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The Optimization Problem

max V" (sg) =

= max E[r(so, 7(s0)) +y7(s1,7(s51)) + v*r(s2, 7(52)) + ... ]

(o]
= max B |34t (si, ap)lar = m(s0)
t=0
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The Bellman Equation

For any stationary deterministic policy m = (d,d, ...), at any state s € S, the state
value function satisfies the Bellman equation:

V7(s) = r(s,m(s) +72py!87r V7(y).
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The student dilemma
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The student dilemma
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The student dilemma

Computing Vj:

r=—10

V5=-10
Ve = 100
Vi = —10+ (0.9Vs + 0.1V3) o

Vo = 100
—10+ 0.9V
=V, = T6 = 88.8 r=—1000
V., =-100(
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The student dilemma

Computing V3: no need to con-

sider all possible trajectories r=-10
Vs=-10
Vy =888
Vi =—-14(0.5V, 4+ 0.5V3) r=100
Vé =100
—14 0.5V, _
=V = —55 1 _86.8 r=—1000
’ V., = —100(
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Bellman Equation: a System of Equations

The Bellman equation

Vi(s) =r(s,m(s)) +v > plyls, m(s))V " (y).

is a linear system of equations with S = |S| unknowns and S linear constraints.

Matrix notation
VT eR®, 1" eR® PTeRS*S

then

VT =r" + PV
— V= —yP")" "

? V™ can be compute inverting a S x S matrix (O(S®) time)
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The student dilemma

V(@) = r(w,w(@) + 7Y plyle, (2))V " (y)

System of equations

Vi = 0405V, 405V, VReE P e R
Vo = 1403V, 40.7V;

Vs = —1405Vi+ 05V V=R+PV
Vi = —104 0.9V, + 0.1V, N

v, =10 ¢

Vi =100 V=(I-P)'R
Ve = —1000
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The Optimal Bellman Equation

The optimal value function V* (i.e., V* = max V™) is the solution to the optimal
s

Bellman equation:

V*(s) = 1;1;3([7’(8, a) + ’YZP(3/|S, a)V*(s")].

and any optimal policy is such that

7(s) € arg 211121)4( [r(s, a)+~ Zp(s'\s, a)V*(s')].

S
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The Student Dilemma
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r=100
0.6
0.9 6
Rest
1 r=—1000
—
Work

facebook Artificial Intelligence Research Alessandro Lazaric



The Student Dilemma N

V*(z) = max[r(z,a) + v Zp(y|a:, a)V* (y)]

acA
Y

System of equations

Vi =max{0+0.5V; +0.5V2; 0+ 0.5V, +0.5V;}
Vo =max{1+04V;+0.6V2; 140.3V; +0.7V5}
Vs =max{ —140.4V5+0.6V5; —140.5V,+0.5V5}

Vi =max{—10+0.9V;+0.1Vs; —10+ 17}
Vs =-10

Vs =100

V= —1000

= too complicated, we need to find an alternative solution.
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State-Action Value Function

In discounted infinite horizon problems, for any policy 7, the state-action value function
(or Q-function) Q™ : S x A— R is

o
Qﬂ'(é’, (J,) = E[Z’)’tr(st’atﬂso = S5,a0 = a,at = W(St),vt > 1:|7
t=0

The optimal Q-function is
Q*(s,a) = max Q" (s, a),
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Greedy Policy

The greedy policy with respect to a value 1V € R”, is defined as

7(s) € arg max |r(s,a) + ’yZp(s’]s,a)V(s’)

acA o

The greedy policy with respect to a value ) ¢ R”*“ is defined as

m(s) € arg max Q(s,a)
acA

7 from Bellman optimality equations

7 = greedy(V*) or 7* = greedy(Q")
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State-Action and State Value Function

Q" (s,a) = (s,a) +v)_pls']s,a)V7(s)

8/

VTi(s) = Q" (s,m(s))

Q*(s,a) = r(s,a) +v ) _p(s|s,a)V*(s))

S/

V*(s) = Q" (s,7(s)) = maxeeaQ (s, a)
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Value lteration

Input: S, A, 7, p, €
Set Qo(s,a) =0 forall (s,a) eSx A k=0

repeat
for (s,a) € S x A do
Compute
Quia(s,a) = 1(s,0) + 73 0(s']s, 0) max Qu(s', )
end
k=k+1

until | Q1 — Qilloe < €
return greedy policy 7mc(s) = arg max,e 4Qx (s, a)
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Value Iteration: the Guarantees

Theorem

Let Qo € RY be an arbitrary function, then the sequence of functions {()}.},. generated by
value iteration converges to the optimal value function ()*.

Furthermore, let € > 0 and max |r(s, a)| < rmax < 00, then after at most
s,a

7 Fog((ll—ogv()ﬁ/f)/rmax)w

iterations || Qx — Q" [|c < €.
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Value Iteration: the Guarantees

Corollary

Let Vi the function computed after K iterations by value iteration, then the greedy policy
Ti(s) € argmax Qi (s, a)
acA

is such that ,

o 197 - Q-
T N —

performance loss approx. error

[V = V™l <
—_———

Furthermore, there exists ¢ > 0 such that if |Qx — Q*||cc < €, then Tk is optimal.
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Proof: Performance Loss

For any W € RY, the Bellman operator T™ : RY — R is

T™W(s) =r(s,m(s)) + 7Y _ (5|, w(s)W(s'),

and the optimal Bellman operator (or dynamic programming operator) is

TW(s) = maxsea[r(s,a) + 7 Zp(s’\s, a)W(s)].

Sl

The (policy/optimal) value functions are fixed point of the their operators

VT(' = Tﬂ'Vﬂ"
Vr=TV*.
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Proof: Performance Loss

The Bellman operators are ~y-contractions in ell.-norm

[TW1 = TWallee < IIW1 — Wal
[T"W1 = T™Walleo <7[[W1 = Walloo
For any s € S
[ TW(s) = TW2(s)|
= | max [r(s, @) + 4 3 p(s'ls, )W (s")] —max [r(s,a') + 3 p(s']s, a)Wa(s)]

< max
a

[r(s,0) +7 300l ls, @)W ()] = [r(s, @)+ 3 p(s'|s, @) Wa(s))]
= ymax 3 p(s']s, @)[Wa(s') — Wa(s')

< A[W1 = Weleo max Y p(s'|s,a) = v W1 — Wo||o,
@ ’
S
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Proof: Performance Loss

V5=Vl < [ITV" =T V]oo + TV = TVl
STV =TVl +IV =Vl
<AV = Voo + IV = Voo + IVF = VTloo)

2 *
< V=V
-
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Value Iteration: the Complexity

Time complexity

m Each iteration takes O(S”A) operations

Qrr1(s,0) = r(s,a) + 7 p(s']s, a) max Qu(s', a')

S/
m The computation of the greedy policy takes O(SA) operations
Ti(s) € argmax Qk (s, a)
a€A
m Total time complexity O(/ S A)
Space complexity

= Storing the MDP: dynamics O(5”A) and reward O(SA).
m Storing the value function O(SA) and the optimal policy O(S).
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Policy lteration

Let my be an arbitrary stationary policy
while k=1,..., K do
Policy Evaluation: given m, compute V¢

Policy Improvement: find 71 that is better than 7y
- e.g., compute the greedy policy

T (5) € arg max {( a)++ 3 plyls, a)V™ ()
ac y

return the last policy g
end

}
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Policy Iteration: the Guarantees

Proposition

The policy iteration algorithm generates a sequences of policies with non-decreasing

pe”o””ance
‘/7 k+1>‘/7k,

and it converges to * in a finite number of iterations.
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Policy Iteration: Complexity

Policy Evaluation Step
= Solution of the Bellman equations O(S?)
g2 os(1/0

m |terative policy evaluation O(
log(1/7)

Policy Improvement Step

u If the policy is evaluated with V', then complexity O(SA)
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Policy Iteration: Complexity

Policy Evaluation Step
Solution of the Bellman equations O(S?)
g2 os(1/0

Iterative policy evaluation O(
log(1/7)

Policy Improvement Step
If the policy is evaluated with V', then complexity O(SA)
If the policy is evaluated with (), then complexity O(A)

Ti41(s) € argmax Q™ (s, a),
acA

Number of Iterations

SA 1
A 1
t most O<1_7 og(1_7)>

Other results exist that do not depend on ~
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Comparison between Value and Policy Iteration

Value Iteration
m Pros: each iteration is computationally efficient.

m Cons: convergence is asymptotic.

Policy Iteration
m Pros: converge in a finite number of iterations (often small in practice).

m Cons: each iteration requires a full policy evaluation and it might be expensive.
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The Grid-World Problem

Hands-on session [link] — [5min]
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https://www.cs.cmu.edu/~awm/rlsim/
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