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Introduction and data Problem statement

Gait analysis

Why is is important to study locomotion?
I Most common dynamic human activity
I Can reveal a large number of neurological, orthopedic, rheumatological

disorders…
I Strong influence on daily life : risk of falling, frailty, autonomy, dependency…
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Introduction and data Problem statement

Gait analysis
How can we study locomotion?
I Early tests: clinical examination by the

physician, functional tests, clinical
questionnaires

+ Easy to perform, use of clinical
expertise

- Lack of precision, di�icult to
objectively compare two sessions

I Dedicated platforms for the study of
locomotion: instrumented mats, video/optical
systems

+ Great precision, extraction of a
large number of useful features,

objective quantification

- Expensive, di�icult to put in
practice
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Introduction and data Problem statement

Main principles

F Objective quantification of human gait
→ Use of sensors and physiological measurements

F Longitudinal follow-up and inter-individual comparison
→ Need for a fixed protocol

F Experimentation outside the laboratory and on the field
→ User-mounted sensors and fully automatic device for consultation and routine
use

F Clean data
→ Control of the entire measurement chain, robust and reproducible algorithms

F Willingness to capture the expertise of the clinician
→ Clinical annotations and metadata
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Introduction and data Data

Protocol

I Sequence of activities:
I stand for 6 s,
I walk 10 m at preferred walking speed on a level surface to a previously shown

turn point,
I turn around (without previous specification of a turning side),
I walk back to the starting point,
I stand for 2 s.

I Subjects walked at their comfortable speed with their shoes and without
walking aid.
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Introduction and data Data

Sensors

I IMU (Inertial Measurement Unit) record
linear accelerations (3D), angular velocities
(3D) and magnetic fields (3D) on each foot

I Sensor frame consists of 3-axis (X ,Y ,Z)

I For this tutorial: angular velocity
aroung axis Y
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Introduction and data Data

Database

221 recordings:
I Healthy subjects had no known medical impairment (labelled as ”T” for

Témoin).
I The orthopedic group is composed of 3 cohorts of distinct pathologies: lower

limb osteoarthrosis (ArtH, ArtG), cruciate ligament injury (LCA), knee injury
(Genou)

I The neurological group is composed of 2 cohorts: cerebellar disorder (CER) and
radiation induced leukoencephalopathy (LER)
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Introduction and data Data

Main scientific questions

Sujet sain Pathologie neurologique
peu sévère

Pathologie neurologique 
sévère

Non-stationary signals
→ How can be detect the di�erent regimes (stop, walking, U-turn…)?

Presence of repetitive pa�erns: the steps
→What are they? How could we automatically extract them?

Robust feature extraction
→ How could be extract relevant features for longitudinal follow-up and
inter-individual comparison?
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Basic tools and notions for signal processing

What is signal?

I A time series (or signal) is a series of data points indexed in time order
I In practice, array of real numbers of size D × N where D is the number of

dimensions and N the number of samples
I Sample number n

n 0 1 2 3 4 5 6

I Time series values x[n]
x[n] 0.7 0.2 0.8 0.9 0.3 0.2 0.7

0.4 0.1 0.6 0.2 0.5 0.6 0.3

I Time stamps t[n]
t[n] 16:30:01 16:30:23 16:31:43 16:32:38 16:33:06 16:33:16 16:33:56
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Basic tools and notions for signal processing

Two visions: physics vs. statistics

I The notion of time have been used and modeled in physics since 18th century
and before (eg. Fourier transform).
First vision : a time series x[1 : N ] is the result of the digitization of a physical
phenomenon x(t). Physical properties of this phenomenon can be retrieved
and analyzed through the study of x[1 : N ] (and vice/versa).

I Randomness can also play a part to model a wider class of signals.
Second vision : a time series x[1 : N ] is a realization of a stochastic process
X [1 : N ]. Statistical properties of this phenomenon can be retrieved and
analyzed through the study of x[1 : N ] (and vice/versa).

In most cases, both approaches can be combined.
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Basic tools and notions for signal processing

Some useful signal processing tools

In the following, we will introduce basic signal processing tools and apply them to
our signals:
I Discrete Fourier Transform (DFT)
I Notion of stationarity, ergodicity and autocorrelation function
I Spectrogram
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Basic tools and notions for signal processing Discrete Fourier Transform

Sampling and Fourier analysis

I Most tools for signal processing are derived from Fourier analysis
I In this context, we assume that x corresponds to the discrete measurement of

a continuous signal x(t)
I Sampling theory: uniform sampling period Ts and sampling frequency

Fs = 1
Ts

x[n] = x(nTs)
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Basic tools and notions for signal processing Discrete Fourier Transform

Discrete Fourier Transform (DFT)

X [k] =
N−1∑
n=0

x[n] e−j2π
kn
N pour 0 ≤ k ≤ N − 1

where N is the number of samples
I The space between two observable frequencies is called frequency resolution

∆f =
Fs
N

I X [k] corresponds to the DFT for the physical frequency

f [k] = k
Fs
N

for 0 ≤ k ≤ N − 1

I No physical frequency greater than Fs
2 can be observed (Nyquist theorem).
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Basic tools and notions for signal processing Discrete Fourier Transform

Spectral analysis

I X [k] is a complex quantity: most of the time, we use the squared absolute
values |X [k]|2 instead

I The analysis of the quantity |X [k]|2 can allow to discover interesting properties
of the time series

I |X [k]|2 with low frequencies fk correspond to phenomena with smooth
variations

I |X [k]|2 with large frequencies fk correspond to phenomena with fast variations
I One very useful plot consists in plo�ing |X [k]|2 as a function of f [k]: such plot

is o�en referred to as spectrum (hence spectral analysis)
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Basic tools and notions for signal processing Discrete Fourier Transform

Example
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Basic tools and notions for signal processing Discrete Fourier Transform

Example
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Can be distinguished based on their DFT coe�icients
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Basic tools and notions for signal processing Stationarity, ergodicity and autocorrelation function

Statistical vision

I In order to be�er understand the properties of a signal, deterministic analysis
such as Fourier has been extended to probabilistic and statistical analysis

I In this context, we assume that x[1 : N ] corresponds to a realization of a
stochastic process X [1 : N ]

I Each X [n] can be seen as a random variable
I Statistical properties of X [1 : n] can be retrieved from estimates based on

x[1 : n]
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Basic tools and notions for signal processing Stationarity, ergodicity and autocorrelation function

Two fundamental properties

I Stationarity : The statistical properties of the time series do not change over
time
I Order 1

∀n, E [X [n]] = µ

I Order 2
∀n1, n2, E [X [n1]X [n2]] = γX [|n2 − n1|]

I Order 1 + Order 2→ wide-sense stationarity (most common assumption)

I Ergodicity : Ensemble mean and the mean over time are equal (implies
stationarity of order 1)
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Basic tools and notions for signal processing Stationarity, ergodicity and autocorrelation function

Stationarity vs. non-stationarity
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I None of these signals are stationary
I In order to prevent this to happen, two

solutions exist
I Divide the signals into small frames where

the signal is assumed to be stationary and
ergodic (see later: spectrogram)

I Use a change-point detection algorithm to
detect these changes and work separately
on each segment (see later: change-point
detection)
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Basic tools and notions for signal processing Stationarity, ergodicity and autocorrelation function

Autocorrelation

Assuming that X [1 : n] is ergodic and wide-sense stationary, we can estimate from
x[1 : n] the autocorrelation function
I Autocorrelation function

γ̂biased
x [m] =

1
N

N−1∑
n=0

x[n]x[n+ m] where x[n] = 0 for n 6= 0 . . .N − 1

I This function helps (among other things) to discover the presence of periodic
components within a signal
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Basic tools and notions for signal processing Stationarity, ergodicity and autocorrelation function

How to use the autocorrelation function

Time (s)
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Original signal, sampling frequency 100 Hz
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Basic tools and notions for signal processing Stationarity, ergodicity and autocorrelation function

How to use the autocorrelation function

Lag (m)
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Autocorrelation function, peaks are visible for lags multiple of 50
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Basic tools and notions for signal processing Stationarity, ergodicity and autocorrelation function

How to use the autocorrelation function
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A periodic signal with period 50× 1
100 = 0.5 sec was hiding!
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Basic tools and notions for signal processing Spectrogram

Spectrogram

I When the properties of the time series tend to change with time
(non-stationary signals), it is more careful to compute the DFT on sliding
windows

I By sliding the window along the signal, we recover a time-frequency
representation called spectrogram

I Matrix representation: each column corresponds to the DFT on the window of
interest.

X-axis: frame number, Y-axis: frequency bin
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Basic tools and notions for signal processing Spectrogram

Example
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Basic tools and notions for signal processing Spectrogram

Example
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Window length Nw = 256
Computation of the DFT on the first frame and storage in the spectrogram matrix…
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Basic tools and notions for signal processing Spectrogram

Example
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Window length Nw = 256
Computation of the DFT on the second frame and storage in the spectrogram

matrix…
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Basic tools and notions for signal processing Spectrogram

Example
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Same process…
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Basic tools and notions for signal processing Spectrogram

Example
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Final result
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Basic tools and notions for signal processing Spectrogram

DFT vs. Spectrogram

I Only use DFT when you are sure that there is no abrupt changes in the time
series

I Note that using DFT will tend to average the frequency content on the whole
time series, which can be tricky in some application contexts

I For safety, always first visualize the spectrogram to make sure that no
significant changes occur
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Basic tools and notions for signal processing Spectrogram

DFT vs. Spectrogram
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Periodic phenomenon ? (sinusoid ?)
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Basic tools and notions for signal processing Spectrogram

DFT vs. Spectrogram
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DFT suggests a sinusoidal phenomenon around frequency 100 Hz
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Basic tools and notions for signal processing Spectrogram

DFT vs. Spectrogram
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In fact, chirp signal between 100 and 500 Hz ‼
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Basic tools and notions for signal processing Spectrogram

Hyperparameters for spectrogram
x[n]

𝑁𝑤 − 𝑁0

𝑁𝑤

Fenêtre d’analyse

I Nw : window length (in samples)
O�en taken as a power of 2 (for FFT) and linked to the desired frequency resolution.

I No : overlap between two successive frames (in samples)
O�en taken as 50% or 75% of the window length and characterizes the time resolution (optimal
when No = Nw − 1)

I w : analysis window (Hann, Hamming, Blackman…)
Traditionally, in order to limit side e�ects, the signal frame is multiplied by an analysis window
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Change-point detection
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Change-point detection

Problem 1: Change-Point Detection

Change-Point Detection

Given a time series x, retrieve the times (t1, . . . , tK ) where a
significant change occurs

I Necessitates to estimate both the change-points but also the number of
changes K

I Highly depends on the meaning given to change
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Change-point detection

Problem statement
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I When the changes are abrupt or
when the estimation of the
change-points is relevant in the
context, we can use change-point
detection methods

I Let assume that signal x[n]
undergoes abrupt changes at times

T ∗ = (t∗1 , . . . , t
∗
K∗)

I Goal: retrieve the number of
change-points and K∗ and their
times T ∗

I One assumption: o�line
segmentation (but can easily be
adapted to online se�ing) [Truong et
al., 2020]
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Change-point detection

Problem statement

(
t̂1, . . . , t̂K

)
= argmin

(t1,...,tK )

K∑
k=0

c(x[tk : tk+1])

𝑦𝑡0..𝑡1 𝑦𝑡1..𝑡2 𝑦𝑡2..𝑡3 𝑦𝑡3..𝑡4

Cost function c(.)

I Measures the homogeneity of the
segments

I Choosing c(.) conditions the type of
change-points that we want to detect

I O�en based on a probabilistic model for
the data

Problem solving

I Optimal resolution with dynamic
programming

I Approximate resolution (sliding
windows…)

Original Signal

Discrepancy Curve

Peak Detection
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Change-point detection Cost functions

Cost function

(
t̂1, . . . , t̂K

)
= argmin

(t1,...,tK )

K∑
k=0

c(x[tk : tk+1])

Convention : t0 = 0, tK+1 = N

I Function c(.) is characteristic of the notion of homogeneity
I The most common cost functions are linked to parametric probabilistic models:

in this case change-points are defined as changes in the parameters of a
probability density function [Basseville et al., 1993]

I Non parametric cost functions can also be introduced when no model is
available
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Change-point detection Cost functions

Maximum likelihood estimation

Given a parametric family of distribution densities f (·|θ) parametrized with θ ∈ Θ,
a cost function can be derived:

cML(x[a : b]) = − sup
θ

b∑
n=a+1

log f (x[n]|θ)

I Corresponds to the assumption that on a regime, samples are i.i.d. according
to a parametric distribution density

I On each regime, the parameters are estimated through maximum likelihood
estimation

I This model can be adapted to several situations: change in mean, change in
variance, change in both mean and variance…
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Change-point detection Cost functions

Change in mean

The most popular is indubitably the L2 norm [Page, 1955]

cL2 (x[a : b]) =
b∑

n=a+1

‖x[n]− µa:b‖2
2

where µa:b is the empirical mean of the segment x[a : b].
I Particular case of cML with Gaussian model with fixed variance
I Allows to detect changes in mean
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Change-point detection Cost functions

Example
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Change-point detection Cost functions

Example: Change-Point Detection with cL2

K = 7
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Change-point detection Cost functions

Example: Change-Point Detection with cL2

K = 12
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Change-point detection Search method

Search method

(
t̂1, . . . , t̂K

)
= argmin

(t1,...,tK )

K∑
k=0

c(x[tk : tk+1])

Convention : t0 = 0, tK+1 = N

I Several methods can be used to solve this problem with a fixed K
I Optimal resolution with dynamic programming: find the true solution of the

problem (but costly)
I Approximated resolution with windows: test for one unique change-point on a

window
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Change-point detection Search method

Optimal resolution

I By denoting

V(T , x) =
K∑

k=0

c(x[tk : tk+1])

we can see that

min
|T |=K

V(T , x) = min
0=t0<t1<···<tK<tK+1=N

K∑
k=0

c(x[tk : tk+1])

= min
t≤T−K

[
c(x[0 : t]) + min

t0=t<t1<···<tK−1<tK=T

K−1∑
k=0

c(x[tk : tk+1])

]

= min
t≤T−K

[
c(x[0 : t]) + min

|T |=K−1
V(T , x[t : N])

]
I Recursive problem: resolution with dynamic programming [Bai et al., 2003]
I Two steps: computation of the cumulative costs + determination of the

change-points
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Change-point detection Search method

Optimal resolution

Complexity of O(KN2)
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Convolutional dictionary learning
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Convolutional dictionary learning

Problem 2: Pa�ern Extraction

Input time series

Extracted patterns
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Convolutional dictionary learning

Problem 2: Pa�ern Extraction

Pa�ern Extraction

Given an input time series x (or a set of time series), learn a
dictionary of pa�erns P

I A template is a shape that appear repetitively in the time series (but kinda
blurry notion)

I All templates are supposed to have the same length (for sake of simplicity)
I The extracted pa�erns can be used to characterize the time series, or studied

individually
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Convolutional dictionary learning Problem

Dictionary-based pa�ern extraction

I Finding pa�erns in a time series can be seen as a dictionary learning
optimization problem

I Given an input time series x, learn a dictionary of K pa�erns dk of length L
I These pa�erns can be activated : activations zk of length N − L + 1

zk [n] 6= 0 if pa�ern dk is activated at time n

[Grosse et al., 2007 ; Wohlberg, 2014]
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Convolutional dictionary learning Problem

Convolutional dictionary learning

D1

D2

Z1

Z2

Convolutional dictionary learning
Given a time series x, number of pa�ern K and pa�ern length L, learn
I Pa�erns dk of length L
I Activation signals zk of length N − L + 1

x[n] =
K∑

k=1

(zk ∗ dk)[n] + e[n]
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Convolutional dictionary learning Problem

Optimization problem

min
(dk),(zk)
∀k,‖dk‖2

2≤1

∥∥∥∥∥x−
K∑

k=1

zk ∗ dk

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖zk‖1

I Normalization constraint for the dictionary atoms dk , that prevents
numerical instabilities (otherwise se�ing αdk and α−1zk gives the same result)

I Sparsity constraint for the activations zk , that improves the interpretability
of the learned pa�erns (see Lecture 3)

Not convex with respect to the couple (dk), (zk) but convex when the subproblems
are taken individually
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Convolutional dictionary learning Alternated resolution

Alternated resolution

Alternated resolution of two subproblems

Dictionary learning

D∗ = argmin
D=(d1,...,dK )
∀k,‖dk‖2

2≤1

∥∥∥∥∥x−
K∑

k=1

zk ∗ dk

∥∥∥∥∥
2

2

Convolutional sparse coding

Z∗ = argmin
Z=(z1,...,zK )

∥∥∥∥∥x−
K∑

k=1

zk ∗ dk

∥∥∥∥∥
2

2

+ λ
K∑

k=1

‖zk‖1
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Alternated resolution

min
(dk),(zk)
∀k,‖dk‖2

2≤1

∥∥∥∥∥x−
K∑

k=1

zk ∗ dk

∥∥∥∥∥
2

2︸ ︷︷ ︸
f (Z,D)

+λ
K∑

k=1

‖zk‖1

I Both these problems can be solved with Proximal Gradient Descent algorithms
I Two main steps :

1. Gradient descent step w.r.t. ∇Df (Z,D) or∇Zf (Z,D)
2. Proximal step to project the update on the constraint set

I The main question is therefore: how can we easily compute the gradients?
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Formulation of the gradients

f (Z,D) =

∥∥∥∥∥x−
K∑

k=1

zk ∗ dk

∥∥∥∥∥
2

2

I By using the convolution theorem and the Parseval theorem, we have that

f (Z,D) =

∥∥∥∥∥x̂−
K∑

k=1

ẑk � d̂k

∥∥∥∥∥
2

2

where ·̂ denotes the Discrete Fourier Transform (DFT) and � the
component-wise product

I As u� d = diag(u)v, this expression can be rewri�en in the matrix form as

f (Z,D) =
∥∥∥x̂− D̂ẑ

∥∥∥2

2

I The gradient of this quantity is easy to compute w.r.t. D̂ and ẑ
I Updates for D and Z can then be estimated by performing inverse DFT
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Proximal operators

I For the unit ball constraint (dictionary), the proximal operator writes as

proj‖.‖2
2≤1(y) =

y
max(‖y‖2

2, 1)

Projection on the unit ball
I For the L1-sparsity constraint (atoms), the proximal operator writes as

Sγ(y)[n] = sign(y[n])×max(|y[n]| − γ, 0)

So� thresholding operator
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Dictionary learning

D∗ = argmin
D=(d1,...,dK )
∀k,‖dk‖2

2≤1

∥∥∥∥∥x−
K∑

k=1

zk ∗ dk

∥∥∥∥∥
2

2︸ ︷︷ ︸
f (Z,D)

I Basic approach : Proximal Gradient Descent with fixed Z
1. Gradient step :

D← D− α∇Df (Z,D)

2. Proximal projection step :

dk ← proj‖.‖2
2≤1(dk) =

dk

max(‖dk‖2
2, 1)

I Other approaches : Alternate Direction Method of Multiplier (ADMM),
K-SVD… (see [Mairal et al., 2010] and Lecture 3 for more details)
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Convolutional sparse coding

Z∗ = argmin
Z=(z1,...,zK )

∥∥∥∥∥x−
K∑

k=1

zk ∗ dk

∥∥∥∥∥
2

2︸ ︷︷ ︸
f (Z,D)

+λ

K∑
k=1

‖zk‖1︸ ︷︷ ︸
ψ(Z)

I Basic approach : Iterative So� Thresholding Algorithm (ISTA) with fixed
D [Daubechies et al., 2004]

1. Gradient step
Z← Z− α∇Zf (Z,D)

2. Proximal step
Z = Sλα(Z)

I Other approaches: Alternate Direction Method of Multiplier (ADMM), Fast
Iterative So� Thresholding Algorithm (FISTA), Coordinate Descent (CD) (see
[Mairal et al., 2010] and Lecture 3 for more details)
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Results
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Results
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Summary

I CDL allows to detect mixture of pa�erns thanks to the additive model
I CDL is traditionally quite sensitive to initialization and/or hyperparameters :

random initializations (normalized gaussian noise), randomly chosen data
frames, Lipschitz constant for gradient descent…

I CDL can also be used to search pa�erns from a fixed dictionary of templates :
in this case, only perform the convolutional sparse coding step
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