facebook
Artificial Intelligence Research

How to solve an MDP:
Dynamic Programming

Alessandro Lazaric

Outline

Bellman Equations
Value lteration

Policy Iteration

facebook Artificial Intelligence Research Alessandro Lazaric

The Optimization Problem

max V" (sg) =

= max E[r(so, 7(s0)) +y7(s1,7(s51)) + v*r(s2, 7(52)) + ...]

(o]
= max B |34t (si, ap)lar = m(s0)
t=0

facebook Artificial Intelligence Research Alessandro Lazaric

The Bellman Equation

For any stationary deterministic policy m = (d,d, ...), at any state s € S, the state
value function satisfies the Bellman equation:

V7(s) = r(s,m(s) +72py!87r V7(y).

facebook Artificial Intelligence Research Alessandro Lazaric

The student dilemma

1 Rest _
Rest 1==10
- \ ; 5

r=100
0.6
0.9 6
Rest
1 r=—1000
—
Work

facebook Artificial Intelligence Research Alessandro Lazaric

The student dilemma

facebook Artificial Intelligence Research Alessandro Lazaric

The student dilemma

Computing Vj:

r=—10

V5=-10
Ve = 100
Vi = —10+ (0.9Vs + 0.1V3) o

Vo = 100
—10+ 0.9V
=V, = T6 = 88.8 r=—1000
V., =-100(

facebook Artificial Intelligence Research Alessandro Lazaric

The student dilemma

Computing V3: no need to con-

sider all possible trajectories r=-10
Vs=-10
Vy =888
Vi =—-14(0.5V, 4+ 0.5V3) r=100
Vé =100
—14 0.5V, _
=V = —55 1 _86.8 r=—1000
’ V., = —100(

facebook Artificial Intelligence Research Alessandro Lazaric

Bellman Equation: a System of Equations

The Bellman equation

Vi(s) =r(s,m(s)) +v > plyls, m(s))V " (y).

is a linear system of equations with S = |S| unknowns and S linear constraints.

Matrix notation
VT eR®, 1" eR® PTeRS*S

then

VT =r" + PV
— V= —yP")" "

? V™ can be compute inverting a S x S matrix (O(S®) time)

facebook Artificial Intelligence Research Alessandro Lazaric

The student dilemma

V(@) = r(w,w(@) + 7Y plyle, (2))V " (y)

System of equations

Vi = 0405V, 405V, VReE P e R
Vo = 1403V, 40.7V;

Vs = —1405Vi+ 05V V=R+PV
Vi = —104 0.9V, + 0.1V, N

v, =10 ¢

Vi =100 V=(I-P)'R
Ve = —1000

facebook Artificial Intelligence Research Alessandro Lazaric

The Optimal Bellman Equation

The optimal value function V* (i.e., V* = max V™) is the solution to the optimal
s

Bellman equation:

V*(s) = 1;1;3([7’(8, a) + ’YZP(3/|S, a)V*(s")].

and any optimal policy is such that

7(s) € arg 211121)4([r(s, a)+~ Zp(s'\s, a)V*(s')].

S

facebook Artificial Intelligence Research Alessandro Lazaric

11

12

The Student Dilemma

1 Rest _
Rest r=-10
_ \ ; 5

r=100
0.6
0.9 6
Rest
1 r=—1000
—
Work

facebook Artificial Intelligence Research Alessandro Lazaric

The Student Dilemma N

V*(z) = max[r(z,a) + v Zp(y|a:, a)V* (y)]

acA
Y

System of equations

Vi =max{0+0.5V; +0.5V2; 0+ 0.5V, +0.5V;}
Vo =max{1+04V;+0.6V2; 140.3V; +0.7V5}
Vs =max{ —140.4V5+0.6V5; —140.5V,+0.5V5}

Vi =max{—10+0.9V;+0.1Vs; —10+ 17}
Vs =-10

Vs =100

V= —1000

= too complicated, we need to find an alternative solution.

facebook Artificial Intelligence Research Alessandro Lazaric

14

State-Action Value Function

In discounted infinite horizon problems, for any policy 7, the state-action value function
(or Q-function) Q™ : S x A— R is

o
Qﬂ'(é’, (J,) = E[Z’)’tr(st’atﬂso = S5,a0 = a,at = W(St),vt > 1:|7
t=0

The optimal Q-function is
Q*(s,a) = max Q" (s, a),

facebook Artificial Intelligence Research Alessandro Lazaric

Greedy Policy

The greedy policy with respect to a value 1V € R”, is defined as

7(s) € arg max |r(s,a) + ’yZp(s’]s,a)V(s’)

acA o

The greedy policy with respect to a value) ¢ R”*“ is defined as

m(s) € arg max Q(s,a)
acA

7 from Bellman optimality equations

7 = greedy(V*) or 7* = greedy(Q")

facebook Artificial Intelligence Research

Alessandro Lazaric

15

State-Action and State Value Function

Q" (s,a) = (s,a) +v)_pls']s,a)V7(s)

8/

VTi(s) = Q" (s,m(s))

Q*(s,a) = r(s,a) +v) _p(s|s,a)V*(s))

S/

V*(s) = Q" (s,7(s)) = maxeeaQ (s, a)

facebook Artificial Intelligence Research

16

Outline

Bellman Equations
Value lteration

Policy Iteration

facebook Artificial Intelligence Research

Alessandro Lazaric

17

Value lteration

Input: S, A, 7, p, €
Set Qo(s,a) =0 forall (s,a) eSx A k=0

repeat
for (s,a) € S x A do
Compute
Quia(s,a) = 1(s,0) + 73 0(s']s, 0) max Qu(s',)
end
k=k+1

until | Q1 — Qilloe < €
return greedy policy 7mc(s) = arg max,e 4Qx (s, a)

facebook Artificial Intelligence Research

Alessandro Lazaric

18

Value Iteration: the Guarantees

Theorem

Let Qo € RY be an arbitrary function, then the sequence of functions {()}.},. generated by
value iteration converges to the optimal value function ()*.

Furthermore, let € > 0 and max |r(s, a)| < rmax < 00, then after at most
s,a

7 Fog((ll—ogv()ﬁ/f)/rmax)w

iterations || Qx — Q" [|c < €.

facebook Artificial Intelligence Research Alessandro Lazaric

19

Value Iteration: the Guarantees

Corollary

Let Vi the function computed after K iterations by value iteration, then the greedy policy
Ti(s) € argmax Qi (s, a)
acA

is such that ,

o 197 - Q-
T N —

performance loss approx. error

[V = V™l <
—_———

Furthermore, there exists ¢ > 0 such that if |Qx — Q*||cc < €, then Tk is optimal.

facebook Artificial Intelligence Research Alessandro Lazaric

20

Proof: Performance Loss

For any W € RY, the Bellman operator T™ : RY — R is

T™W(s) =r(s,m(s)) + 7Y _ (5|, w(s)W(s'),

and the optimal Bellman operator (or dynamic programming operator) is

TW(s) = maxsea[r(s,a) + 7 Zp(s’\s, a)W(s)].

Sl

The (policy/optimal) value functions are fixed point of the their operators

VT(' = Tﬂ'Vﬂ"
Vr=TV*.

facebook Artificial Intelligence Research Alessandro Lazaric

21

Proof: Performance Loss

The Bellman operators are ~y-contractions in ell.-norm

[TW1 = TWallee < IIW1 — Wal
[T"W1 = T™Walleo <7[[W1 = Walloo
For any s € S
[TW(s) = TW2(s)|
= | max [r(s, @) + 4 3 p(s'ls,)W (s")] —max [r(s,a') + 3 p(s']s, a)Wa(s)]

< max
a

[r(s,0) +7 300l ls, @)W ()] = [r(s, @)+ 3 p(s'|s, @) Wa(s))]
= ymax 3 p(s']s, @)[Wa(s') — Wa(s')

< A[W1 = Weleo max Y p(s'|s,a) = v W1 — Wo||o,
@ ’
S

W facebook Artificial Intelligence Research Alessandro Lazaric

Proof: Performance Loss

V5=Vl < [ITV" =T V]oo + TV = TVl
STV =TVl +IV =Vl
<AV = Voo + IV = Voo + IVF = VTloo)

2 *
< V=V
-

facebook Artificial Intelligence Research Alessandro Lazaric

23

Value Iteration: the Complexity

Time complexity

m Each iteration takes O(S”A) operations

Qrr1(s,0) = r(s,a) + 7 p(s']s, a) max Qu(s', a')

S/
m The computation of the greedy policy takes O(SA) operations
Ti(s) € argmax Qk (s, a)
a€A
m Total time complexity O(/ S A)
Space complexity

= Storing the MDP: dynamics O(5”A) and reward O(SA).
m Storing the value function O(SA) and the optimal policy O(S).

facebook Artificial Intelligence Research

Alessandro Lazaric

24

Outline

Bellman Equations
Value lteration

Policy Iteration

facebook Artificial Intelligence Research

Alessandro Lazaric

25

Policy lteration

Let my be an arbitrary stationary policy
while k=1,..., K do
Policy Evaluation: given m, compute V¢

Policy Improvement: find 71 that is better than 7y
- e.g., compute the greedy policy

T (5) € arg max {(a)++ 3 plyls, a)V™ ()
ac y

return the last policy g
end

}

facebook Artificial Intelligence Research

Alessandro Lazaric

26

Policy Iteration: the Guarantees

Proposition

The policy iteration algorithm generates a sequences of policies with non-decreasing

pe”o””ance
‘/7 k+1>‘/7k,

and it converges to * in a finite number of iterations.

facebook Artificial Intelligence Research Alessandro Lazaric

27

Policy Iteration: Complexity

Policy Evaluation Step
= Solution of the Bellman equations O(S?)
g2 os(1/0

m |terative policy evaluation O(
log(1/7)

Policy Improvement Step

u If the policy is evaluated with V', then complexity O(SA)

facebook Artificial Intelligence Research

Alessandro Lazaric

28

Policy Iteration: Complexity

Policy Evaluation Step
Solution of the Bellman equations O(S?)
g2 os(1/0

Iterative policy evaluation O(
log(1/7)

Policy Improvement Step
If the policy is evaluated with V', then complexity O(SA)
If the policy is evaluated with (), then complexity O(A)

Ti41(s) € argmax Q™ (s, a),
acA

Number of Iterations

SA 1
A 1
t most O<1_7 og(1_7)>

Other results exist that do not depend on ~

facebook Artificial Intelligence Research Alessandro Lazaric

28

Comparison between Value and Policy Iteration

Value Iteration
m Pros: each iteration is computationally efficient.

m Cons: convergence is asymptotic.

Policy Iteration
m Pros: converge in a finite number of iterations (often small in practice).

m Cons: each iteration requires a full policy evaluation and it might be expensive.

facebook Artificial Intelligence Research Alessandro Lazaric

29

The Grid-World Problem

Hands-on session [link] — [5min]

facebook Artificial Intelligence Research

30

https://www.cs.cmu.edu/~awm/rlsim/

Bibliography

facebook Artificial Intelligence Research

Alessandro Lazaric

31

