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ATARI Breakout
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Agent: paddle
Environment: ball and bricks
Reward: points
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Markov Decision Process
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Definition (Markov decision process)
A Markov decision process is defined as a tuple M = (S,A, p, r) where

S is the state space,
A is the action space,
p(s′|s, a) is the transition probability with

p(s′|s, a) = P(st+1 = s′|st = s, at = a),

r(s, a, s′) is the reward of transition (s, a, s′).

� The process generates trajectories ht = (s1, a1, . . ., st−1, at−1, st), with
st+1 ∼ p(·|st, at)
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Markov Decision Process: the Assumptions
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Markov assumption: the current state s and action a are a sufficient statistics for the
next state s′

p(s′|s, a) = P(st+1 = s′|st = s, at = a)

Possible relaxations
Possible to extend to continuous state-action space
Define a new state xt = (st, st−1, st−2, . . .) (i.e., k-order MDP)
Move to partially observable MDP (PO-MDP)
Move to predictive state representation (PSR) model
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Non-Markov dynamics
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4 consecutive frames = single observation
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Markov Decision Process: the Assumptions
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Time assumption: time is discrete

t→ t+ 1

Possible relaxations
Identify the proper time granularity
Most of MDP literature extends to continuous time
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Too fine-grained resolution
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Too coarse-grained resolution
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Too coarse-grained resolution
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Markov Decision Process: the Assumptions
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Reward assumption: the reward is uniquely defined by a transition (or part of it)

r(x, a, y)

Possible relaxations
Distinguish between global goal and reward function
Move to inverse reinforcement learning (IRL) to induce the reward function from
desired behaviors
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Markov Decision Process: the Assumptions
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Stationarity assumption: the dynamics and reward do not change over time

p(y|x, a) = P(xt+1 = y|xt = x, at = a) r(x, a, y)

Possible relaxations
Identify and remove the non-stationary components (e.g., cyclo-stationary
dynamics)
Identify the time-scale of the changes
Work on finite horizon problems
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Hands-on: the Retail Store Management Problem
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Question: How do you formalize this problem as an MDP? [5min]

At each month t, a store contains st items of a specific goods and the demand for that goods
is Dt. At the end of each month the manager of the store can order at more items from the
supplier. Furthermore we know that

The cost of maintaining an inventory of s is h(s).

The cost to order a items is C(a).

The income for selling q items is f(q).

If the demand D is bigger than the available inventory s, customers that cannot be served
leave.

The value of the remaining inventory at the end of the year is g(s).

Constraint: the store has a maximum capacity M .

Goal: maximize some measure of profit
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Hands-on: the Retail Store Management Problem
Solution
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State space: s ∈ S = {0, 1, . . . ,M}.

Action space: it is not possible to order more items that the capacity of the store, then
the action space should depend on the current state. Formally, at state s,
a ∈ A(s) = {0, 1, . . . ,M − s}.

Dynamics: st+1 = [st + at −Dt]
+.

Problem: the dynamics should be Markov and stationary!

The demand Dt is stochastic and time-independent. Formally, Dt
i.i.d.∼ D.

Reward : rt = −C(at)− h(st + at) + f([st + at − st+1]+).
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1 Markov Decision Process

2 Policies and Value Functions
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Policy
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Definition (Policy)
A deterministic stationary policy is

π : S → A

Other options
Stochastic
History-dependent
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Example: the Retail Store Management Problem
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Stationary policy composed of deterministic Markov decision rules

π(s) =

{
M − s if s < M/4

0 otherwise

Stationary policy composed of stochastic history-dependent decision rules

π(st) =

{
U(M − s,M − s+ 10) if st < st−1/2

0 otherwise
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State Value Function
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Given a policy π

Infinite time horizon with discount: the problem never terminates but rewards
which are closer in time receive a higher importance.

V π(s) = E
[ ∞∑
t=0

γtr(st, π(st)) | s0 = s;π

]
,

with discount factor 0 ≤ γ < 1:
• small = short-term rewards, big = long-term rewards
• for any γ ∈ [0, 1) the series always converge (for bounded rewards)
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State Value Function
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Technical note: the expectations refer to all possible stochastic trajectories.
A (possibly non-stationary stochastic) policy π applied from state s0 returns

(s0, r0, s1, r1, s2, r2, . . .)

where rt = r(st, π(st)) and st ∼ p(·|st−1, at−1 = π(st−1)) are random realizations.

The value function (discounted infinite horizon) is

V π(s) = E(s1,s2,...)

[ ∞∑
t=0

γtr(st, π(st)) | s0 = s;π

]
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Optimization Problem
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Definition (Optimal policy and optimal value function)

The solution to an MDP is an optimal policy π? satisfying

π? ∈ arg max
π∈Π

V π

in all the states s ∈ S, where Π is some policy set of interest.

The corresponding value function is the optimal value function

V ? = V π?
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Hands-on: the Retail Store Management Problem
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Material [link] – [10min]
Questions

Which policy performs best? Why?
What is the influence of the cost and reward functions in the performance of the
two policies provided as example?
Define an alternative policy and test its performance
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Hands-on: the Retail Store Management Problem
Solution
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Questions
Which policy performs best? Why?
refill_under_threshold works best because it avoids incurring large storage and order costs and it does

not miss demand.

What is the influence of the cost and reward functions in the performance of the
two policies provided as example?
refill_under_threshold works best because it avoids incurring large storage and order costs and it does

not miss demand.

Define an alternative policy and test its performance
Who obtained the best score?
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Example: ATARI Breakout
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video
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Thank you!


