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Policy Evaluation

Fixed policy 7

Fori=1,...,n
Sett =0
Set initial state sg
While (s;; not terminal)  [execute one trajectory]

Take action a; ; = 7(s;;)
Observe next state s, ; and reward 7, ; = r(s;;, a;;) ~ (S, a0)
Sett=t+1
EndWhile
EndFor

Return: Estimate of the value function 17”()
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The RL Interaction Protocol
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State Value Function

Fixed point of Bellman equation

VT(s) =17(s) +7 Y _p(s/|s)V7(s)

facebook Artificial Intelligence Research Alessandro Lazaric



Temporal Difference T'D(0)

Input: 7, T, so, Vo

V =Vy, s =50

fort=1,...,T do
Execute action a; = 7(s¢)
Observe r; and next state s¢11
Update

~

V(se) = V() + als) (re + 9V (se41) = V(s1))
end
return \7
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Temporal Difference T'D(0): Intuition

The Temporal difference error of estimate V™ w.r.t. transition (s¢, 74, Si41)

5,5 =1+ ’y‘/}W(SL+1) - ‘/}W(SL)
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Temporal Difference T'D(0): Intuition

The Temporal difference error of estimate V™ w.r.t. transition (Sty 7ty St41)
0 =71+ YV (5141) — V7 (s1)
= Bellman error for function V at state s

B™(V;s) —|—’yZp V() =V(s) B (V7)) =0

m Conditioned on s;, 0; is an unbiased estimate of B

]ETt,StJrl [575{515] = rﬂ(st) + ’Y]Est+1|st [Vw(stJrl)] - ‘77r(8t) = BW(VW7 St)
» Expected dynamics of TD(0)

Vi (s1) =V (s1) + a(s) B (V" 51)
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Temporal-Difference TD(0): Alternative View

= Mix between old and new estimate of V7" (s;)
old estimate ‘A/“(st) new estimate 7 + 7‘7”(5,5“)

m Weighted average

Vm(s) = (1 )V (ss) + (rt + 717”(3t+1)>
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Temporal-Difference TD(0): Properties

Let TD(0) run with learning rate a(Ny(st)) where Ny(s¢) is the number of visits to the
state s;. If all states are visited infinitely often and the learning rate is set such that

(o9} o
Z a(t) =00 Z a(t)? < oo [Robbins Monro's condition]
=0 t=0

then for any state s € S R
V™(s) “5% VT(s).

> standard choise is ay(s) = % for g€ (1/2,1]

7

~

Vi(s) = Viea(s) + (r +4Vie1(s') = Viea(s))

1
Nt(S)B

where N;(s) is the number of visits to state s before ¢
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Example: Random Walk
Q

PN LI U o U I NG W

start
0.8 Estimated 0.25 -~ Empirical RMS error,
value averaged over states
06 0.2 -
0.15
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True 0.1
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State Walks / Episodes
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Outline

Actor-Critic
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Policy Learning

Learn optimal policy 7*

Fori=1,...,n
Sett =0
Set initial state sg

While (s;; not terminal)
Take action a;

Observe next state s;41; and reward 7 ; = (¢, Qi)
Sett=t+1

EndWhile
EndFor

[execute one trajectory]

Return: Estimate of the optimal policy 7*
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Actor-Critic Methods

13

Critic: estimate the value function of the policy given by the actor

Actor: change the policy to improve the value given by the critic

Reward

State

Action

Values
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Policy lteration

Let my be an arbitrary stationary policy
while k=1,..., K do
Policy Evaluation: given m, compute Q™"

Policy Improvement: find 71 that is better than 7y
- e.g., compute the greedy policy

Tr+1(8) € arg max Q™" (s, a)
acA

return the last policy 7
end

Policy Iteration is an instance of actor-critic methods:
Actor: acts greedily (i.e., mry1 = greedy(Q™))
Critic: compute @ given the policy 7
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Generalized Policy lteration

More generally:
m Actor: policy improvement (even approximate)

m Critic: policy evaluation

(?7) refers to actor/critic methods as generalized policy iteration (GPI)

2 many possible schemes!
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SARSA "

Actor: the goal is to move the policy toward the greedy policy w.r.t. to the critic value

Possible strategies
greedy (does not explore enough!)
e-greedy policy mg(als)
a=U(A) with probability e
a = arg max Q(s,a) with probability 1 — €

a

soft-max (random) exploratory policy with temperature 7

rolals) = <EP@Ea)/7)
9 > exp(Q(s, a')/7)

The higher Q(s, a), the more probability to take action a in state s
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SARSA

Critic: uses TD to update the estimated Q-function

Compute the temporal difference on the trajectory (s, at, ¢, St+1, ary1) (with
actions chosen according to 7 (als))

O =1 + 'Y@(&H—la apy1) — @(St,at)
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SARSA :

Critic: uses TD to update the estimated Q-function

Compute the temporal difference on the trajectory (s, at, ¢, St+1, ary1) (with
actions chosen according to 7 (als))

O =1 + 'Y@(&H—la apy1) — @(St, at)

Update the estimate of () as

-~

Q(St, at) = (}(Sf (lf) + (,Y(St, at)d.t

State Action Reward State Action (SARSA) update
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SARSA

Input: T, so, Qo
Q= Qo, s=s0,a=U(A)
fort=1,...,T do
Execute action a; ~ 7t,Q(+|st)
Observe r;: and next state s;y1
at+1 ~ TF/.Q("S’/, i 1)
Update

-~

Q(st,ae) = Q(se, ar) + a(se) (re +vYQ(se41, ar41) — Q(s¢,ar))
end
return @ TQ

Examples

™ (a|s) _ exp(Q(s, a’)/Tt
9 > exp(Q(s,b)/7)

molals) = (1 —¢)l (at = arg ;naxQ(s, b)) +e/A
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SARSA: Properties (informal)

The T'D updates make @ converge to Q7
The update of 7 allows to improve the policy

A decreasing temperature allows to become more and more greedy
= If 7 — 0 with a proper rate, then Q — Q" and 7 — 7"

Similarly for e-greedy

facebook Artificial Intelligence Research Alessandro Lazaric

19



SARSA: Limitations

The actions a; need to be selected according to the current )

= On-policy learning
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Outline

Q-Learning
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The Optimal Bellman Equation

The optimal value function Q" (i.e., Q" = max Q™) is the solution to the optimal
v

Bellman equation:

* _ ! . LYV AN
Q (s,a) - r(s,a) + ’YZP(S ’s7a)§}g§Q (8 @ )

Sl
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Q-Learning

Input: T, so, Qo

Q= Qo, 5= 50

fort=1,...,T do
Execute action a; ~ m¢(s¢)
Observe r; and next state s¢11
Update

Qv a1) = Qlsv, au) + alse, ar)(re + ymax Qlse1,2) = Qlsv, ar))

end
return Q, greedy(@)

The policy m; is only required to cover all actions with non-zero probability
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Q-Learning: Properties

If the learning rate satisfies the Robbins-Monro conditions in all states s,a € S x A

) 0o
Zai('S?a) = 00, ZOZ%(S,(Z) < 00,
i=0 =0

and all state-action pairs are tried infinitely often, then for all s,a € S x A

@(8, a) &5 Q* (s, a)

Remark: this is another example of R-M algorithm
Remark: “infinitely often” requires a steady exploration policy
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Q-Learning vs. SARSA

Update rule
m Q-Learning

~

Q(st,ap) = @(St, at) + o(ry + ’YH}I%X@(SHA’G,) - @(St,at))

m SARSA

~

Q(st,ar) = Q(st, ar) + alry +vQ (541, arr1) — Q(st, ar))

Both aim at learning the target policy 7°(s) = arg max Q*(s, a)
a

» Q-learning can use any behavioral policy (off-policy learning)

m for SARSA the behavioral policy should be close to the estimated target policy
(on-policy learning)
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The Taxi Problem

Hands-on session [link] — [20min]

S +
. . . |[R: | : :G]|

m Plot learning progress during training and | | |
evaluate performance at testing over | : T |
multiple episodes | st |

= How do learning rate and exploration Y| IB: |
parameters influence the performance? e +

(North)
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https://colab.research.google.com/drive/1S8ni4IqtlK2iM3k92V8NMaJp6-rbGA5t
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