
How to solve an MDP incrementally:
Approximate algorithms
Alessandro Lazaric
Facebook AI Research

Learning in an MDP 2

Goal: learning the optimal policy π? of an MDP
Tabular MDP, known dynamics

Dynamic Programming

Tabular MDP, unknown dynamics

Q-Learning, SARSA

Large or Continuous MDP, known dynamics

?

Large or Continuous MDP, unknown dynamics

?

Alessandro Lazaric

Learning in an MDP 2

Goal: learning the optimal policy π? of an MDP
Tabular MDP, known dynamics
Dynamic Programming
Tabular MDP, unknown dynamics

Q-Learning, SARSA

Large or Continuous MDP, known dynamics

?

Large or Continuous MDP, unknown dynamics

?

Alessandro Lazaric

Learning in an MDP 2

Goal: learning the optimal policy π? of an MDP
Tabular MDP, known dynamics
Dynamic Programming
Tabular MDP, unknown dynamics
Q-Learning, SARSA
Large or Continuous MDP, known dynamics

?

Large or Continuous MDP, unknown dynamics

?

Alessandro Lazaric

Learning in an MDP 2

Goal: learning the optimal policy π? of an MDP
Tabular MDP, known dynamics
Dynamic Programming
Tabular MDP, unknown dynamics
Q-Learning, SARSA
Large or Continuous MDP, known dynamics
?
Large or Continuous MDP, unknown dynamics
?

Alessandro Lazaric

Example: Mountain Car
3

Alessandro Lazaric

Example: Mountain Car
3

Alessandro Lazaric

What to approximate?
4

Value Function

V π(s) = E

[∞∑
t=0

γtr(st, at)|s0 = s

]

Qπ(s, a) = E

[∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
Policy

π : S → ∆(A)

Alessandro Lazaric

How? Value function approximation
5

From an estimate of V ? to an estimate of Q?

Q? → V ?(s) = max
a

Q?(s, a) easy

V ? → Q?(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)V ?(s′) possibly complicated

Policy Computation

π(s) = arg max
a

Q(s, a)

π(s) = arg max
a

r(s, a) + γ
∑
s′

p(s′|s, a)V ?(s′)

� decide when to approximate V ? or Q?

(Q? is more handy to get a policy, but more parameter to learn)

Alessandro Lazaric

How? Value function approximation
6

Problem: Often S is too large to store a vector V or a table Q in memory. . .

Solution: look for estimates V (resp. Q) of V ? (resp. Q?) in an approximation space
FV (resp. FQ)

Parametric approximation

FV = {s 7→ Vθ(s)|θ ∈ Θ} FQ = {(s, a) 7→ Qθ(s, a)|θ ∈ Θ}

only requires to store a parameter θ (typically θ ∈ Rd, d << S)

� Smooth parameterization if ∇θVθ(s) (resp. ∇θQθ(s, a)) can be computed

Alessandro Lazaric

How? Policy approximation
7

FΠ =

{
(s, a) 7→ πθ(a|s) | θ ∈ Θ

}
deterministic vs. stochastic policy
discrete actions vs. continuous actions

Alessandro Lazaric

How? Policy approximation
8

Normal Policy

π(a|s) =
1

σω(s)
√

2π
e
− (a−µθ(s))

2

2σ2ω(s)

with

∇θ log π(a|s) =
(a− µθ(s))
σ2
ω(s)

∇θµθ(s), ∇ω log π(a|s) =
(a− µθ(s))2 − σ2

ω(s)

σ3
ω(s)

∇ωσω(s)

Softmax Policy (κ inverse temperature)

π(a|s) =
eκQθ(s,a)∑

a′∈A e
κQθ(s,a′)

with

∇θ log π(a|s) =κ∇θQθ(s, a)− κ
∑
a′∈A

π(a′|s)∇θQθ(s, a′)

Alessandro Lazaric

Outline
9

1 Value-Based Methods

2 Policy Gradient

3 Actor-Critic Methods

4 Conservative Policy Gradient Methods

Alessandro Lazaric

Approximate TD As Pseudo-Gradient Descent
10

Run π over a single trajectory (s0, r0, s1, r1, s2, r2, . . . , sn, rn)
TD loss using bootstrapped target

L̃(st, R̃t; θ) = (Vθ(st)− R̃t)2 = (Vθ(st)− rt − γVθt(st+1))2

TD online update with learning rate αt

θ̂t+1 = θ̂t − αt∇θL̃(st, R̃t; θt)

= θ̂t − αt
(
Vθt(st)− rt − γVθt(st+1)

)
∇θVθt(st)

, Not really a gradient method...

Alessandro Lazaric

Approximate TD As Pseudo-Gradient Descent
10

Run π over a single trajectory (s0, r0, s1, r1, s2, r2, . . . , sn, rn)
TD loss using bootstrapped target

L̃(st, R̃t; θ) = (Vθ(st)− R̃t)2 = (Vθ(st)− rt − γVθt(st+1))2

TD online update with learning rate αt

θ̂t+1 = θ̂t − αt∇θL̃(st, R̃t; θt)

= θ̂t − αt
(
Vθt(st)− rt − γVθt(st+1)

)
∇θVθt(st)

, Not really a gradient method...

Alessandro Lazaric

Approximate TD 11

Approximate TD converges if
Linear approximation and states si are obtained by following the policy under
evaluation (on-policy learning)

Approximate TD may not converge (i.e., it might diverge) if
Linear approximation but states si are obtained by following a different policy
(off-policy learning)
Non-linear approximation and states si are obtained by following π

Alessandro Lazaric

Approximate QL As Pseudo-Gradient Descent
12

Run π over a single trajectory (s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . , sn, an, rn)
QL loss using bootstrapped target

L̃(st, at, R̃t; θ) = (Qθ(st, at)− R̃t)2 =
(
Qθ(st, at)−rt − γmax

a′
Qθt(st+1, a

′)︸ ︷︷ ︸
target

)2
QL online update with learning rate αt

θ̂t+1 = θ̂t − αt∇θL̃(st, at, R̃t; θt)

= θ̂t − αt
(
Qθt(st, at)− rt − γmax

a′
Qθt(st+1, a

′)
)
∇θQθt(st, at)

Alessandro Lazaric

Online Approximate Q-Learning
13

Input: T , s0, Q0

Q = Q0, s = s0
for t = 1, . . . , T do

Execute action at ∼ πt(st)
Observe rt and next state st+1

Update
θ̂t+1 = θ̂t − αt

(
Qθt(st, at)− rt − γmax

a′
Qθt(st+1, a

′)
)
∇θQθt(st, at)

end
return Q̂, greedy(Q̂)

, It may diverge even with linear function approximation...

Alessandro Lazaric

Online Approximate Q-Learning
13

Input: T , s0, Q0

Q = Q0, s = s0
for t = 1, . . . , T do

Execute action at ∼ πt(st)
Observe rt and next state st+1

Update
θ̂t+1 = θ̂t − αt

(
Qθt(st, at)− rt − γmax

a′
Qθt(st+1, a

′)
)
∇θQθt(st, at)

end
return Q̂, greedy(Q̂)

, It may diverge even with linear function approximation...

Alessandro Lazaric

Approximate QL As Pseudo-Gradient Descent
14

Alessandro Lazaric

Towards DQN
15

Practical challenges in making approximate QL “more” stable
Sequential updates ⇒ correlated samples

⇒ experience replay

From Q-values to policy, from policy to Q-values, ... ⇒ oscillations

⇒ target network

Scale of Q-values unknown ⇒ gradients with different scales

⇒ reward normalization

QL update using max
a′

Q(s, a′) ⇒ over-estimation

⇒ double Q-learning

Alessandro Lazaric

Towards DQN
15

Practical challenges in making approximate QL “more” stable
Sequential updates ⇒ correlated samples
⇒ experience replay
From Q-values to policy, from policy to Q-values, ... ⇒ oscillations

⇒ target network

Scale of Q-values unknown ⇒ gradients with different scales

⇒ reward normalization

QL update using max
a′

Q(s, a′) ⇒ over-estimation

⇒ double Q-learning

Alessandro Lazaric

Towards DQN
15

Practical challenges in making approximate QL “more” stable
Sequential updates ⇒ correlated samples
⇒ experience replay
From Q-values to policy, from policy to Q-values, ... ⇒ oscillations
⇒ target network
Scale of Q-values unknown ⇒ gradients with different scales

⇒ reward normalization

QL update using max
a′

Q(s, a′) ⇒ over-estimation

⇒ double Q-learning

Alessandro Lazaric

Towards DQN
15

Practical challenges in making approximate QL “more” stable
Sequential updates ⇒ correlated samples
⇒ experience replay
From Q-values to policy, from policy to Q-values, ... ⇒ oscillations
⇒ target network
Scale of Q-values unknown ⇒ gradients with different scales
⇒ reward normalization
QL update using max

a′
Q(s, a′) ⇒ over-estimation

⇒ double Q-learning

Alessandro Lazaric

Towards DQN
15

Practical challenges in making approximate QL “more” stable
Sequential updates ⇒ correlated samples
⇒ experience replay
From Q-values to policy, from policy to Q-values, ... ⇒ oscillations
⇒ target network
Scale of Q-values unknown ⇒ gradients with different scales
⇒ reward normalization
QL update using max

a′
Q(s, a′) ⇒ over-estimation

⇒ double Q-learning

Alessandro Lazaric

Experience Replay
16

To help remove correlations, store dataset D from prior experience
QL online with replay buffer
• Sample experience from the dataset

(s, a, r, s′) ∼ D

• Online update

θ̂t+1 = θ̂t − αt
(
Qθt(s, a)−r − γmax

a′
Qθt(s

′, a′)︸ ︷︷ ︸
target

)
∇θQθt(s, a)

• Execute policy (e.g., ε-greedy or softmax)
• Add new sample to dataset

Alessandro Lazaric

Target Network
17

Issue: weights are updated and the target changes =⇒ non-stationarity

To help improve stability, fix the target weights used in the target calculation for
multiple updates
Target network uses a different set of weights than the weights being updated
Let θ be the parameters of the target network

Alessandro Lazaric

Target Network
18

QL online with replay buffer and target network
• Sample experience from the dataset

(s, a, r, s′) ∼ D

• Compute target
yt = r + γmax

a′
Qθ(s

′, a′)

• Online update
θ̂t+1 = θ̂t − αt

(
Qθt(s, a)− yt

)
∇θQθt(s, a)

• Execute policy (e.g., ε-greedy or softmax)
• Add new sample to dataset

Update target network θ every C steps

* it is possible to do also a smooth update of the target network θ = τθ + (1− τ)θt with τ ≈ 1. Less
used than full updates.

Alessandro Lazaric

Mini-batch Update
19

Issue: online update is inefficient with modern tools (e.g., NN)

Perform update on a mini-batch Dmini sampled from D
Let θ the target function
Mini-batch loss

L̃Dmini(θ) = E(si,ai,si+1,ri)∼D

[(
Qθ(si, ai)− ri − γmax

a′
Qθ(si+1, a

′)
)2]

Update θ using SGD on L̃Dmini(θ)

Alessandro Lazaric

Mini-Batch Update
20

Sample m transitions from replay buffer D

Λt = {(si, ai, ri, s′i)}mi=1

Compute loss

L(θ|Λt, θ) =
1

m

m∑
i=1

(
Qθ(s, a)− ri − γmax

a′
Qθ(s

′
i, a
′)
)2

Update by SGD
θt+1 = θt − α∇θL(θ|Λt, θ)

Alessandro Lazaric

DQN 21

Input: T , s0, Q0

Q = Q0, s = s0
for t = 1, . . . , T do

Execute action at ∼ πt(st)
Observe rt and next state st+1

Store transition (st,i, at,i, st+1,i, rt,i) into an experience replay buffer D
Perform update of θ on a mini-batch Dmini sampled from D using target θ

θ̂ = θ̂ − α 1

m

m∑
τ=1

(
Qθ(sτ , aτ)− rτ − γmax

a′
Qθ(sτ+1, a

′)
)
∇θQθ(sτ , aτ)

Every C steps θ ← θ
end
return Q̂, greedy(Q̂)

Alessandro Lazaric

DQN – Atari 22

Image preprocessing: grey-scale, crop to 84x84

Alessandro Lazaric

DQN – Atari 23

State definition

Alessandro Lazaric

DQN – Atari 24

Time definition: 4 last frames

Alessandro Lazaric

DQN – Atari 25

Action-value function: deepNet with as many heads as actions

Alessandro Lazaric

DQN – Atari 26

Performance

Alessandro Lazaric

DQN – Atari 27

Ablation

Alessandro Lazaric

DQN 28

Hands-on session [link] – [20min]

How does the exploration parameter
influence the performance?

Alessandro Lazaric

https://colab.research.google.com/drive/1eXg98C9yTnPzvXLpIBG3mFSx8C8aXsUD

Outline
29

1 Value-Based Methods

2 Policy Gradient

3 Actor-Critic Methods

4 Conservative Policy Gradient Methods

Alessandro Lazaric

Policy Gradient: Finite-Horizon*
30

Given an MDP M = (S,A, p, r,H, ρ) and a policy π

J(π) = E

[
H∑
t=1

rt|π,M

]
= Eτ∼P(τ |π,M) [R(τ)]

where τ = (s1, a1, r1, . . . , sH+1) is a trajectory and R(τ) its return (sum of returns).

Stochastic policy π : S → D(A)

*everything extends to infinite-horizon discounted

Alessandro Lazaric

Policy Gradient: Finite-Horizon*
30

Given an MDP M = (S,A, p, r,H, ρ) and a policy π

J(π) = E

[
H∑
t=1

rt|π,M

]
= Eτ∼P(τ |π,M) [R(τ)]

where τ = (s1, a1, r1, . . . , sH+1) is a trajectory and R(τ) its return (sum of returns).

Stochastic policy π : S → D(A)

*everything extends to infinite-horizon discounted

Alessandro Lazaric

Policy Gradient as Policy Update
31

Approximate Policy Iteration

πθk+1
= arg max

πθ

Qπθ(s, πθ(s))

Unstable (fast)

Policy Gradient

θk+1 = θk + αk∇J(θk)

Smooth, fine control (slow)

How do we compute ∇θJ(θ)?

Alessandro Lazaric

Policy Gradient Theorem
32

Theorem

For any finite-horizon MDP M = (S,A, p, r,H, ρ) and differentiable policy πθ

∇θJ(πθ) = Eτ∼P(·|π,M)

[
R(τ)

H∑
t=1

∇θ log πθ(at|st)

]

Alessandro Lazaric

REINFORCE 33

1 Let πθ1 be an arbitrary policy
2 At each iteration k = 1, . . . ,K

• Sample m trajectory τi = (s1, a1, r1, s2, . . . , sT , aT , rT , sT+1) following πk
• Compute unbiased gradient estimate

∇̂θJ(πθk) =
1

m

m∑
i=1

(H∑
t=1

rit

)(H∑
t=1

∇θ log πθk(st, at)

)
• Update parameters

θk+1 = θk + αk∇̂θJ(πθk)

3 Return last policy πθK

Alessandro Lazaric

REINFORCE as Supervised Learning
34

ĝi = R(τi)∇θ logP(τi|πθ,M)

R(τi) measures how good is sample τi
Moving in the direction of ĝi pushes up the log
probability of the sample, in proportion to how
good it is

Interpretation: uses good trajectories as supervised
examples
• Like maximum likelihood in supervised learning
• good stuff are made more likely while bad less
• Trial and Error approach

image from “CS 294-112: Deep

Reinforcement Learning” slides by S.

Levine

(?)

Alessandro Lazaric

REINFORCE as Supervised Learning
34

ĝi = R(τi)∇θ logP(τi|πθ,M)

R(τi) measures how good is sample τi
Moving in the direction of ĝi pushes up the log
probability of the sample, in proportion to how
good it is

Interpretation: uses good trajectories as supervised
examples
• Like maximum likelihood in supervised learning
• good stuff are made more likely while bad less
• Trial and Error approach

image from “CS 294-112: Deep

Reinforcement Learning” slides by S.

Levine

(?)

Alessandro Lazaric

REINFORCE as Supervised Learning
34

ĝi = R(τi)∇θ logP(τi|πθ,M)

R(τi) measures how good is sample τi
Moving in the direction of ĝi pushes up the log
probability of the sample, in proportion to how
good it is

Interpretation: uses good trajectories as supervised
examples
• Like maximum likelihood in supervised learning
• good stuff are made more likely while bad less
• Trial and Error approach

image from “CS 294-112: Deep

Reinforcement Learning” slides by S.

Levine

(?)

Alessandro Lazaric

REINFORCE 35

Pros
Easy to compute
Does not use Markov property!
Can be used in partially observable MDPs without modification

Issues
Use an MC estimate of q(s, a)

It has possibly a very large variance
Needs many samples to converge

Alessandro Lazaric

REINFORCE 35

Pros
Easy to compute
Does not use Markov property!
Can be used in partially observable MDPs without modification

Issues
Use an MC estimate of q(s, a)

It has possibly a very large variance
Needs many samples to converge

Alessandro Lazaric

REINFORCE 36

Hands-on session [link] – [20min]

How does the exploration parameter
influence the performance?

Alessandro Lazaric

https://colab.research.google.com/drive/13-ujOG7-Oxow9k_cTrAiXITxwQnC8c5r

Outline
37

1 Value-Based Methods

2 Policy Gradient

3 Actor-Critic Methods

4 Conservative Policy Gradient Methods

Alessandro Lazaric

Policy Gradient Theorem
38

Theorem
For an infinite horizon MDP (average or discounted), the policy gradient is

∇θJ(πθ) = Es∼dπθEa∼πθ(s,·) [∇θ log πθ(s, a)Qπθ(s, a)]

dπ is the stationary distribution
Qπ is the state-action value function

Alessandro Lazaric

SARSA 39

Input: T , s0, Q0

Q = Q0, s = s0, a = U(A)
for t = 1, . . . , T do

Execute action at ∼ πt,Q(·|st)
Observe rt and next state st+1

at+1 ∼ πt,Q(·|st+1)
Update

Q̂(st, at) = Q̂(st, at) + α(st)
(
rt + γQ̂(st+1, at+1)− Q̂(st, at)

)
end
return Q̂, πQ

Examples

πt,Q(a|s) =
exp(Q(s, a)/τt∑
b exp(Q(s, b)/τt)

πt,Q(a|s) = (1− εt)1
(
at = arg max

b
Q(s, b)

)
+ εt/A

Alessandro Lazaric

SARSA 40

Input: T , s0, Q0

Q = Q0, s = s0, a = U(A)
for t = 1, . . . , T do

Execute action at ∼ πt,Q(·|st)
Observe rt and next state st+1

at+1 ∼ πt,Q(·|st+1)
Update

Q̂(st, at) = Q̂(st, at) + α(st)
(
rt + γQ̂(st+1, at+1)− Q̂(st, at)

)
Update

πt,Q(a|s) =
exp(Q̂(s, a)/τt∑
b exp(Q̂(s, b)/τt)

end
return Q̂, πQ

Alessandro Lazaric

Actor-Critic 41

Actor-critic algorithms maintain two sets of parameters:
Policy parameters θ 7→ π

Action-value function parameters ω 7→ qπ

and use two different algorithms to update them
Policy gradient to update θ
TD/Sarsa to update ω

Alessandro Lazaric

Actor-Critic 42

for t = 1, . . . , T do
at ∼ πθ(st, ·) and observer rt and st+1

Compute temporal difference

δt = rt + γqω(st+1, at+1)− qω(st, at)

Update action-value

ω = ω + βδt∇ωqω(xt, at)

Update policy

θ = θ + α∇θ log πθ(st, at)qω(st, at)

end

Alessandro Lazaric

Actor-Critic 43

Issues:
qω(s, a) is a biased estimate of Qπθ(s, a)

The update of θ may not follow the gradient of ∇θJ(πθ)

Solution:
Choose the approximation space qω(s, a) carefully
=⇒ compatible function approximation between qω and πθ

Alessandro Lazaric

Compatible Function Approximation
44

Theorem
An action value function space qω is compatible with a policy space πθ if

qω(s, a) = ωT∇θ log πθ(s, a)

If ω minimizes the squared Bellman residual

ω = arg min
ω

Es∼dπθ

[∑
a

πθ(s, a)(Qπθ(s, a)− qω(s, a))2

]

Then
∇θJ(πθ) = Es∼dπθEa∼πθ [∇θ log πθ(s, a)qω(s, a)]

Alessandro Lazaric

Actor-Critic with a baseline
45

∇θJ(πθ) = Es∼dπθ

[∑
a

∇θ log(πθ(s, a))(Qπθ(s, a)− b(s))

]

b(s) minimizes the variance
V π(s) is a good choice as baseline
• it minimizes the variance in average reward

Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function

Alessandro Lazaric

Actor-Critic with advantage function (A2C)
46

It is possible to estimate V π and Qπ independently (e.g., by TD(0))

Aπ = Qω − Vν is a biased and unstable estimate
Solution:

Consider the temporal difference error

δπθ = r(s, a) + γV πθ(s′)− V πθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γV πθ(s′)|s, a]− V πθ(s) = Qπθ(s, a)− V πθ(s)

Alessandro Lazaric

Actor-Critic with advantage function (A2C)
46

It is possible to estimate V π and Qπ independently (e.g., by TD(0))
Aπ = Qω − Vν is a biased and unstable estimate

Solution:
Consider the temporal difference error

δπθ = r(s, a) + γV πθ(s′)− V πθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γV πθ(s′)|s, a]− V πθ(s) = Qπθ(s, a)− V πθ(s)

Alessandro Lazaric

Actor-Critic with advantage function (A2C)
46

It is possible to estimate V π and Qπ independently (e.g., by TD(0))
Aπ = Qω − Vν is a biased and unstable estimate

Solution:
Consider the temporal difference error

δπθ = r(s, a) + γV πθ(s′)− V πθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γV πθ(s′)|s, a]− V πθ(s) = Qπθ(s, a)− V πθ(s)

Alessandro Lazaric

Actor-Critic with advantage function (A2C)
46

It is possible to estimate V π and Qπ independently (e.g., by TD(0))
Aπ = Qω − Vν is a biased and unstable estimate

Solution:
Consider the temporal difference error

δπθ = r(s, a) + γV πθ(s′)− V πθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γV πθ(s′)|s, a]− V πθ(s) = Qπθ(s, a)− V πθ(s)

Alessandro Lazaric

Actor-Critic with advantage function (A2C)
47

for t = 1, . . . , T do
at ∼ πθ(st, ·) and observer rt and st+1

Compute temporal difference

δt = rt + γvν(st+1)− vν(st)

Update v estimate

ν = ω + βδt∇νvν(st)

Update policy

θ = θ + αδt∇θ log πθ(st, at)

end

Alessandro Lazaric

From online to batch actor-critic
48

So far we have observed fully online actor-critic approaches
• The policy is updated at each step

In some case it can be inefficient (e.g., for training approximators)

=⇒ batching as in supervised learning

— Batched Policy Evaluation —

1 Sample m trajectories τi = {s1, a1, r1, . . . , sT+1} using πθ

v̂(si,t) =

t+p∑
k=t

γk−tri,k + γpvν(si,t+p+1) bootstrapping

2 Use supervised regression on D = {(si,t, v̂(si,t))}, for all i, t

arg min
ν

1

2

∑
(s,v̂)∈D

(vν(s)− v̂)2

Alessandro Lazaric

From online to batch actor-critic
48

So far we have observed fully online actor-critic approaches
• The policy is updated at each step

In some case it can be inefficient (e.g., for training approximators)

=⇒ batching as in supervised learning

— Batched Policy Evaluation —

1 Sample m trajectories τi = {s1, a1, r1, . . . , sT+1} using πθ

v̂(si,t) =

t+p∑
k=t

γk−tri,k + γpvν(si,t+p+1) bootstrapping

2 Use supervised regression on D = {(si,t, v̂(si,t))}, for all i, t

arg min
ν

1

2

∑
(s,v̂)∈D

(vν(s)− v̂)2

Alessandro Lazaric

From online to batch actor-critic
48

So far we have observed fully online actor-critic approaches
• The policy is updated at each step

In some case it can be inefficient (e.g., for training approximators)

=⇒ batching as in supervised learning

— Batched Policy Evaluation —

1 Sample m trajectories τi = {s1, a1, r1, . . . , sT+1} using πθ

v̂(si,t) =

t+p∑
k=t

γk−tri,k + γpvν(si,t+p+1) bootstrapping

2 Use supervised regression on D = {(si,t, v̂(si,t))}, for all i, t

arg min
ν

1

2

∑
(s,v̂)∈D

(vν(s)− v̂)2

Alessandro Lazaric

From online to batch actor-critic
49

— Batched Policy Update —

1 Sample m trajectories τi = {s1, a1, r1, . . . , sT+1} using πθ
2 Compute an estimate of the gradient

ĝ =
1

m

m∑
i=1

Ti∑
t=1

∇θ log πθ(si,t, ai,t)δi,t

where δi,t = ri,t + γvν(si,t+1)− vν(si,t)

Alessandro Lazaric

Batched A2C
50

for k = 1, 2, . . . do
Generate m trajectories (τi) using policy πθk
Update v (usually p = 1)

v̂(si,t) =

t+p∑
k=t

γk−tri,k + γpvν(si,t+p+1), νk = arg min
ν

1

2

∑
(s,v̂)∈D

(vν(s)− v̂)
2

with D = (si,t, v̂(si,t))i,t
Update policy

δi,t = ri,t + γvνk(si,t+1)− vνk(si,t), ĝ =
1

m

m∑
i=1

Ti∑
t=1

∇θ log πθ(si,t, ai,t)δi,t

θk+1 = θk+1 + αĝ

end

Alessandro Lazaric

Sample Efficiency in Actor-Critic
51

Issues:
Sample efficiency is pretty poor
All samples need to be generated by the current policy (on-policy learning)
Samples are discarded after a single update

Solutions
Use samples from other policies via importance sampling (not very stable)
Conservative approaches
Variance reduction techniques
Newton or Quasi-newton methods

Alessandro Lazaric

Sample Efficiency in Actor-Critic
51

Issues:
Sample efficiency is pretty poor
All samples need to be generated by the current policy (on-policy learning)
Samples are discarded after a single update

Solutions
Use samples from other policies via importance sampling (not very stable)
Conservative approaches
Variance reduction techniques
Newton or Quasi-newton methods

Alessandro Lazaric

Outline
52

1 Value-Based Methods

2 Policy Gradient

3 Actor-Critic Methods

4 Conservative Policy Gradient Methods

Alessandro Lazaric

Relative Performance
53

Issues:
We would like to exploit past samples
We do not know how much to trust them
Depends on the distribution over trajectories induced by different policies

Performance-Difference Lemma
For any policies π, π′ ∈ ΠSR

J(π′)− J(π) =
∑
s,a

dπ
′
(s, a)Aπ(s, a)

=
∑
s

dπ
′
(s)
∑
a

π′(s, a)Aπ(s, a)

Alessandro Lazaric

Relative Performance
53

Issues:
We would like to exploit past samples
We do not know how much to trust them
Depends on the distribution over trajectories induced by different policies

Performance-Difference Lemma
For any policies π, π′ ∈ ΠSR

J(π′)− J(π) =
∑
s,a

dπ
′
(s, a)Aπ(s, a)

=
∑
s

dπ
′
(s)
∑
a

π′(s, a)Aπ(s, a)

Alessandro Lazaric

Optimization step 54

max
π′

J(π′)

= max
π′

J(π′)− J(π)

= max
π′

E(s,a)∼dπ′ [A
π(s, a)]

Issue: as before, cannot be directly estimated using information from π

Alessandro Lazaric

Optimization step 54

max
π′

J(π′) = max
π′

J(π′)− J(π)

= max
π′

E(s,a)∼dπ′ [A
π(s, a)]

Issue: as before, cannot be directly estimated using information from π

Alessandro Lazaric

Optimization step 54

max
π′

J(π′) = max
π′

J(π′)− J(π)

= max
π′

E(s,a)∼dπ′ [A
π(s, a)]

Issue: as before, cannot be directly estimated using information from π

Alessandro Lazaric

Optimization step 55

J(π′)− J(π) = Es∼dπ
[∑

a

π′(s, a)Aπ(s, a)

]
+
∑
s

(dπ
′
(s)− dπ(s))

∑
a

π′(s, a)Aπ(s, a)

where ε = max
s

∣∣Ea∼π′ [Aπ(s, a)]
∣∣ and

DTV (π′‖π)[s] =
∑
a

|π′(s, a)− π(s, a)|

Alessandro Lazaric

Optimization step 55

J(π′)− J(π) = Es∼dπ
[∑

a

π′(s, a)Aπ(s, a)

]
+
∑
s

(dπ
′
(s)− dπ(s))︸ ︷︷ ︸

?©

∑
a

π′(s, a)Aπ(s, a)

≥ Es∼dπ
[∑

a

π′(s, a)Aπ(s, a)− γε

(1− γ)2
DTV (π′‖π)[s]

]

where ε = max
s

∣∣Ea∼π′ [Aπ(s, a)]
∣∣ and

DTV (π′‖π)[s] =
∑
a

|π′(s, a)− π(s, a)|

Alessandro Lazaric

Surrogate Loss 56

Lπ(π′) = J(π) +
∑
s

dπ(s)
∑
a

π′(s, a)Aπ(s, a)

−
∑
s

dπ(s)
γε

(1− γ)2
DTV (π′‖π)[s]

Lπ(π) = J(π)

If parametric policies π = πθ, ∇θLπθ(πθ) = ∇θJ(πθ)

U in an interval close to π, Lπ is a good surrogate for J

=⇒ Conservative Policy Iteration

Alessandro Lazaric

Surrogate Loss 56

Lπ(π′) = J(π) +
∑
s

dπ(s)
∑
a

π′(s, a)Aπ(s, a) −
∑
s

dπ(s)
γε

(1− γ)2
DTV (π′‖π)[s]

Lπ(π) = J(π)

If parametric policies π = πθ, ∇θLπθ(πθ) = ∇θJ(πθ)

U in an interval close to π, Lπ is a good surrogate for J

=⇒ Conservative Policy Iteration

also with this

Alessandro Lazaric

Surrogate Loss Cont’d
57

Alessandro Lazaric

Conservative Policy Iteration
58

New policy improvement schema
- Give current policy πk solve

max
π′

{
Lπk(π′)−C Es∼dπk

[
DTV (π′‖πk)[s]

]}

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Alessandro Lazaric

Conservative Policy Iteration
58

New policy improvement schema
- Give current policy πk solve

max
π′

{
Lπk(π′)−C Es∼dπk

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Alessandro Lazaric

Conservative Policy Iteration
58

New policy improvement schema
- Give current policy πk solve

J(π′)− J(πk) ≥ max
π′

{
Lπk(π′)−C Es∼dπk

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Alessandro Lazaric

Conservative Policy Iteration
58

New policy improvement schema
- Give current policy πk solve

J(π′)− J(πk) ≥ max
π′

{
Lπk(π′)−C Es∼dπk

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Alessandro Lazaric

Conservative Policy Iteration
58

New policy improvement schema
- Give current policy πk solve

J(π′)− J(πk) ≥ max
π′

{
Lπk(π′)−C Es∼dπk

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Alessandro Lazaric

Idea
59

η(θ) = E

[∞∑
t=1

rt|πθ

]
and M is the lower bound

Source

Alessandro Lazaric

https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33

Approximate Monotone Improvement 60

The objective can be estimated using rollouts from the most recent policy
Updates respect a notion of distance in the policy space!

This is the basis for many algorithms!

Alessandro Lazaric

Toward Practical Algorithm
61

Optimizing the total variation DTV (π′‖π) may be difficult

Relax the problem using Pinsker’s inequality (?)

DTV (π′‖π) ≤
√

2DKL(π′‖π)

Alessandro Lazaric

Further Steps toward Practical Algorithms
62

C provided by theory is quite high (too conservartive)
Replace regularization with constraint (trust region) (e.g., REPS (?))

πk+1 = arg max
π′

Lπ(π′)

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ

Importance weighting

Es∼dπEa∼π′ [Aπ(s, a)] = Es∼dπEa∼z
[
π′(s, a)

z(s, a)
Aπ(s, a)

]
=⇒ Natural Policy Gradient (NPG)
=⇒ Trust-Region Policy Optimization (TRPO)

Alessandro Lazaric

Further Steps toward Practical Algorithms
62

C provided by theory is quite high (too conservartive)
Replace regularization with constraint (trust region) (e.g., REPS (?))

πk+1 = arg max
π′

Lπ(π′)

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ

Importance weighting

Es∼dπEa∼π′ [Aπ(s, a)] = Es∼dπEa∼z
[
π′(s, a)

z(s, a)
Aπ(s, a)

]

=⇒ Natural Policy Gradient (NPG)
=⇒ Trust-Region Policy Optimization (TRPO)

Alessandro Lazaric

Further Steps toward Practical Algorithms
62

C provided by theory is quite high (too conservartive)
Replace regularization with constraint (trust region) (e.g., REPS (?))

πk+1 = arg max
π′

Lπ(π′)

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ

Importance weighting

Es∼dπEa∼π′ [Aπ(s, a)] = Es∼dπEa∼z
[
π′(s, a)

z(s, a)
Aπ(s, a)

]
=⇒ Natural Policy Gradient (NPG)
=⇒ Trust-Region Policy Optimization (TRPO)

Alessandro Lazaric

Thank you!

	Value-Based Methods
	Policy Gradient
	Actor-Critic Methods
	Conservative Policy Gradient Methods

