raised Cosine kernel as a self-determined 
support:

New Fast Discretized Inference (FaDIn) 
method for Hawkes parametric kernels

[a, b]

κ(x) = 1
2σ [1 + cos ( x − m

σ
π)] 1x∈[m − σ, m + σ]

36

Probability density functions for the raised cosine 
distribution for different sets of parameters.



From TG to RC
❖ L2-based loss

 

 the total number of timestamps across all processes

❖ Such loss allows pre-computations to enhance computation time

❖ Study of the discretization impact on estimates quality:

Stearman G., Allain C., Gramfort A., Moreau T., FaDIn: Fast Discretized Inference For Hawkes Processes With General 
Parametric Kernels, submitted to ICLR 2023

ℒ (θ, ℱT) = 1
NT

p

∑
i=1

∫
T

0
λi(s)2ds − 2 ∑

ti
n∈ℱi

T

λi (ti
n)

NT =
p

∑
i=1

Ni
T

̂θΔ − θ*
2

≤ ̂θc − θ*
2

+ ̂θΔ − ̂θc 2
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From TG to RC

38

FaDIn EM

: discretization parameterΔ



From TG to RC
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❖ Similar latencies

❖ Non-parametric is 
less interpretable 



From TG to RC
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Conclusion

❖ Direct statistical characterisation of when and how each stimulus is 
responsible for the occurrences of neural responses.

❖ Unified approach to extract waveforms and automatically select the ones that 
are likely to be triggered by the considered stimuli.

❖ Well adapted to M/EEG experiments that have tens or hundreds of events at 
most.

❖ Futur work: CDL on population + use TPP for more accurate atom extraction
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