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How to solve an MDP incrementally:
Approximate algorithms
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Learning in an MDP

Goal: learning the optimal policy 7* of an MDP
Tabular MDP, known dynamics

Tabular MDP, unknown dynamics
Large or Continuous MDP, known dynamics

Large or Continuous MDP, unknown dynamics
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Learning in an MDP

Goal: learning the optimal policy 7* of an MDP

m Tabular MDP, known dynamics
Dynamic Programming

m Tabular MDP, unknown dynamics
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Learning in an MDP

Goal: learning the optimal policy 7* of an MDP

m Tabular MDP, known dynamics
Dynamic Programming

m Tabular MDP, unknown dynamics
Q-Learning, SARSA

m Large or Continuous MDP, known dynamics
?

» Large or Continuous MDP, unknown dynamics
?
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Example: Mountain Car

State : (x,x) € [-1.2;0.6] x [-0.07;0.07]

Actions : A= {—1,0,1} : full throttle reverse / zero throttle / full
throttle forward

Reward : always —1 except in the terminal (goal) state x, = 0.6

Dynamics : when doing action a, in state s, = (x, v¢), the next state
St+1 = (Xt+1: Vt+1) is

Veirt =  max{min{v; + ¢; + 0.001a; — 0.0025 cos(3x;),0.07}, —0.07},
X1 =  max{min{x; + v¢, 0.6}, —1.2}.
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Example: Mountain Car

(b) v* for discretized mountain car

05005 0 0.05
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What to approximate?

m Value Function

o
=k ZWtT(St’atﬂSo = 8]
t=0
Z’y (8¢, at)|so = s, a0 = a]

t=0

Q"(s,a) =

m Policy
TS — A(A)

facebook Artificial Intelligence Research Alessandro Lazaric



How? Value function approximation

From an estimate of V* to an estimate of Q*
Q* — V*(s) = max Q*(s,a) easy
a

V* N Q*(S, a) — T’(S, (l) + ’YZP(S/LS? (L)V*(Sl) pOSSibly Complicated

S

Policy Computation

7(s) = arg max Q(s,a)

7(s) = arg maxr(s,a) + 72]}(3’\& a)V*(s)

S/

7 decide when to approximate V* or Q*
(Q* is more handy to get a policy, but more parameter to learn)
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How? Value function approximation

Problem: Often S is too large to store a vector V or a table @) in memory. ..

Solution: look for estimates V' (resp. Q) of V* (resp. Q*) in an approximation space
Fv (resp. Fq)

Parametric approximation
Fv={s—=>Vy(s)|0 € ©}  Fq={(s,a) = Qo(s,0a)|0 € O}

only requires to store a parameter 6 (typically 6 € RY d << S)

> Smooth parameterization if VyVp(s) (resp. VoQp(s,a)) can be computed
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How? Policy approximation

Fir = {(s,a) — mo(als) | 0 € @}

m deterministic vs. stochastic policy

m discrete actions vs. continuous actions
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. . . 8
How? Policy approximation

Normal Policy

R
W(a|5)—me 2
with
_ _ 2 2
Vologn(als) = C g ), Tologn(als) = CTE) ZouE)g o o

o2 (s) o3 (s)

Softmax Policy (k inverse temperature)

e“QG(Sﬂ)
7T(a|5) - Za/EA erQo(s,a)
with
Vylogm(als) =kVQe(s,a) — k Z $)VoQo(s,a’)
a’eA
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Outline

Value-Based Methods
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Approximate TD As Pseudo-Gradient Descent

® Run 7 over a single trajectory (so, 70, 51,71, 52,72, -+, Sn, T'n)
m TD loss using bootstrapped target

L(si, Ri;0) = (V(st) — Re)® = (Vo(s1) — re = WV, (s141))°
m TD online update with learning rate oy

§t+1 =6, — a;VoL(st, Ry; 6r)
=0, — (Vo (s1) — 71 — Vo, (5111)) Ve Va, (1)
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Approximate TD As Pseudo-Gradient Descent

® Run 7 over a single trajectory (so, 70, 51,71, 52,72, -+, Sn, T'n)
m TD loss using bootstrapped target

L(si, Ri;0) = (V(st) — Re)® = (Vo(s1) — re = WV, (s141))°
m TD online update with learning rate oy

§t+1 =6, — VoL (st, Ry; 0r)
=0, — (Vo (s1) — 71 — Vo, (5111)) Ve Va, (1)

) Not really a gradient method...
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Approximate TD

Approximate TD converges if
m Linear approximation and states s; are obtained by following the policy under
evaluation (on-policy learning)
Approximate TD may not converge (i.e., it might diverge) if
m Linear approximation but states s; are obtained by following a different policy
(off-policy learning)
m Non-linear approximation and states s; are obtained by following 7

facebook Artificial Intelligence Research Alessandro Lazaric



Approximate QL As Pseudo-Gradient Descent

m Run 7 over a single trajectory (o, @0, 70, 81, 01,71, 82, 12,72, .« Spy Uy, Ty
m QL loss using bootstrapped target

E(Su At ﬁt; 0) = (Qo(st,ar) — ét)Q = (QO(St; a) =Ty — ymax Qo, (St41, a’))

target

2

m QL online update with learning rate oy

Ors1 = 0r — 0,V oL(sy, ar, Ry 04)
= 515 - (QOt(Sta ar) —re — ’YHE}X Qo, (8141, a’))V(;Q@t(st, at)
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Online Approximate Q-Learning

Input: T, so, Qo
Q = Qo, S = S0
fort=1,...,7 do
Execute action a; ~ m¢(s¢)
Observe r;: and next state s¢q1
Update R R
Orr1 = 0 — e (Qo, (51, at) — 10 — ymax Qp, (st+1, a'))VeQo, (s, ar)

end
return @ greedy(é)
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Online Approximate Q-Learning

Input: T, so, Qo
Q = Qo, S = S0
fort=1,...,7 do
Execute action a; ~ m¢(s¢)
Observe r;: and next state s¢q1
Update R R
Orr1 = 0 — e (Qo, (51, at) — 10 — 7 max Qo (5t41,a"))VeQo, (st, ar)

end
return Q greedy(@)

&) It may diverge even with linear function approximation...
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Approximate QL As Pseudo-Gradient Descent
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Towards DQN

Practical challenges in making approximate QL “more” stable

m Sequential updates = correlated samples
» From Q-values to policy, from policy to Q-values, ... = oscillations
m Scale of Q-values unknown = gradients with different scales

m QL update using max Q(s,a’) = over-estimation
a
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Towards DQN

Practical challenges in making approximate QL “more” stable

m Sequential updates = correlated samples
= experience replay

» From Q-values to policy, from policy to Q-values, ... = oscillations
= target network

m Scale of Q-values unknown = gradients with different scales
= reward normalization

= QL update using max Q(s,a’) = over-estimation
a

= double Q-learning
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Experience Replay

To help remove correlations, store dataset D from prior experience
QL online with replay buffer
Sample experience from the dataset

(S7a’ T’ S/) ~ D
Online update

bri1 = 0 — e (Qo, (5,0) = — ymaxQo,(s', ') ) VoQo, (5, 0)

target

Execute policy (e.g., e-greedy or softmax)
Add new sample to dataset
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Target Network

Issue: weights are updated and the target changes — non-stationarity
To help improve stability, fix the target weights used in the target calculation for
multiple updates

Target network uses a different set of weights than the weights being updated
Let 6 be the parameters of the target network
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Target Network

QL online with replay buffer and target network
Sample experience from the dataset

(s,a,r,8") ~D
Compute target
Yy =7 +ymaxQy(s’,a’)
a/
Online update R N
0141 = 0r — ¢ (Qo, (s,a) — 1) VQp, (s, a)

Execute policy (e.g., e-greedy or softmax)
Add new sample to dataset

Update target network 6 every C steps

* it is possible to do also a smooth update of the target network § = 70 + (1 — 7)6; with 7 ~ 1. Less

used than full updates.
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Mini-batch Update

Issue: online update is inefficient with modern tools (e.g., NN)

Perform update on a mini-batch Dpini sampled from D
u Let 0 the target function

m Mini-batch loss

Lp,ii (0) = E(s, a1.5001,7)~D [(QG(SZ" a;) —ri — Y max Qy(sit1, a’))Q}

= Update 6 using SGD on EDmini(e)
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Mini-Batch Update

m Sample m transitions from replay buffer D
Av = {(siy ai, 73, 57) ity

m Compute /oss
1 AVANY
L(8|A+, ) mz; Qo(s,0) — i — ymax Qg(s;, a)
1=

m Update by SGD B
9t+1 = 9,5 - OéVgL(alAt, 9)
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DQN

Input: T, so, Qo

Q= Qo, 5= 50

fort=1,...,T do

Execute action a; ~ m¢(s¢)

Observe r; and next state s;y1

Store transition (S, Gt,i, St+1,i,T¢,:) iNto an experience replay buffer D

Perform update of 0 on a mini-batch Dpini sampled from D using target 0

~

0=0-— Z Qg ($rya7) —1rr — 7y max Qg(sTH,a/))VgQg(sT, ar)

1
m
T=1

Every C steps 0 < 0

end
return @ gFGEdY(@)
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DQN — Atari

Image preprocessing: grey-scale, crop to 84x84
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DQN — Atari

State definition

St —
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ag—1,T¢—1,

At—4,Tt—4
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DQN — Atari

Time definition: 4 last frames

St —
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DQN — Atari

Action-value function: deepNet with as many heads as actions
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DQN — Atari

Performance
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DQN — Atari

Ablation

DQN

27

Game V\!ith replay, _With replay, Wit_hout replay, V\{ithout replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 291
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0
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DQN

Hands-on session [link] — [20min]

How does the exploration parameter
influence the performance?

facebook Artificial Intelligence Research
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https://colab.research.google.com/drive/1eXg98C9yTnPzvXLpIBG3mFSx8C8aXsUD

Outline

Policy Gradient
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Policy Gradient: Finite-Horizon* :

Given an MDP M = (S, A, p,r, H, p) and a policy 7

H
J(W) =E Zrt’ﬂ—7 M| = ETN]P’(T\N,M) [R(T)]
t=1
where 7 = (s1,a1,71,...,SH+1) is a trajectory and R(7) its return (sum of returns).
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Policy Gradient: Finite-Horizon* :

Given an MDP M = (S, A, p,r, H, p) and a policy 7

J(7T) =E = ETN]P’(T\N,M) [R(T)]

H
ZTHT(,M
t=1

where 7 = (s1,a1,71,...,SH+1) is a trajectory and R(7) its return (sum of returns).

Stochastic policy m: S — D(A)

*everything extends to infinite-horizon discounted
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Policy Gradient as Policy Update

Approximate Policy Iteration Policy Gradient
7T9k+1 = a‘rg max Qﬂ'g (S? 71-9(5)) 0k-+]_ == Qk» + OékVJ(gk)
L
Unstable (fast) Smooth, fine control (slow)

How do we compute Vy.J(6)?
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Policy Gradient Theorem

For any finite-horizon MDP M = (S, A, p,r, H, p) and differentiable policy my

H
VoJ(m9) = Erup(fmary | B(T) Z Vo log mg(a|st)
t=1
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REINFORCE N

Let mg, be an arbitrary policy

At each iteration k =1,..., K
Sample m trajectory 7; = (s1,a1,71, S2,- .-, ST, a1, T, ST+1) following 7y
Compute unbiased gradient estimate

Vo (m,) g (;Q) (iVG IOgWGk(Shal‘/))

Update parameters -
9k+1 =0+ Ozkv‘gj(ﬂ'gk)

Return last policy 7,
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REINFORCE as Supervised Learning

i = R(1;)Vglog P(;|mg, M)

» R(7;) measures how good is sample 7;

= Moving in the direction of g; pushes up the log f(x)
probability of the sample, in proportion to how
good it is

©)
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34

REINFORCE as Supervised Learning

i = R(1;)Vglog P(;|mg, M)

» R(7;) measures how good is sample 7; p(x)

= Moving in the direction of g; pushes up the log f(X)
probability of the sample, in proportion to how
good it is

)
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34

REINFORCE as Supervised Learning

i = R(1;)Vglog P(;|mg, M)

» R(7;) measures how good is sample 7; P(x)

= Moving in the direction of g; pushes up the log f(x)
probability of the sample, in proportion to how
good it is

O]

Interpretation: uses good trajectories as supervised
examples

® Like maximum likelihood in supervised learning

® good stuff are made more likely while bad less

® Trial and Error approach

image from “CS 294-112: Deep

Reinforcement Learning” slides by S.
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REINFORCE

Pros
m Easy to compute
m Does not use Markov property!

» Can be used in partially observable MDPs without modification
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REINFORCE

Pros
m Easy to compute
m Does not use Markov property!

» Can be used in partially observable MDPs without modification

Issues
m Use an MC estimate of ¢(s, a)
m It has possibly a very large variance

= Needs many samples to converge
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REINFORCE

Hands-on session [link] — [20min]

m How does the exploration parameter
influence the performance?
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https://colab.research.google.com/drive/13-ujOG7-Oxow9k_cTrAiXITxwQnC8c5r

Outline

Actor-Critic Methods
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Policy Gradient Theorem

For an infinite horizon MDP (average or discounted), the policy gradient is
VoJ(m9) = EsndaroEqrry(s,) [Vologmg(s,a)Q™ (s, a)]

m d” is the stationary distribution

m Q7 is the state-action value function
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SARSA

Input: T, so, Qo
Q= Qo, s=s0,a=U(A)
fort=1,...,T do
Execute action a; ~ 7t,Q(+|st)
Observe r;: and next state s;y1
at+1 ~ TF/.Q("S’/, i 1)
Update

-~

Q(st,ae) = Q(se, ar) + a(se) (re +vYQ(se41, ar41) — Q(s¢,ar))
end
return @ TQ

Examples

™ (a|s) _ exp(Q(s, a’)/Tt
9 > exp(Q(s,b)/7)

molals) = (1 —¢)l (at = arg ;naxQ(s, b)) +e/A
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SARSA N

Input: T, so, Qo

Q = Qo, s =50, a=U(A)
fort=1,...,T do

Execute action a¢ ~ 7, (+]st)
Observe r; and next state s;y1
atyr ~ Te,Q([st+1)

Update

Q(st,at) = Q(Su ac) + a(St)(Tt + 7@(&4-1, A1) — C/Q\(St7 at))

Update
molals) = —2P(Qs.0)/7

>y exp(Q(s, b)/71)

end
return @), T
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Actor-Critic

Actor-critic algorithms maintain two sets of parameters:

Policy parameters ¢ +— 7

Action-value function parameters w > ¢"

and use two different algorithms to update them
Policy gradient to update ¢
TD/Sarsa to update w
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Actor-Critic

fort=1,...,T do
a; ~ mp(st, ) and observer r, and sy41
Compute temporal difference
6t = Tt + Yquw(8t+1, @t41) — qu(St, ar)

Update action-value

w=w+ B0 Viuqu (i, ar)
Update policy

0 =0+ aVyglogmy(st, at)qu(se, ar)

end
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Actor-Critic

Issues:
® qu(s,a) is a biased estimate of Q™ (s, a)

» The update of # may not follow the gradient of Vy.J(mg)

Solution:

» Choose the approximation space ¢, (s, a) carefully
= compatible function approximation between q,, and mg
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Compatible Function Approximation

An action value function space q,, is compatible with a policy space my if
qw(s,a) = w'Vylogmy(s, a)

If w minimizes the squared Bellman residual

w = arg min Eg. 7 Z 79(s,a)(Q™(s,a) — qu(s,a))?
w

a

Then
VoJ(m9) = Esaro Earr, [Volog (s, a)qu(s, a)]
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Actor-Critic with a baseline

VoJ(m9) = Egwgmo | Y Volog(mg(s,a))(Q™ (s, a) — b(s))

m b(s) minimizes the variance
m V7(s) is a good choice as baseline
® it minimizes the variance in average reward

m A"(s,a) = Q" (s,a) — V™ (s) is the advantage function
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Actor-Critic with advantage function (A2C)

m It is possible to estimate V™ and Q™ independently (e.g., by TD(0))
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Actor-Critic with advantage function (A2C)

m It is possible to estimate V™ and Q™ independently (e.g., by TD(0))

m A" =@, —V, is a biased and unstable estimate

facebook Artificial Intelligence Research

Alessandro Lazaric

46



46

Actor-Critic with advantage function (A2C)

m It is possible to estimate V™ and Q™ independently (e.g., by TD(0))
m A" =@, —V, is a biased and unstable estimate
Solution:

» Consider the temporal difference error

57 = 1(s,0) + V() = V™ (s)
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Actor-Critic with advantage function (A2C)

m It is possible to estimate V™ and Q™ independently (e.g., by TD(0))
m A" =@, —V, is a biased and unstable estimate
Solution:

» Consider the temporal difference error

870 =r(s,a) + 4V (s') — V™ (s)

m 5™ is an unbiased estimate of the advantage

E[6™]s,a] = E[r(s,a) + yV™(s')|s,a] — V7 (s) = Q™ (s,a) — V™ (s)
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Actor-Critic with advantage function (A2C)

fort=1,...,T do
a; ~ mp(st, ) and observer r, and sy41
Compute temporal difference

0p = 1t + Yo (8¢41) — vu(5t)

Update v estimate

v=w+ P06, V,u,(s)
Update policy

0=0+ OZ(StVQ IOg 7Tg(8t, at)

end
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From online to batch actor-critic

So far we have observed fully online actor-critic approaches
The policy is updated at each step

In some case it can be inefficient (e.g., for training approximators)

= batching as in supervised learning
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48

From online to batch actor-critic

m So far we have observed fully online actor-critic approaches
® The policy is updated at each step

= In some case it can be inefficient (e.g., for training approximators)

= batching as in supervised learning

— Batched Policy Evaluation —

Sample m trajectories 7; = {s1,a1,71,...,S7+1} using my

t+p
0(s4 t Z Vk t?”z kT (si,tﬂm) bootstrapping
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From online to batch actor-critic

So far we have observed fully online actor-critic approaches
The policy is updated at each step

In some case it can be inefficient (e.g., for training approximators)

= batching as in supervised learning
— Batched Policy Evaluation —

Sample m trajectories 7; = {s1,a1,71,...,S7+1} using my

t+p
0(sizt) Z e Yrix +7"0,(5i11p1)  bootstrapping

Use supervised regression on D = {(s;+,0(s;+))}, for all 4,¢
1 (2
arg min 3 (vy(s) — )
(s,0)€D
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From online to batch actor-critic

— Batched Policy Update —

Sample m trajectories 7; = {s1,a1,71,...,S87+1} using my

Compute an estimate of the gradient

I
G= ~ Z Vo log mo(sit, ait)dis

where ;1 = 74 + Y0 (Sit41) — Vu(Sizt)
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Batched A2C

50

fork=1,2,...do
Generate m trajectories (7;) using policy 7y,
Update v (usually p = 1)

Update policy

51 g4 — =T ,t + Wvuk (Sz t+1) - ’Uuk (Sz t

end

t+p
(i) = Y 7" ik 9700 (Siep1),
k=t
with D = (8,4, 0(si,4))ie

/g\:

1
Vg = arg min 3 Z (v (s) — 0)*

1
m

>

i=1

Or41 = Ok1 +0g

v

(s,0)€D

T;

Z Vo logmy(sit,ai)di

t=1
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Sample Efficiency in Actor-Critic

Issues:
m Sample efficiency is pretty poor
m All samples need to be generated by the current policy (on-policy learning)

» Samples are discarded after a single update
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Sample Efficiency in Actor-Critic

Issues:
m Sample efficiency is pretty poor
m All samples need to be generated by the current policy (on-policy learning)

» Samples are discarded after a single update

Solutions
u Use samples from other policies via importance sampling (not very stable)
» Conservative approaches
m Variance reduction techniques

m Newton or Quasi-newton methods
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Outline

Conservative Policy Gradient Methods
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Relative Performance

Issues:
We would like to exploit past samples
We do not know how much to trust them

Depends on the distribution over trajectories induced by different policies
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Relative Performance

Issues:
= We would like to exploit past samples
m We do not know how much to trust them

= Depends on the distribution over trajectories induced by different policies

Performance-Difference Lemma

For any policies 7, 7 € II°R
Iy = J(m) = 3 d¥ (s,a)A™(s, )
= Z d™ (s) Z 7'(s,a)A™ (s, a)
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Optimization step

max J(r")
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Optimization step

max J(r') = max J(7") = J(m)

Issue: as before, cannot be directly estimated using information from 7
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Optimization step

max J(r') = max J(7") = J(m)

- H}TZ}XE(S,G,)N(F, [Aﬂ(sa a)]

Issue: as before, cannot be directly estimated using information from 7
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Optimization step

J(x') = J(7) = Bgugr | > _7'(s,0)A7(s,0)
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Optimization step

J(@') = J(7) = Bgar | Y 7'(5,0)A7(s,0) |+ (d7 (s) — d"(s)) Y _«'(s,a)A™(s,a)
L a S @ a

€
> By |3 7(5,a)A™(s,a) — OXWDTV(W/HF) [s]
where ¢ = max ‘EQNW/ [A™ (s, a)]‘ and
Dpy (7'||m)[s Z|7T (s,a) — (s, a)l
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Surrogate Loss

Le(n') = J(m) + ) _d"(s) Y _7'(s,a) A" (s, )

n Ly(m)=J(m)
» If parametric policies m = mp, VgL, (mg) = Vg J(mg)

!in an interval close to 7, L, is a good surrogate for J

= C(onservative Policy Iteration
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Surrogate Loss

La(n') = J(m) + > d(s Zw s,a)A™ (s, ) Zdr 5) Dy (|| 7)[8]

w Lo(m)=J(n) also with this
» If parametric policies m = mp, VgL, (mg) = Vg J(mg)

!in an interval close to 7, L, is a good surrogate for .J

= C(onservative Policy Iteration
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Surrogate Loss Cont'd

local approx. to

performance of the
True Objective licy
(the performance  J(©)

of the policy)

L(8)-C- Dyy L(6)

Pessimistic approx. to true

objective (a lower bound we can
maximize)
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Conservative Policy Iteration

m New policy improvement schema
- Give current policy 7 solve

m{ Lea(#) = € Bovare [Drv(w )] |
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Conservative Policy Iteration

m New policy improvement schema
- Give current policy 7 solve

e { L () = € Bvvrs [Drv( )] } 2 0
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Conservative Policy Iteration

m New policy improvement schema
- Give current policy m; solve

J(w') — J(mg) > max {Lm, (n') = C Eggmi [Dry (7'||1)[s]] } >0
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Conservative Policy Iteration

m New policy improvement schema
- Give current policy m; solve

J(ﬂ'l) - J(ﬂ'k:) 2 nlﬁ‘(}X {L’/Tk (7T/> - C Eswd”k [DTV(THHWL/T)[SH } Z 0

= Monotonic performance improvement
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Conservative Policy Iteration

m New policy improvement schema
- Give current policy 7 solve

J(w') = J (m) > mox {L (x') = C Exwaric [Dry (a'|[m)]s] } =0

= Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]
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ldea

M;

D)t

n(eé)

n(@)=E [Z rt|7r91 and M is the lower bound
=1

Source

facebook Artificial Intelligence Research

n(e)

Alessandro Lazaric

59


https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33

60

Approximate Monotone Improvement

The objective can be estimated using rollouts from the most recent policy

Updates respect a notion of distance in the policy space!

This is the basis for many algorithms!
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Toward Practical Algorithm

m Optimizing the total variation Dy (7'||7r) may be difficult

» Relax the problem using Pinsker's inequality (?)

Dy (n'||7) < v/2Dkr(7'|7)
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Further Steps toward Practical Algorithms

m C provided by theory is quite high (too conservartive)
m Replace regularization with constraint (trust region) (e.g., REPS (?))
Tg+1 = arg max L. (7')

™

s.t. Egugr [Dgp(m'||m)] <0
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Further Steps toward Practical Algorithms

m C provided by theory is quite high (too conservartive)
m Replace regularization with constraint (trust region) (e.g., REPS (?))

Tpy1 = arg max L (')
7r/

s.t. Egugr [Dgp(m'||m)] <0

» Importance weighting

7' (s,a)

z(s,a)

EsmarEqmr [AW(Sa a)] = EsugrEgn- |: AW(Sa (I):|
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Further Steps toward Practical Algorithms

C provided by theory is quite high (too conservartive)
Replace regularization with constraint (trust region) (e.g., REPS (7))

Tpy1 = arg max L (')
7r/

s.t. Egugr [Dgp(m'||m)] <0

Importance weighting

7' (s,a)

z(s,a)

EsndrEqar [AT (5, a)] = EgugrEqn- |: A7 (s, a):|

= Natural Policy Gradient (NPG)
= Trust-Region Policy Optimization (TRPO)
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