One Signal Processing view on Deep Learning

Edouard Oyallon

edouard.oyallon@lip6.fr

CNRS, LIP6

Intro: Image classification or generation, some challenging tasks.

Intro: Image classification or generation, some challenging tasks.

- A. Fighting the curse of dimensionality with Deep Neural Networks.
 - 1. A fantastic tool to empirically solve high dimensional tasks...
 - 2. . . . that requires many recipes to be trained.

Intro: Image classification or generation, some challenging tasks.

- A. Fighting the curse of dimensionality with Deep Neural Networks.
 - 1. A fantastic tool to empirically solve high dimensional tasks...
 - 2. . . . that requires many recipes to be trained.
- B. Interpretability in deep learning.
 - 1. Under the hood of neural networks.
 - 2. Invariant Representations and Deep Neural Networks.

Intro: Image classification or generation, some challenging tasks.

A. Fighting the curse of dimensionality with Deep Neural Networks.

- 1. A fantastic tool to empirically solve high dimensional tasks...
- 2. . . . that requires many recipes to be trained.

B. Interpretability in deep learning.

- 1. Under the hood of neural networks.
- 2. Invariant Representations and Deep Neural Networks.

C. Statistical learning results.

- 1. An opaque black-box from the learning theory perspective.
- 2. Sometimes, well understood: 1 hidden-layer Neural Networks

- A. Make your own Invertible Neural Networks
- B. A tutorial to the Scattering Transform
- C. (if we have time) Get insights on a pretrained model.

Introduction to image classification

44444444444 555555555 7777717777 8888888888

Interpretability in Deep Learning

Fighting the curse of dimensionality with Deep Neural Networks

Statistical learning results

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

An example of supervised task: classification

• PdFs are difficult to estimate in high dimension.

• For a fixed number of points and bin size, as N increases, the bins are likely to be empty.

• PdFs are difficult to estimate in high dimension.

• For a fixed number of points and bin size, as N increases, the bins are likely to be empty.

Curse of dimensionality: occurs in many machine learning problems

$$\mathcal{X} = \mathbb{R}^2$$

Samples space

$$\mathcal{Y} = \{\bullet, \bullet\}$$

Labels

Input data
$$\xrightarrow{\Phi?}$$
 Output data $x \in \mathcal{X}$ $\Phi(x) \approx y \in \mathcal{Y}$

$$\mathcal{X} = \mathbb{R}^2$$
 Samples space $\mathcal{Y} = \{\bullet, \bullet\}$ Labels Input data $\xrightarrow{\Phi?}$ Output data $x \in \mathcal{X}$ $\Phi(x) \approx y \in \mathcal{Y}$

• Estimating a label y from a sample x, by training a model Φ on a training set. Validation of the model is done on a different test set.

$$\mathcal{X} = \mathbb{R}^2$$
 Samples space $\mathcal{Y} = \{\bullet, \bullet\}$ Labels

Input data $\xrightarrow{\Phi?}$ Output data $x \in \mathcal{X}$ $\Phi(x) \approx y \in \mathcal{Y}$

- Estimating a label y from a sample x, by training a model Φ on a training set. Validation of the model is done on a different test set.
- Examples: prediction, regression, classification,...

$$\mathcal{X} = \mathbb{R}^2$$
 Samples space $\mathcal{Y} = \{\bullet, \bullet\}$ Labels

Input data $\xrightarrow{\Phi?}$ Output data $x \in \mathcal{X}$ $\Phi(x) \approx y \in \mathcal{Y}$

- Estimating a label y from a sample x, by training a model Φ on a training set. Validation of the model is done on a different test set.
- Examples: prediction, regression, classification,...
- Best setting: dimensions of x and y is small, \mathcal{X} large

Many types of supervision...

: dataset to construct Φ

• Supervised learning:

$$\mathcal{D} = \{(x, y)\}$$

• Unsupervised learning:

$$\mathcal{D} = \{(x)\}\$$

• Semi-supervised learning:

$$\mathcal{D} = \{(x_1)\} \cup \{(x_2, y_2)\}\$$

• Weakly-supervised learning:

$$\mathcal{D} = \{(x_1, y_1 + \epsilon_1)\} \cup \{(x_2)\}$$

• Self-supervised learning:

$$\mathcal{D} = \{(x(p), y(p))\}$$
 often few gold data

• Multi-task, Transfer-learning:

$$\mathcal{D}_1 o \mathcal{D}_2$$

• How to address a supervised task:

- How to address a supervised task:
 - 1. Propose a model of your data.

- How to address a supervised task:
 - 1. Propose a model of your data.

Ex.: MNIST (60k samples)

- How to address a supervised task:
 - 1. Propose a model of your data.

Ex.: MNIST (60k samples)

2. Design a representation.

- How to address a supervised task:
 - 1. Propose a model of your data.

Ex.: MNIST (60k samples)

2. Design a representation.

Ex.: Scattering Transform.

Achieves translation invariance, linearises deformations.

- How to address a supervised task:
 - 1. Propose a model of your data.

Ex.: MNIST (60k samples)

2. Design a representation.

Ex.: Scattering Transform.

Achieves translation invariance, linearises deformations.

3. Propose a (convex) classifier.

- How to address a supervised task:
 - 1. Propose a model of your data.

Ex.: MNIST (60k samples)

2. Design a representation.

Ex.: Scattering Transform.

Achieves translation invariance, linearises deformations.

3. Propose a (convex) classifier.

Ex.: Linear SVM.

··· Displacement

- How to address a supervised task:
 - 1. Propose a model of your data.

Ex.: MNIST (60k samples)

Ex.: Scattering Transform.

Achieves translation invariance, linearises deformations.

3. Propose a (convex) classifier.

Ex.: Linear SVM.

··· Displacement

4. Obtain reasonable performances.

1. No model known on real images

- 1. No model known on real images
- 2. Limited a priori, except translation invariance

- 1. No model known on real images
- 2. Limited a priori, except translation invariance
- 3. Learn each parameters...

- 1. No model known on real images
- 2. Limited a priori, except translation invariance
- 3. Learn each parameters...
- 4. Obtain the best performances

- 1. No model known on real images
- 2. Limited a priori, except translation invariance
- 3. Learn each parameters...
- 4. Obtain the best performances

The reason of their success is unclear...

Large datasets...

Ref.: <u>image-net.org</u>

Large datasets...

• ImageNet 2012: (350GB)

1 million training images, 1 000 classes

400 000 test images

Large coloured images of various sizes

Ref.: <u>image-net.org</u>

Large datasets...

- ImageNet 2012: (350GB)
 1 million training images, 1 000 classes
 400 000 test images
 Large coloured images of various sizes
- Labels obtained via Amazon Turk (complex process that requires human labelling)

·.11

Ref.: image-net.org

Image variabilities

Geometric variability

Groups acting on images: translation, rotation, scaling

Other sources: luminosity, occlusion, small deformations

Difficult problems due to

Image variabilities

Geometric variability

Groups acting on images: translation, rotation, scaling

Other sources: luminosity, occlusion, small deformations

Class variability

Intraclass variability

Not informative

Extraclass variability

Difficult problems due to Image variabilities

Geometric variability

Groups acting on images: translation, rotation, scaling

Other sources: luminosity, occlusion, small deformations

Class variability

Intraclass variability

Not informative

Extraclass variability

High variance: hard to reduce!

EPMLA Desirable properties of a

representation

• Invariance to group G of transformation (e.g. rototranslation):

$$\forall x, \forall g \in G, \Phi(g.x) = \Phi(x)$$

• Stability to noise

$$\forall x, y, \|\Phi(x) - \Phi(y)\|_2 \le \|x - y\|_2$$

• Reconstruction properties

$$y = \Phi(x) \Longleftrightarrow x = \Phi^{-1}(y)$$

• Linear separation of the different classes

$$\forall i \neq j, ||E(\Phi(X_i)) - E(\Phi(X_j))||_2 \gg 1$$

$$\forall i, \sigma(\Phi(X_i)) \ll 1$$

EPMLA Desirable properties of a

representation

• Invariance to group G of transformation (e.g. rototranslation):

$$\forall x, \forall g \in G, \Phi(g.x) = \Phi(x)$$

• Stability to noise

$$\forall x, y, \|\Phi(x) - \Phi(y)\|_2 \le \|x - y\|_2$$

• Reconstruction properties

$$y = \Phi(x) \Longleftrightarrow x = \Phi^{-1}(y)$$

• Linear separation of the different classes

$$\forall i \neq j, ||E(\Phi(X_i)) - E(\Phi(X_j))||_2 \gg 1$$

Can be difficult to handcraft.. $\forall i, \sigma(\Phi(X_i)) \ll 1$

Is this solvable?

Years of research...

Introduction to image classification

Interpretability in Deep Learning

Fighting the curse of dimensionality with Deep Neural Networks

Statistical learning results

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

Solving high-dimensional tasks with deep learning

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

• Solve several high dimensional problems that seemed intractable. Impressive benchmarks.

- Solve several high dimensional problems that seemed intractable. Impressive benchmarks.
- Requires a huge amount of labeled data

- Solve several high dimensional problems that seemed intractable. Impressive benchmarks.
- Requires a huge amount of labeled data
- Generic and simple to deploy (present in many final products) / requires a large expertise (highly demanded profiles)

- Solve several high dimensional problems that seemed intractable. Impressive benchmarks.
- Requires a huge amount of labeled data
- Generic and simple to deploy (present in many final products) / requires a large expertise (highly demanded profiles)
- Handcrafted features are *not required*: the algorithm adapts itself to the specific bias of a task

A biased history of Deep Learning

• Accuracies!

What matters in deep learning?

Accuracies!

top5 - ImageNet

<u>ImageNet:</u>

1 million training images, 1 000 classes 400 000 test images Large coloured images of various sizes

What matters in deep learning?

Accuracies!

top5 - ImageNet

<u>ImageNet:</u>

1 million training images, 1 000 classes 400 000 test images Large coloured images of various sizes

Theory for good performances?

What matters in deep learning?

Accuracies!

top5 - ImageNet

<u>ImageNet:</u>

1 million training images, 1 000 classes 400 000 test images Large coloured images of various sizes

Theory for good performances?

Face recognition

Are two pictures corresponding to the same person? Above human performances in rough conditions

Ref.: DeepFace: Closing the Gap to Human-Level Performance in Face Verification Taigman et al.

EDMIA Colorizing B&W pictures 21

Colorful Image Colorization, Zhang et al.

Coloring an image by hand takes several weeks

Spectacular results in face generation.

Outstanding benchmarks in text understanding/translations

Translation (Google uses Recurrent Neural Networks):

Surprising results in

text, image & (source) code generation

• Generating source code via Recurrent Neural

Networks:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

```
#define REG_PG vesa_slot_addr_pack
#define PFM_NOCOMP AFSR(0, load)
#define STACK_DDR(type)
                         (func)
#define SWAP_ALLOCATE(nr)
#define emulate sigs() arch get unaligned child()
#define access rw(TST) asm volatile("movd %%esp, %0, %3" : : "r" (0));
 if ( type & DO READ)
static void stat PC SEC    read mostly offsetof(struct seq argsqueue, \
         pC>[1]);
static void
os_prefix(unsigned long sys)
#ifdef CONFIG_PREEMPT
 PUT_PARAM_RAID(2, sel) = get_state_state();
  set_pid_sum((unsigned long)state, current_state_str(),
           (unsigned long)-1->lr_full; low;
```

Real one?

CIPMLA Outstanding results with Game Strategy

Game of GO: completely impossible to solve with pure Monte Carlo tree search

Ref.: Mastering the Game of Go with Deep Neural Networks and Tree Search

NN: computes a proba to win for each of the 2^{196} nodes

Self driving cars, Starcraft...

CIPMLA Outstanding results in Style Transfer

$$\arg\min_{\tilde{x}} \|\Phi x - \Phi \tilde{x}\|^2 + \lambda \|\operatorname{Cov}(\Phi y)\| - \operatorname{Cov}(\Phi \tilde{x})\|^2$$

Input

Output $\Phi \tilde{x}$

Ref.: Deep Photo Style Transfer, Luan et al.

Direct applications in Web design...

A highly non-convex and difficult optimization to train a model

input signal output signal $x \longrightarrow W_1 \longrightarrow \rho \longrightarrow W_2 \longrightarrow \dots \longrightarrow \rho \longrightarrow W_J \longrightarrow \Phi(x)$

input signal $x \longrightarrow W_1 \longrightarrow \rho \longrightarrow W_2 \longrightarrow \cdots \longrightarrow \rho \longrightarrow W_J \longrightarrow \Phi(x)$

where:
$$\rho(x) = \max(0, x)$$
 s.t. $|\rho(x) - \rho(y)| \le |x - y|$

EPMLA Multi-Layers Perceptrons 28

No a priori is introduced here. Typically used as a classifier.

Note that $\Phi(x; W_1, ..., W_J)$ is non-convex in x or each W_j

where:
$$\rho(x) = \max(0, x)$$
 s.t. $|\rho(x) - \rho(y)| \le |x - y|$

Convolutional Neural

Convolutional Neural

input signal

EPMLA Convolutional Neural

output signal

Engineering

Each layer:

$$x_{j+1} = \rho W_j x_j$$

learned kernel

that leads to:
$$x_{j+1}(u, \lambda_{j+1}) = \rho \left(\sum_{\lambda_j} \left(x_j(., \lambda_j) \star w_{\lambda_j, \lambda_{j+1}} \right)(u) \right)$$

Sometimes some "pooling" are incorporated, mainly for speed purposes. Again, this leads to a non convex loss.

Ref.: Signal Processing Tour, Mallat 1999

LIPMLA Zoom on the parametrisation.

• Very often, the filters of a CNN have a small support (3x3) and are interlaced with downsampling. $u_1 \leftarrow u_2$

$$y[n, \lambda_{i+1}] = \sum_{i} x[., \lambda_i] \star k_{\lambda_{i+1}, \lambda_i}[2n] \lambda_i$$

Ref.: Signal Processing Tour, Mallat 1999

LIPMLA Zoom on the parametrisation.

• Very often, the filters of a CNN have a small support (3x3) and are interlaced with downsampling.

$$y[n, \lambda_{i+1}] = \sum_{i} x[., \lambda_i] \star k_{\lambda_{i+1}, \lambda_i} [2n]$$

• Similar to a Wavelet Transform.

LIPMLA Zoom on the parametrisation.

• Very often, the filters of a CNN have a small support (3x3) and are interlaced with downsampling.

$$y[n, \lambda_{i+1}] = \sum_{i} x[., \lambda_i] \star k_{\lambda_{i+1}, \lambda_i}[2n]$$

• Similar to a Wavelet Transform.

• Except the sum isn't separable.

$$\hat{\phi}_{j} = \frac{1}{\sqrt{2}} \hat{h}(\frac{\cdot}{2}) \hat{\phi}_{j-1}
\hat{\psi}_{j,\theta} = \frac{1}{\sqrt{2}} \hat{g}_{\theta}(\frac{\cdot}{2}) \hat{\phi}_{j-1}$$

Back-propagation computations : 31

Back-propagation computations : 31

Back-propagation computations ::31

• Intermediary representations objectives are not explicitly specified.

Back-propagation computations

$$\nabla_{x_j}(\mathcal{E}) = \frac{\partial(\rho W_j)}{\partial x_j}^T \nabla_{x_{j+1}}(\mathcal{E}) \qquad \downarrow \quad \nabla_{\theta_j}(\mathcal{E}) = \frac{\partial(\rho W_j)}{\partial \theta_j}^T \nabla_{x_{j+1}}(\mathcal{E})$$

- Intermediary representations objectives are not explicitly specified.
- Difficult to distribute the model . . . but GPUs!

Rem.: Yet, this paradigm has simplified lot of frameworks. ex.: pytorch on GPUs!

Training Pipeline

• Once the model $\Phi(x;\theta)$ and the loss ℓ is fixed the model is trained via mini-batch:

$$\theta^{t+1} = \theta^t - \alpha_t \sum_{i=1}^{t} \nabla(\ell \circ \Phi)(X_i^t; \theta^t)$$

Training Pipeline

• Once the model $\Phi(x;\theta)$ and the loss ℓ is fixed the model is

Cooking recipe

• Batch-normalization

- Data augmentation
- Dropout
- Learning rate

• Data? Computer power? Not only:

- Data? Computer power? Not only:
- Flexibility&modularity: quickly benchmarking nonlinearity, layer dimension, losses, batch size, learning rate schedule...

- Data? Computer power? Not only:
- Flexibility&modularity: quickly benchmarking nonlinearity, layer dimension, losses, batch size, learning rate schedule...
- Is it overfitting? Clearly, yet the representations learned are empirically useful.

One detailed example: the AlexNet

One detailed example: the AlexNet

Introduction to image classification

Interpretability in Deep Learning

Fighting the curse of dimensionality with Deep Neural Networks

Statistical learning results

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

Under the hood of Deep Neural Networks

WIPMIA Model for the first layer

$$\psi_{C,D,\xi}(u) = Ce^{-u^T D u} e^{iu^T \xi}$$

Ref.: I Waldspurger's phd

• Consider Gabor filters and fit the model.

WIPMIA Model for the first layer

$$\psi_{C,D,\xi}(u) = Ce^{-u^T D u} e^{iu^T \xi}$$

Ref.: I Waldspurger's phd

• Consider Gabor filters and fit the model.

This principle is core in many models (V1, Scattering,...)

Ref.: I Waldspurger's phd

First layer:

Visualisation of ϕ^2 in the frequency plane

Ref.: I Waldspurger's phd

First layer:

Why was this possible?
We were aware of the topology
of the previous layer!

Visualisation of ϕ^2 in the frequency plane

LIPMLAFighting the curse of dimensionality.

• Objective: building a representation Φx of x such that a simple (say euclidean) classifier \hat{y} can estimate the label y:

LIPMLAFighting the curse of dimensionality.

• Objective: building a representation Φx of x such that a simple (say euclidean) classifier \hat{y} can estimate the label y:

• Designing Φ : must be regular with respect to the class: $\|\Phi x - \Phi x'\| \ll 1 \Rightarrow \hat{y}(x) = \hat{y}(x')$

LIPMLAFighting the curse of dimensionality.

• Objective: building a representation Φx of x such that a simple (say euclidean) classifier \hat{y} can estimate the label y:

- Designing Φ : must be regular with respect to the class: $\|\Phi x \Phi x'\| \ll 1 \Rightarrow \hat{y}(x) = \hat{y}(x')$
- **Necessary** dimensionality reduction and separation to break the curse of dimensionality:

Model on the data: low dimensional manifold hypothesis?

Mun Model on the data: low dimensional manifold hypothesis?

• Low dimensional manifold: dimension up to 6. Not higher:

Property: if $f: \mathbb{R}^D \to [0, 1]$ is 1-Lipschitz, then let $N_{\epsilon} = \arg\inf_{N} \sup_{i \leq N} \left(|f(x) - f(x_i)| < \epsilon \right)$.

Then $N_{\epsilon} = \mathcal{O}(\epsilon^{-D})$

PMLA Model on the data: low

dimensional manifold hypothesis?

• Low dimensional manifold: dimension up to 6. Not higher:

Property: if
$$f: \mathbb{R}^D \to [0, 1]$$
 is 1-Lipschitz, then let $N_{\epsilon} = \arg\inf_{N} \sup_{i \leq N} (|f(x) - f(x_i)| < \epsilon)$.
Then $N_{\epsilon} = \mathcal{O}(\epsilon^{-D})$

• Can be true for MNIST...

Min Model on the data: low

dimensional manifold hypothesis?

• Low dimensional manifold: dimension up to 6. Not higher:

Property: if
$$f: \mathbb{R}^D \to [0, 1]$$
 is 1-Lipschitz, then let $N_{\epsilon} = \arg\inf_{N} \sup_{i \leq N} (|f(x) - f(x_i)| < \epsilon)$.
Then $N_{\epsilon} = \mathcal{O}(\epsilon^{-D})$

• Can be true for MNIST...

.41

PMLA Model on the data: low

dimensional manifold hypothesis?

• Low dimensional manifold: dimension up to 6. Not higher:

Property: if
$$f: \mathbb{R}^D \to [0, 1]$$
 is 1-Lipschitz, then let $N_{\epsilon} = \arg\inf_{N} \sup_{i \leq N} (|f(x) - f(x_i)| < \epsilon)$.
Then $N_{\epsilon} = \mathcal{O}(\epsilon^{-D})$

• Can be true for MNIST...

• Yet high dimensional deformations are an issue in the

Flattening the space: progressive manifold?

progressive manifold?

• Parametrize variability on synthetic data: $L_{\theta}, \theta \in \mathbb{R}^d$ and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

progressive manifold?

• Parametrize variability on synthetic data: $L_{\theta}, \theta \in \mathbb{R}^d$ and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

progressive manifold?

• Parametrize variability on synthetic data: $L_{\theta}, \theta \in \mathbb{R}^d$ and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

• Data tends to live on flattened space. Tangent

space?

progressive manifold?

(a) Lighting

(b) Scale

• Parametrize variability on synthetic data: $L_{\theta}, \theta \in \mathbb{R}^d$ and observe it after PCA

• Data tends to live on flattened space. Tangent

Space?

Singrest

Spain

Tealy Madrid

Rome

Derli

Turkey Arkara

Russia Ottava

Japan Tokyo

Vietran Hanoi

Swimming Chine Beljing

Male-Female

Verb tense

Country-Capital

Difficult to find evidences of such phenomeno

Ref.: Intriguing properties of Deep Neural Networks, Szegedy et al.

- Consider: $v \in \mathbb{R}^{1000}$, $x_v = \arg\max_{x \in \mathcal{D}} \langle \Phi x, v \rangle$ dataset
- Claim 1: v = (0, ..., 0, 1, 0, ..., 0) has a semantic meaning

Ref.: Intriguing properties of Deep Neural Networks, Szegedy et al.

- Consider: $v \in \mathbb{R}^{1000}$, $x_v = \arg\max_{x \in \mathcal{D}} \langle \Phi x, v \rangle$ dataset
- Claim 1: v = (0, ..., 0, 1, 0, ..., 0) has a semantic meaning

Ref.: Intriguing properties of Deep Neural Networks, Szegedy et al.

• Claim 2: any unit norm v has a semantic meaning.

- Consider: $v \in \mathbb{R}^{1000}$, $x_v = \arg\max_{x \in \mathcal{D}} \langle \Phi x, v \rangle$ dataset
- Claim 1: v = (0, ..., 0, 1, 0, ..., 0) has a semantic meaning

Ref.: Intriguing properties of Deep Neural Networks, Szegedy et al.

• Claim 2: any unit norm v has a semantic meaning.

(a) Direction sensitive to white, spread flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes.

(d) Direction sensitive to dogs with brown heads.

WIPMLA Mechanism proposal: Flattening the level sets

Ref.: Understanding Deep Convolutional Networks, Mallat, 2016

Linear invariant can be computed!

IPMLA Mechanism proposal: Flattening the level sets

class 1

Amenable for any supervised task!

class 2

Ref.: Understanding Deep Convolutional Networks, Mallat, 2016

Linear invariant can be computed!

How to linearize? Ex.: Gâteaux differentiability

$$\exists C_x, \sup_{\mathcal{T}} \frac{\|\Phi x - \Phi \mathcal{T} x\|}{\|\mathcal{T}\|} < C_x \Rightarrow \exists \partial \Phi_x : \Phi \mathcal{T} x \approx \Phi x + \partial \Phi_x. \mathcal{T}$$

IPMLA Mechanism proposal: Flattening the level sets

class 1

Amenable for any supervised task!

class 2

Ref.: Understanding Deep Convolutional Networks, Mallat, 2016

Linear invariant can be computed!

How to linearize? Ex.: Gâteaux differentiability

$$\exists C_x, \sup_{\mathcal{T}} \frac{\|\Phi x - \Phi \mathcal{T} x\|}{\|\mathcal{T}\|} < C_x \Rightarrow \exists \partial \Phi_x : \Phi \mathcal{T} x \approx \Phi x + \partial \Phi_x. \mathcal{T}$$

ipmia Mechanism proposal:

Flattening the level sets

Ref.: Understanding Deep Convolutional Networks, Mallat, 2016

Linear invariant can be computed!

How to linearize? Ex.: Gâteaux differentiability

$$\exists C_x, \sup_{\mathcal{T}} \frac{\|\Phi x - \Phi \mathcal{T} x\|}{\|\mathcal{T}\|} < C_x \Rightarrow \exists \partial \Phi_x : \Phi \mathcal{T} x \approx \Phi x + \partial \Phi_x. \mathcal{T}$$

• However, exhibiting \mathcal{T} can be difficult. (curse of dimensionality)

Ex.: linear translations $\mathcal{T}_a(x)(u) \triangleq x(u+a)$, yet non linear case?

Empirical observation: Progressive separability

Empirical observation:

Progressive separability

• Typical CNN exhibits a progressive contraction & separation, w.r.t. the depth:

In the following, representations are spatially averaged.

Empirical observation:

Progressive separability

• Typical CNN exhibits a progressive contraction & separation, w.r.t. the depth:

Empirical observation:

Progressive separability

• Typical CNN exhibits a progressive contraction & separation, w.r.t. the depth:

Ref.: Building a Regular Decision Boundary with Deep Networks, EO

• How can we explain it?

Adversarial examples

- NNs are super sensitive to input noise
- Indeed, the NN is at most $||W_1||...||W_J||$ -Lipschitz

MIA Adversarial examples

- NNs are super sensitive to input noise
- Indeed, the NN is at most $||W_1||...||W_J||$ -Lipschitz

$$\inf_{\Phi(x) \neq \Phi(x+\epsilon)} \|\epsilon\|$$

Or even for every class, there are algorithms with parameters (ϵ, κ) s.t.:

Ref.: Universal adversarial perturbations, Moosavi et al.

Ref.: Lipschitz Regularity of deep neural networks, Scaman and Virmaux

Surprising BagNet Spatial distribution

"BagNet"

Ref.: APPROXIMATING CNNS WITH BAG-OF-LOCALFEATURES MODELS WORKS SURPRISINGLY WELL ON IMAGENET

Surprising BagNet Spatial distribution

"BagNet"

Ref.: APPROXIMATING CNNS WITH BAG-OF-LOCALFEATURES MODELS WORKS SURPRISINGLY WELL ON IMAGENET

EPMLA Reconstruction from a given layer?

Ref.: Inverting Visual Representations with Convolutional Networks, Dodovistky et al.

(Information bottleneck)

 $I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$$

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$$

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$$

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$$

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$$

$$I(X; \Phi_1 X) \ge I(X; \Phi_2 X) \ge \dots \ge I(X; \Phi_J X)$$
"Compress" X

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$$

$$I(X; \Phi_1 X) \ge I(X; \Phi_2 X) \ge \dots \ge I(X; \Phi_J X)$$
"Compress" X

$$I(X; Y) \ge I(\Phi_1 X; Y) \ge \dots \ge I(\Phi_J X; Y)$$
... but "reveal" Y

(Information bottleneck)

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy = H(X) - H(X|Y)$$

Measures the dependancy between variables

$$I(X; \Phi_1 X) \ge I(X; \Phi_2 X) \ge \dots \ge I(X; \Phi_J X)$$
"Compress" X

$$I(X; Y) \ge I(\Phi_1 X; Y) \ge \dots \ge I(\Phi_J X; Y)$$
... but "reveal" Y

They propose to introduce:

$$\Phi_{j,\lambda} = \arg\inf_{\Phi} I(\Phi_{j-1}X, \Phi_j X) - \lambda I(\Phi_j X, Y)$$

(Information bottleneck)

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log rac{p(x,y)}{p(x)p(y)} \mathrm{d}x \mathrm{d}y = H(X) - H(X|Y)$$

Measures the dependancy between variables

$$I(X; \Phi_1 X) \ge I(X; \Phi_2 X) \ge \dots \ge I(X; \Phi_J X)$$
"Compress" X

$$I(X; Y) \ge I(\Phi_1 X; Y) \ge \dots \ge I(\Phi_J X; Y)$$
... but "reveal" Y

They propose to introduce:

$$\Phi_{j,\lambda} = \arg\inf_{\Phi} I(\Phi_{j-1}X, \Phi_j X) - \lambda I(\Phi_j X, Y)$$

• But one can easily build invertible CNNs...

EPMLA Invertible architectures

Ref.: i-Revnet, depp invertible networks Jacobsen, Smeulder and EO

Invariant Representations and Deep Learning

High dimensionality issues

A motivating example

• Translation invariance? Why not:

$$\Phi x(\omega) = |\hat{x}(\omega)|$$

A motivating example

• Translation invariance? Why not:

$$\Phi x(\omega) = |\hat{x}(\omega)|$$

Doesn't work!

A motivating example

Translation invariance? Why not:

$$\Phi x(\omega) = |\hat{x}(\omega)|$$

Doesn't work!

Let
$$x(u) = e^{i\omega_0 u - \frac{1}{2}u^2}$$
 and $\tau(u) = su, s > 0$

EPMLA A motivating example

Translation invariance? Why not:

$$\Phi x(\omega) = |\hat{x}(\omega)|$$

 $L_{\tau}x(u) = x(u - \tau(u))$

Doesn't work!

Let $x(u) = e^{i\omega_0 u - \frac{1}{2}u^2}$ and $\tau(u) = su, s > 0$ then:

and:

$$\|\Phi x_{\tau} - \Phi x\| \gtrsim \omega_0 s = \|\nabla \tau\|\omega_0$$

 ω_0

which for a fixed s diverges quickly...

Covariance via convolution 5.54

• We say that L is covariant with W if WL = LW

- We say that L is covariant with W if WL = LW
- We say that A is invariant to L if AL = A

- We say that L is covariant with W if WL = LW
- We say that A is invariant to L if AL = A
- If W (e.g., convolution), ρ (e.g., point-wise nonlinearity) are covariant and if A is invariant to L then $\Phi x = AW_{J}\rho W_{J-1}\rho W_{J-2}...W_{1}x$

is invariant. Indeed:

$$\Phi Lx = ALW_J \rho ... W_1 x = \Phi x$$

EPMLA Covariance via convolution 54

- We say that L is covariant with W if WL = LW
- We say that A is invariant to L if AL = A
- If W (e.g., convolution), ρ (e.g., point-wise nonlinearity) are covariant and if A is invariant to L then $\Phi x = AW_{J}\rho W_{J-1}\rho W_{J-2}...W_{1}x$

is invariant. Indeed:

$$\Phi Lx = ALW_J \rho ... W_1 x = \Phi x$$

• It is also possible to have only an approximate covariance and one measure it via the norm of:

$$[W, L] = WL - LW$$

- We say that L is covariant with W if WL = LW
- We say that A is invariant to L if AL = A
- If W (e.g., convolution), ρ (e.g., point-wise nonlinearity) are covariant and if A is invariant to L then $\Phi x = AW_{J}\rho W_{J-1}\rho W_{J-2}...W_{1}x$

is invariant. Indeed:

$$\Phi Lx = ALW_J \rho ... W_1 x = \Phi x$$

• It is also possible to have only an approximate covariance and one measure it via the norm of:

$$[W, L] = WL - LW$$

example: deformation

Progressive Invariances

• Interestingly, CNNs often incorporate some poolings \mathcal{P} , which satisfy for $||I - \mathcal{L}|| \ll 1$: $\mathcal{PL} \approx \mathcal{P}$.

Progressive Invariances

- Interestingly, CNNs often incorporate some poolings \mathcal{P} which satisfy for $||I - \mathcal{L}|| \ll 1$: $\mathcal{PL} \approx \mathcal{P}$.
- It allows to progressively induce more invariance. (and it's very similar to a Wavelet Transform)

Progressive Invariances

- Interestingly, CNNs often incorporate some poolings \mathcal{P} which satisfy for $||I - \mathcal{L}|| \ll 1$: $\mathcal{PL} \approx \mathcal{P}$.
- It allows to progressively induce more invariance. (and it's very similar to a Wavelet Transform)
- Similarly, the non-linearity is point-wise. Interestingly, point-wise non-linearity are the only non-linearity that commutes with deformations, ie

$$[\rho, L] = 0$$
 iff $\forall x = (x_1, ..., x_d), \rho(x) = (\rho(x_1), ..., \rho(x_d))$

Ref.: Phd of Joan Bruna

Wavelets

- ψ is a wavelet iff $\int \psi(u)du = 0$ and $\int |\psi|^2(u)du < \infty$
- Typically localised in space and frequency.
- Rotation, dilation of a wavelets:

$$\psi_{j,\theta} = \frac{1}{2^{2j}} \psi(\frac{x_{\theta}(u)}{2^j})$$

• Design wavelets selective to **rotation** variabilities.

$$\psi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}} (e^{i\xi \cdot u} - \kappa)$$

$$\phi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}}$$

(for sake of simplicity, formula are given in the isotropic case)

The Gabor wavelet

Deformations
$$L_{\tau}x(u) = x(u - \tau(u))$$

Ref.: Group Invariant Scattering, Mallat S

- Deformations $L_{\tau}x(u) = x(u \tau(u))$
- Analytic wavelets permit to build stable invariants

to:

- small translations by a:

Analytic wavelets permit to build stable invariants

to:

Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

Deformations $L_{\tau}x(u) = x(u - \tau(u))$

• Analytic wavelets permit to build stable invariants

to:

Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

$$\widehat{L_a x \star \psi}(\omega) = e^{i\omega^T a} \hat{x}(\omega) \hat{\psi}(\omega)$$

$$= \sum_{n} \frac{(i\omega^T a)^n}{n!} \hat{x}(\omega) \hat{\psi}(\omega)$$

$$\approx \sum_{n} \frac{(i\omega_0^T a)^n}{n!} \hat{x}(\omega) \hat{\psi}(\omega)$$

$$= e^{i\omega_0^T a} \widehat{x \star \psi}(\omega)$$

 $|\hat{\psi}(\omega)|$ ω_0 ω_0 ω_0 $\omega^T a \hat{\psi}(\omega) \approx \omega_0^T a \hat{\psi}(\omega)$

cnrs Lip MLia

Invariances via wavelets

- Deformations $L_{\tau}x(u) = x(u \tau(u))$
- Analytic wavelets permit to build stable invariants

to:

Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

$$\widehat{L_a x \star \psi}(\omega) = e^{i\omega^T a} \hat{x}(\omega) \hat{\psi}(\omega)$$

$$= \sum_{n} \frac{(i\omega^T a)^n}{n!} \hat{x}(\omega) \hat{\psi}(\omega)$$

$$\approx \sum_{n} \frac{(i\omega_0^T a)^n}{n!} \hat{x}(\omega) \hat{\psi}(\omega)$$

 $=e^{i\omega_0^T a} \widehat{x \star \psi}(\omega)$

The variability corresponds to a phase multiplication!

Deformations $L_{\tau}x(u) = x(u - \tau(u))$

• Analytic wavelets permit to build stable invariants

to:

Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

$$\widehat{L_a x \star \psi}(\omega) = e^{i\omega^T a} \widehat{x}(\omega) \widehat{\psi}(\omega)$$

$$= \sum_{n} \frac{(i\omega^T a)^n}{n!} \widehat{x}(\omega) \widehat{\psi}(\omega)$$

$$\approx \sum_{n} \frac{(i\omega_0^T a)^n}{n!} \widehat{x}(\omega) \widehat{\psi}(\omega)$$

$$= e^{i\omega_0^T a} \widehat{x \star \psi}(\omega)$$

The variability corresponds to a phase multiplication!

$$||(L_{\tau}x) \star \psi - L_{\tau}(x \star \psi)|| \le C\nabla ||\tau||_{\infty}$$

LIPMLA How to address deformations? ...

• Weak differentiability property:

$$\sup_{L} \frac{\|\Phi Lx - \Phi x\|}{\|Lx - x\|} < \infty \Rightarrow \exists \text{ "weak" } \partial_x \Phi \\ \Rightarrow \Phi Lx \approx \Phi x + \partial_x \Phi L + o(\|L\|)$$
 A linear operator

• A linear projection (to kill L) build an invariant

Wavelet Transform

• Isometric and linear operator of L^2 , with

$$||Wx||^2 = \sum_{\theta, j \le J} \int |x \star \psi_{j,\theta}|^2 + \int x \star \phi_J^2$$

• Covariant with translation L_a :

$$WL_a = L_a W$$

Nearly commutes with diffeomorphisms

$$||[W, L_{\tau}]|| \le C||\nabla \tau||$$

Ref.: Group Invariant Scattering, Mallat S

• A good baseline to describe an image!

 ω_1

Scattering Transform

Scattering transform at scale J is the cascading of complex WT with modulus non-linearity, followed by a low pass-filtering: Ref.: Group Invariant Scattering, Mallat S

$$S_J x = \{x \star \phi_J, \\ |x \star \psi_{j_1, \theta_1}| \star \phi_J, \\ |x \star \psi_{j_1, \theta_1}| \star \psi_{j_2, \theta_2}| \star \phi_J\}$$

• Mathematically well defined for a large class of wavelets.

Feature man $x \star \phi$ $\boldsymbol{\mathscr{X}}$ • Several features 1st order coefficients

Example of Scattering coefficients

Filter bank implementation of a Fast WT

Ref.: Fast WT, Mallat S, 89

- Assume it is possible to find h and g such that $\hat{\psi}_{\theta}(\omega) = \frac{1}{\sqrt{2}} \hat{g}_{\theta}(\frac{\dot{\omega}}{2}) \hat{\phi}(\frac{\omega}{2}) \quad \text{and} \quad \hat{\phi}(\omega) = \frac{1}{\sqrt{2}} \hat{h}(\frac{\omega}{2}) \hat{\phi}(\frac{\omega}{2})$
- Set:

$$x_j(u,0) = x \star \phi_j(u) = h \star (x \star \phi_{j-1})(2u) \text{ and}$$
$$x_j(u,\theta) = x \star \psi_{j,\theta}(u) = g_\theta \star (x \star \phi_{j-1})(2u)$$

- The WT is then given by $Wx = \{x_j(.,\theta), x_J(.,0)\}_{j \leq J,\theta}$
- A WT can be interpreted as a deep cascade of linear operator, which is approximatively verified for the Gabor Wavelets.

$$J = 3, \theta \in \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\}$$

$$\hat{\psi}_{\theta}(\omega) = \frac{1}{\sqrt{2}} \hat{g}_{\theta}(\frac{\omega}{2}) \hat{\phi}(\frac{\omega}{2})$$

$$\hat{\phi}(\omega) = \frac{1}{\sqrt{2}} \hat{h}(\frac{\omega}{2}) \hat{\phi}(\frac{\omega}{2})$$

Scattering coefficients are only at the output

Scattering as a CNN

Scattering coefficients are only at the output

Scattering as a CNN

O Modulus

Scattering coefficients are only at the output

Scattering as a CNN

O Modulus

Scattering coefficients are only at the output

Scattering as a CNN

) Modulus

 $h \ge 0$

Scattering as a CNN

Scattering coefficients are only at the output

O Modulus

h > 0

Scattering as a CNN

Scattering coefficients are only at the output

O Modulus

h > 0

Scattering as a CNN

Scattering coefficients are only at the output

O Modulus

 $h \ge 0$

Scattering as a CNN

Scattering coefficients are only at the output

Ref.: Invariant Group Scattering Mallat S., 2012

Studying:

$$L_{\tau}A_Jx(v) - A_Jx(v) = \int_v x(u) \big(\phi_J(v - \tau(v) - u) - \phi_J(v - u)\big)$$

and upper bounding this kernel leads to:

$$||L_{\tau}A_J - A_J|| \le 2^{-J+d} ||\tau||_{\infty} ||\nabla \phi||_1$$

Ref.: Invariant Group Scattering Mallat S., 2012

EXAMPLE Stability to deformations 1.65

Studying:

$$L_{\tau}A_Jx(v) - A_Jx(v) = \int_v x(u) \big(\phi_J(v - \tau(v) - u) - \phi_J(v - u)\big)$$

and upper bounding this kernel leads to:

$$||L_{\tau}A_J - A_J|| \le 2^{-J+d} ||\tau||_{\infty} ||\nabla \phi||_1$$

Ref.: Invariant Group Scattering Mallat S., 2012

It is slightly more challenging to obtain:

$$||[W_j, L_\tau]|| \le CJ ||\nabla \tau||_{\infty}$$
 where $W_j x(v) = \{x \star \psi_j(v)\}_{0 \le j \le J}$

EPMIAStability to deformations

Studying:

$$L_{\tau}A_Jx(v) - A_Jx(v) = \int_v x(u) \big(\phi_J(v - \tau(v) - u) - \phi_J(v - u)\big)$$

and upper bounding this kernel leads to:

$$||L_{\tau}A_J - A_J|| \le 2^{-J+d} ||\tau||_{\infty} ||\nabla \phi||_1$$

Ref.: Invariant Group Scattering Mallat S., 2012

It is slightly more challenging to obtain:

$$||[W_j, L_\tau]|| \le CJ ||\nabla \tau||_{\infty}$$
 where $W_j x(v) = \{x \star \psi_j(v)\}_{0 \le j \le J}$

For order 1:

$$A_{J}|W_{J}|L_{\tau} - A_{J}|W_{J}| = A_{J}|W_{J}|L_{\tau} - A_{J}L_{\tau}|W_{J}| + A_{J}L_{\tau}|W_{J}|$$

$$- L_{\tau}A_{J}|W_{J}| + L_{\tau}A_{J}|W_{J}| - A_{J}|W_{J}|$$

$$= A_{J}|[W_{J}, L_{\tau}]| + [A_{J}, L_{\tau}]|W_{j}| + (L_{\tau}A_{J} - A_{J})|W_{J}|$$

and we iterate... a tighter bound can be obtained by avoiding redundancy

Properties of a Scattering.66

Transform

$$L_{\tau}x(u) = x(u - \tau(u))$$

Properties of a Scattering.66

Transform

• Scattering is stable:

$$||S_J x - S_J y|| \le ||x - y||$$

$$L_{\tau}x(u) = x(u - \tau(u))$$

Properties of a Scattering in the second sec

Transform

• Scattering is stable:

$$||S_J x - S_J y|| \le ||x - y||$$

Linearize small deformations:

$$||S_J L_\tau x - S_J x|| \le C||\nabla \tau|| ||x||$$

$$L_{\tau}x(u) = x(u - \tau(u))$$

Properties of a Scattering 66

Transform

• Scattering is stable:

$$||S_J x - S_J y|| \le ||x - y||$$

Linearize small deformations:

$$||S_J L_\tau x - S_J x|| \le C||\nabla \tau|| ||x||$$

Invariant to local translation: $|a| \ll 2^J \Rightarrow S_J L_a x \approx S_J$

$$L_{\tau}x(u) = x(u - \tau(u))$$

Properties of a Scattering 66

Transform

• Scattering is stable:

$$||S_J x - S_J y|| \le ||x - y||$$

Linearize small deformations:

$$||S_J L_\tau x - S_J x|| \le C||\nabla \tau|| ||x||$$

Invariant to local translation:

$$|a| \ll 2^J \Rightarrow S_J L_a x \approx S_J$$

Ref.: Group Invariant Scattering, Mallat S

Properties of a Scattering 66

Transform

• Scattering is stable:

$$||S_J x - S_J y|| \le ||x - y||$$

Linearize small deformations:

$$||S_J L_\tau x - S_J x|| \le C||\nabla \tau|| ||x||$$

Invariant to local translation:

$$|a| \ll 2^J \Rightarrow S_J L_a x \approx S_J$$

Deformations

 $L_{\tau}x(u) = x(u - \tau(u))$

• For λ , u, $S_J x(u, \lambda)$ is **covariant** with $SO_2(\mathbb{R})$:

if
$$\forall u \forall g \in SO_2(\mathbb{R}), g.x(u) \triangleq x(g^{-1}u)$$
 then,

$$S_J(g.x)(u,\lambda) = S_Jx(g^{-1}u,g^{-1}\lambda) \triangleq g.S_Jx(u,\lambda)$$

Scattering moments

• For a stationary process X (e.g., a texture)

$$E(X \star f) = E(X) \star f$$

• This leads to the Expected Scattering:

$$\bar{S}[\lambda_1] = \mathbb{E}|X \star \psi_{\lambda_1}|$$

$$\bar{S}[\lambda_1, \lambda_2] = \mathbb{E}[|X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}]$$

• • •

Scattering moments

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• For a stationary process X (e.g., a texture)

$$E(X \star f) = E(X) \star f$$

• This leads to the Expected Scattering:

$$\bar{S}[\lambda_1] = \mathbb{E}|X \star \psi_{\lambda_1}|$$

$$\bar{S}[\lambda_1, \lambda_2] = \mathbb{E}||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|$$

. . .

Scattering moments

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• For a stationary process X (e.g., a texture)

$$E(X \star f) = E(X) \star f$$

• This leads to the Expected Scattering:

$$\bar{S}[\lambda_1] = \mathbb{E}|X \star \psi_{\lambda_1}|$$

$$\bar{S}[\lambda_1, \lambda_2] = \mathbb{E}[|X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}]$$

Modulus is important because it can be 0!

. . .

Scattering moments

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• For a stationary process X (e.g., a texture)

$$E(X \star f) = E(X) \star f$$

• This leads to the Expected Scattering:

$$\bar{S}[\lambda_1] = \mathbb{E}|X \star \psi_{\lambda_1}|$$

Modulus is important because it can be 0!

$$\bar{S}[\lambda_1, \lambda_2] = \mathbb{E}[|X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}]$$

can be estimated via an unbiased estimator:

$$S[\lambda_1, \lambda_2]X = \int ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|$$

Scattering moments

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• For a stationary process X (e.g., a texture)

$$E(X \star f) = E(X) \star f$$

• This leads to the Expected Scattering:

$$\bar{S}[\lambda_1] = \mathbb{E}|X \star \psi_{\lambda_1}|$$

Modulus is important because it can be 0!

$$\bar{S}[\lambda_1, \lambda_2] = \mathbb{E}[|X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}]$$

can be estimated via an unbiased estimator:

$$S[\lambda_1, \lambda_2]X = \int ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|$$

Energy is preserved:

$$\|\bar{S}X\|^2 = \mathbb{E}|X|^2$$

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• Successfully used in several applications:

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

- Successfully used in several applications:
 - Digits

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

- Successfully used in several applications:
 - Digits

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

- Successfully used in several applications:
 - Digits

444444444 555555555 77777777888888888

Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering for texture discrimination, Sifre L and Mallat S.

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• Successfully used in several applications:

4444444444

Digits 555555555

77777777888888888

Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering for texture discrimination, Sifre L and Mallat S.

All variabilities are known

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• Successfully used in several applications:

Digits

4444444444 55555555 77777777888888888

All variabilities are known

Small deformations +Translation

Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering for texture discrimination, Sifre L and Mallat S.

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• Successfully used in several applications:

Digits

4444444444 55555555 All variabilities are known

Small deformations +Translation

Rotation+Scale

Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering for texture discrimination, Sifre L and Mallat S.

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

The design of the scattering transform is guided by the euclidean group

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

- The design of the scattering transform is guided by the euclidean group
- To which extent can we compete with other architectures on more complex problems (e.g. variabilities are more complex)?

• The notion of convolution can be easily extended on a compact group or a Lie group G via a Haar measure.

- The notion of convolution can be easily extended on a compact group or a Lie group G via a Haar measure.
- It is the only measure invariant by (left) translations, i.e., $L_*\mu = \mu$ which allows to introduce:

$$L^{2}(G,\mu) = \{f, \int_{G} |f|^{2} d\mu < \infty\}$$

- The notion of convolution can be easily extended on a compact group or a Lie group G via a Haar measure.
- It is the only measure invariant by (left) translations, i.e., $L_*\mu = \mu$ which allows to introduce:

$$L^{2}(G,\mu) = \{f, \int_{G} |f|^{2} d\mu < \infty\}$$

• And thus the convolution operation:

$$a \star b(g) = \int_G a(\tilde{g})b(\tilde{g}^{-1}g)d\mu(g)$$

Extension to higher

dimensional groups

- The notion of convolution can be easily extended on a compact group or a Lie group G via a Haar measure.
- It is the only measure invariant by (left) translations, i.e., $L_*\mu = \mu$ which allows to introduce:

$$L^{2}(G,\mu) = \{f, \int_{G} |f|^{2} d\mu < \infty\}$$

• And thus the convolution operation:

$$a \star b(g) = \int_G a(\tilde{g})b(\tilde{g}^{-1}g)d\mu(g)$$

• and some Fourier analysis (on Lie groups):

$$\rho: G \to L^2(G) = \bigoplus_{\omega} E_{\omega}$$
$$g \to \mathcal{L}_g$$

EXEMPLIA An example: the rototranslation

Ref.: PhD of L. Sifre

- If the convolution is defined on G, G', one can extend it to $G \times G', G \times G'$.
- Roto-translation is a non commutative group:

$$(u,\theta).(\tilde{u},\tilde{\theta}) = (u + r_{\theta}\tilde{u},\theta + \tilde{\theta})$$

• ... and this leads to the following convolution:

$$(Y \circledast \Psi)(g) = \int_{g'} Y(g') \Psi(g'^{-1}g) dg$$

EXEMPLIA An example: the rototranslation

Ref.: PhD of L. Sifre

- If the convolution is defined on G, G', one can extend it to $G \times G', G \times G'$.
- Roto-translation is a non commutative group:

$$(u,\theta).(\tilde{u},\tilde{\theta}) = (u + r_{\theta}\tilde{u},\theta + \tilde{\theta})$$

• ... and this leads to the following convolution:

$$(Y \circledast \Psi)(g) = \int_{g'} Y(g') \Psi(g'^{-1}g) dg$$

$$= \int_{\mathbb{R}^2} \int_{[0,2\pi]} Y(u',\theta') \Psi(r_{-\theta'}(u-u'),\theta-\theta') du d\theta$$

$$S_0x=\int_u x(u)\,du$$
 and $Y^1_{j_1}(u, heta_1)=|x\star\psi_{j_1, heta_1}(u)|$ Ref.: PhD of L. Sifre

• Then Sx is invariant to roto-translation.

$$S_0x=\int_u x(u)\,du$$
 and $Y^1_{j_1}(u, heta_1)=|x\star\psi_{j_1, heta_1}(u)|^{ ext{Ref.: PhD of L. Sifred}}$

Let
$$S_1 x = \int_{u,\theta} Y^1(u,\theta) du d\theta$$
 and $\Psi(u,\theta) = \psi_{j_2,\theta_2}(u)\psi_k(\theta)$

• Then Sx is invariant to roto-translation.

EPMLARoto-translation scattering.

$$S_0x=\int_u x(u)\,du$$
 and $Y^1_{j_1}(u, heta_1)=|x\star\psi_{j_1, heta_1}(u)|^{ ext{Ref.: PhD of L. Sifre}}$

Let
$$S_1 x = \int_{u,\theta} Y^1(u,\theta) du d\theta$$
 and $\Psi(u,\theta) = \psi_{j_2,\theta_2}(u)\psi_k(\theta)$ then we get:

$$Y_{j_1,j_2,\theta_2,k}^2(\theta,u) = \int_{\theta',u'} |x \star \psi_{j_1,\theta'}(u')| \psi_{j_2,\theta_2+\theta'}(u-u') \psi_k(\theta-\theta') du \, d\theta$$

Then Sx is invariant to roto-translation.

EPMLARoto-translation scattering.

$$S_0x = \int_u x(u)\,du$$
 and $Y^1_{j_1}(u, heta_1) = |x\star\psi_{j_1, heta_1}(u)|^{ ext{Ref.: PhD of L. Sifre}}$

Let
$$S_1 x = \int_{u,\theta} Y^1(u,\theta) du d\theta$$
 and $\Psi(u,\theta) = \psi_{j_2,\theta_2}(u)\psi_k(\theta)$

then, we get:
$$Y_{j_1,j_2,\theta_2,k}^2(\theta,u) = \int_{\theta',u'} |x \star \psi_{j_1,\theta'}(u')| \psi_{j_2,\theta_2+\theta'}(u-u') \psi_k(\theta-\theta') du \, d\theta$$
Let $S_2 x = \int_{u,\theta} Y^2(u,\theta) \, du \, d\theta$

• Then Sx is invariant to roto-translation.

EPMLARoto-translation scattering.

 $S_0 x = \int x(u) du$ and $Y_{j_1}^1(u, \theta_1) = |x \star \psi_{j_1, \theta_1}(u)|$ Ref.: PhD of L. Sifre

Let
$$S_1 x = \int_{u,\theta} Y^1(u,\theta) du d\theta$$
 and $\Psi(u,\theta) = \psi_{j_2,\theta_2}(u)\psi_k(\theta)$

then, we get:
$$Y_{j_1,j_2,\theta_2,k}^2(\theta,u) = \int_{\theta',u'} |x \star \psi_{j_1,\theta'}(u')| \psi_{j_2,\theta_2+\theta'}(u-u') \psi_k(\theta-\theta') du \, d\theta$$
Let $S_2 x = \int_{u,\theta} Y^2(u,\theta) \, du \, d\theta$

• Then Sx is invariant to roto-translation.

Ref.: Understanding deep convolutional networks

S Mallat

• To each classification problem corresponds a canonic and unique symmetry group G:

$$\forall x, \forall g \in G, \Phi x = \Phi g.x$$

Ref.: Understanding deep convolutional networks

S Mallat

• To each classification problem corresponds a canonic and unique symmetry group G:

$$\forall x, \forall g \in G, \Phi x = \Phi g.x$$

High dimensional

Ref.: Understanding deep convolutional networks

S Mallat

• To each classification problem corresponds a canonic and unique symmetry group G:

$$\forall x, \forall g \in G, \Phi x = \Phi g.x$$

High dimensional

• We hypothesise there exists **Lie** groups and CNNs such that:

$$G_0 \subset G_1 \subset ... \subset G_J \subset G$$

 $\forall g_j \in G_j, \phi_j(g_j.x) = \phi_j(x) \text{ where } x_j = \phi_j(x)$

Ref.: Understanding deep convolutional networks

S Mallat

• To each classification problem corresponds a canonic and unique symmetry group G:

$$\forall x, \forall g \in G, \Phi x = \Phi g.x$$

High dimensional

• We hypothesise there exists **Lie** groups and CNNs such that:

$$G_0 \subset G_1 \subset ... \subset G_J \subset G$$

 $\forall g_j \in G_j, \phi_j(g_j.x) = \phi_j(x) \text{ where } x_j = \phi_j(x)$

Ref.: Understanding deep convolutional networks

S Mallat

• To each classification problem corresponds a canonic and unique symmetry group G:

$$\forall x, \forall g \in G, \Phi x = \Phi g.x$$

High dimensional

• We hypothesise there exists **Lie** groups and CNNs such that:

$$G_0 \subset G_1 \subset ... \subset G_J \subset G$$

 $\forall g_j \in G_j, \phi_j(g_j.x) = \phi_j(x) \text{ where } x_j = \phi_j(x)$

• Examples are given by the euclidean group:

$$G_0 = \mathbb{R}^2, G_1 = G_0 \ltimes SL_2(\mathbb{R})$$

many

• CNN that is convolutional along axis channel:

$$x_{j+1}(v_1, ..., v_j, \frac{v_{j+1}}{v_j}) = \rho_j(x_j \star^{v_1, ..., v_j} \psi_{v_{j+1}})(v_1, ..., v_j)$$

$$x_J(\mathbf{v_J}) = \sum_{v_1, \dots, v_{J-1}} x_{J-1}(v_1, \dots, v_{J-1}, \mathbf{v_J})$$

many

• CNN that is convolutional along axis channel:

$$x_{j+1}(v_1, ..., v_j, \frac{v_{j+1}}{v_j}) = \rho_j(x_j \star^{v_1, ..., v_j} \psi_{v_{j+1}})(v_1, ..., v_j)$$

$$x_J(\mathbf{v_J}) = \sum_{v_1, \dots, v_{J-1}} x_{J-1}(v_1, \dots, v_{J-1}, \mathbf{v_J})$$

many

• CNN that is convolutional along axis channel:

$$x_{j+1}(v_1, ..., v_j, \frac{v_{j+1}}{v_j}) = \rho_j(x_j \star^{v_1, ..., v_j} \psi_{v_{j+1}})(v_1, ..., v_j)$$

$$x_J(\mathbf{v_J}) = \sum_{v_1, \dots, v_{J-1}} x_{J-1}(v_1, \dots, v_{J-1}, \mathbf{v_J})$$

many

• CNN that is convolutional along axis channel:

$$x_{j+1}(v_1,...,v_j, \textcolor{red}{v_{j+1}}) = \rho_j(x_j \star^{v_1,...,v_j} \psi_{\textcolor{red}{v_{j+1}}})(v_1,...,v_j)$$

$$x_J(\textcolor{red}{v_J}) = \sum_{v_1,...,v_{J-1}} x_{J-1}(v_1,...,v_{J-1},\textcolor{red}{v_J})$$

$$x_1 \qquad \qquad x_2 \qquad \qquad x_1 \qquad \qquad x_2 \qquad \qquad x_1 \qquad \qquad x_2 \qquad \qquad x_2 \qquad \qquad x_3 \qquad \qquad x_4 \qquad \qquad x_$$

• For x_j , we refer to the variable v_j as an attribute that discriminates previously obtained layer.

many

• CNN that is convolutional along axis channel:

$$x_{j+1}(v_1,...,v_j, \textcolor{red}{v_{j+1}}) = \rho_j(x_j \star^{v_1,...,v_j} \psi_{\textcolor{red}{v_{j+1}}})(v_1,...,v_j)$$

$$x_J(\textcolor{red}{v_J}) = \sum_{v_1,...,v_{J-1}} x_{J-1}(v_1,...,v_{J-1},\textcolor{red}{v_J})$$

$$x_1 \qquad \qquad x_2 \qquad \qquad x_1 \qquad \qquad x_2 \qquad \qquad x_2 \qquad \qquad x_3 \qquad \qquad x_4 \qquad \qquad x_$$

- For x_j , we refer to the variable v_j as an attribute that discriminates previously obtained layer.
- Representation is finally averaged: invariant along translations by v. Very similar to equivariant CNNs

Introduction to image classification

Interpretability in Deep Learning

Fighting the curse of dimensionality with Deep Neural Networks

Statistical learning results

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

An opaque black-box

76

• For a fixed loss ℓ , consider the expected and empirical risk:

$$\mathcal{R}(\Phi) = \mathbb{E}[\ell(\Phi X, Y)] \quad \text{and} \quad \mathcal{R}_n(\Phi) = \frac{1}{n} \sum_{i \le n} \ell(\Phi X_i, Y_i)$$
with:
$$\mathbb{E}[\mathcal{R}_n(\Phi)] = \mathcal{R}(\Phi)$$

• For a fixed loss ℓ , consider the expected and empirical risk:

$$\mathcal{R}(\Phi) = \mathbb{E}[\ell(\Phi X, Y)] \quad \text{and} \quad \mathcal{R}_n(\Phi) = \frac{1}{n} \sum_{i \le n} \ell(\Phi X_i, Y_i)$$
with:
$$\mathbb{E}[\mathcal{R}_n(\Phi)] = \mathcal{R}(\Phi)$$

• For a fixed loss ℓ , consider the expected and empirical risk:

$$\mathcal{R}(\Phi) = \mathbb{E}[\ell(\Phi X, Y)] \quad \text{and} \quad \mathcal{R}_n(\Phi) = \frac{1}{n} \sum_{i \le n} \ell(\Phi X_i, Y_i)$$
with:
$$\mathbb{E}[\mathcal{R}_n(\Phi)] = \mathcal{R}(\Phi)$$

• We might be interested in those 3 quantities

Approximation Error

$$\mathcal{R}(\hat{\Phi}_{n}) - \inf_{\Phi \in \mathcal{F}} \mathcal{R}(\Phi) \leq \mathbb{E}[\inf_{\Phi \in \mathcal{F}} \mathcal{R}_{n}(\Phi) - \inf_{\Phi \in \mathcal{F}} \mathcal{R}(\Phi)] +$$

$$\mathbb{E}[2 \sup_{\Phi \in \mathcal{F}} |\mathcal{R}_{n}(\Phi) - \mathcal{R}(\Phi)|] +$$

$$\mathbb{E}[\mathcal{R}_{n}(\hat{\Phi}_{n}) - \inf_{\Phi \in \mathcal{F}} \mathcal{R}_{n}(\Phi)]$$

Optimization error

 \mathcal{F} : set of functions of interest

in...

- Several implicit biases results (e.g., double gradient descent) .. it was already discussed on Monday
- Discussions around the optimization landscape .. sort of discussed yesterday
- Best approximation results of very deep neural networks.

$$\mathcal{R}ad_n(\mathcal{F}) = \mathbb{E}_{(\epsilon_i, X_i)_i} \left[\sup_{\Phi \in \mathcal{F}} \frac{1}{n} \sum_{i \le n} \epsilon_i \Phi(X_i) \right]$$

$$\mathcal{R}ad_n(\mathcal{F}) = \mathbb{E}_{(\epsilon_i, X_i)_i} \left[\sup_{\Phi \in \mathcal{F}} \frac{1}{n} \sum_{i \le n} \epsilon_i \Phi(X_i) \right]$$

• One can link Rademacher complexity to the generalization error, as (via symmetrisation+loss Lipschitz):

$$\mathcal{R}(\Phi) \leq \mathbb{E}[\mathcal{R}_n(\Phi)] + 2\mathcal{R}ad_n(\mathcal{F}) + \mathcal{O}(\frac{1}{\sqrt{n}})$$

$$\mathcal{R}ad_n(\mathcal{F}) = \mathbb{E}_{(\epsilon_i, X_i)_i} \left[\sup_{\Phi \in \mathcal{F}} \frac{1}{n} \sum_{i \le n} \epsilon_i \Phi(X_i) \right]$$

• One can link Rademacher complexity to the generalization error, as (via symmetrisation+loss Lipschitz):

$$\mathcal{R}(\Phi) \leq \mathbb{E}[\mathcal{R}_n(\Phi)] + 2\mathcal{R}ad_n(\mathcal{F}) + \mathcal{O}(\frac{1}{\sqrt{n}})$$

$$\mathcal{R}ad_n(\mathcal{F}) = \mathbb{E}_{(\epsilon_i, X_i)_i} \left[\sup_{\Phi \in \mathcal{F}} \frac{1}{n} \sum_{i \le n} \epsilon_i \Phi(X_i) \right]$$

• One can link Rademacher complexity to the generalization error, as (via symmetrisation+loss Lipschitz):

$$\mathcal{R}(\Phi) \leq \mathbb{E}[\mathcal{R}_n(\Phi)] + 2\mathcal{R}ad_n(\mathcal{F}) + \mathcal{O}(\frac{1}{\sqrt{n}})$$

• In practice, it can be difficult to estimate.

• For n points $(x_1,...,x_m)$ let:

$$\Pi_{\mathcal{F}}(m) = \sup_{x_1, ..., x_m \in \mathcal{X}} \# |\{(\Phi(x_1), ..., \Phi(x_m)), \Phi \in \mathcal{F}\}|$$

If $\Pi_{\mathcal{F}}(m) = 2^m$ we say that \mathcal{F} shatters the set. For a dataset \mathcal{X} , the VC dimension is the largest m such that $\Pi_{\mathcal{F}}(m) = 2^m$

$$\Pi_{\mathcal{F}}(m) = \sup_{x_1,...,x_m \in \mathcal{X}} \# |\{(\Phi(x_1),...,\Phi(x_m)), \Phi \in \mathcal{F}\}|$$

If $\Pi_{\mathcal{F}}(m) = 2^m$ we say that \mathcal{F} shatters the set. For a dataset \mathcal{X} , the VC dimension is the largest m such that $\Pi_{\mathcal{F}}(m) = 2^m$

• It can be linked to Rademacher complexity via:

$$\mathcal{R}_m(\mathcal{F}) \le \sqrt{\frac{2\log \Pi_{\mathcal{F}}(m)}{m}}$$

$$\Pi_{\mathcal{F}}(m) = \sup_{x_1,...,x_m \in \mathcal{X}} \# |\{(\Phi(x_1),...,\Phi(x_m)), \Phi \in \mathcal{F}\}|$$

If $\Pi_{\mathcal{F}}(m) = 2^m$ we say that \mathcal{F} shatters the set. For a dataset \mathcal{X} , the VC dimension is the largest m such that $\Pi_{\mathcal{F}}(m) = 2^m$

• It can be linked to Rademacher complexity via:

$$\mathcal{R}_m(\mathcal{F}) \le \sqrt{\frac{2\log \Pi_{\mathcal{F}}(m)}{m}}$$

• For a neural network of depth L and with W parameters, Bartlett et al showed that:

$$VCdim(\mathcal{F}) = \mathcal{O}(WL\log(W) + WL^2)$$

Rethinking generalization 80

Empirical Rademacher complexity:

$$\mathcal{R}ad_n(\mathcal{F})((X_i)_i) = \mathbb{E}_{(\epsilon_i)_i}[\sup_{\Phi \in \mathcal{F}} \frac{1}{n} \sum_{i \le n} \epsilon_i \Phi(X_i)]$$

Rethinking generalization 80

Empirical Rademacher complexity:

$$\mathcal{R}ad_n(\mathcal{F})((X_i)_i) = \mathbb{E}_{(\epsilon_i)_i} \left[\sup_{\Phi \in \mathcal{F}} \frac{1}{n} \sum_{i \le n} \epsilon_i \Phi(X_i) \right]$$

• Typical decomposition of generalisation via concentration looks like: with high probability $1 - \delta$,

Generalization error
$$\leq \mathcal{R}ad_n(\mathcal{F})((X_i)_i) + \mathcal{O}(\sqrt{\frac{\log \frac{1}{\delta}}{n}})$$

EPMLA Rethinking generalization.

Empirical Rademacher complexity:

$$\mathcal{R}ad_n(\mathcal{F})((X_i)_i) = \mathbb{E}_{(\epsilon_i)_i}[\sup_{\Phi \in \mathcal{F}} \frac{1}{n} \sum_{i \le n} \epsilon_i \Phi(X_i)]$$

• Typical decomposition of generalisation via concentration looks like: with high probability $1-\delta$,

Generalization error
$$\leq \mathcal{R}ad_n(\mathcal{F})((X_i)_i) + \mathcal{O}(\sqrt{\frac{\log \frac{1}{\delta}}{n}})$$

• In fact, it is empirically shown that CNN can fit random labels... Thus:

Ref.: Understanding Deep Learning requires rethinking generalization, C Zhang et al.

$$\mathcal{R}ad_n(\mathcal{F})((X_i)) \approx 1$$

Spectral complexity bounds : 81

Spectral complexity bounds : 81

• For a given trained neural network, it is possible to introduce a spectral complexity that can be no smaller than:

$$\mathcal{S}(\Phi) \ge \prod_{j=1}^{J} \|W_j\| \sqrt{\frac{J^3}{n}}$$

Ref.: Spectrally-normalized margin bounds for neural networks, Bartlet et al.

Spectral complexity bounds 1.81

• For a given trained neural network, it is possible to introduce a spectral complexity that can be no smaller than:

 $\mathcal{S}(\Phi) \ge \prod^{J} \|W_j\| \sqrt{\frac{J^3}{n}}$ Ref.: Spectrally-normalized margin bounds for neural networks, Bartlet et al.

• The main idea of the proof is to employ an ϵ -covering of a cascade of Lipschitz functions parametrised by $\{W_i\}_i$.

Spectral complexity bounds : 81

Ref.: Spectrally-normalized margin bounds for neural networks, Bartlet et al.

• For a given trained neural network, it is possible to introduce a spectral complexity that can be no smaller $\mathcal{S}(\Phi) \ge \prod^{J} \|W_j\| \sqrt{\frac{J^3}{n}}$ than:

• The main idea of the proof is to employ an ϵ -covering of a cascade of Lipschitz functions parametrised by $\{W_i\}_i$.

• Those bounds also imply for the Rademacher complexity that, with high probability $S(\Phi) \geq \mathcal{R}ad(\mathcal{F})$.

Yet they also be combined with margins.

Margins (barlett)

Define a normalised margin:

Ref.:Spectrally-normalized margin bounds for neural networks, P Barlett et al.

$$(x,y) \rightarrow \frac{(\Phi_x)_y - \max_{i \neq y} (\Phi x)_i}{\mathcal{R}(\Phi) ||X||_2}$$

Interestingly, the margin distribution is sensitive to this spectral complexity. It allows to quantify the hardness of datasets:

Bounds comparisons (with margins)

Generalization error

Ref.: Stronger generalization bounds for deep nets via a compression approach, Arora et al

Figure 4: **Left**) Comparing neural net genrealization bounds. $\ell_{1,\infty}: \frac{1}{\gamma^2} \prod_{i=1}^d ||A^i||_{1,\infty}$ Bartlett and Mendelson [2002] Frobenius: $\frac{1}{\gamma^2} \prod_{i=1}^d ||A^i||_F^2$ Neyshabur et al. [2015b], spec $\ell_{1,2}$: $\frac{1}{\gamma^2} \prod_{i=1}^d ||A_i||_2^2 \sum_{i=1}^d \frac{||A^i||_{1,2}^2}{||A^i||_2^2}$ Bartlett et al. [2017] spec-fro: $\frac{1}{\gamma^2} \prod_{i=1}^d ||A^i||_2^2 \sum_{i=1}^d h_i \frac{||A^i||_F^2}{||A^i||_2^2}$ Neyshabur et al. [2017a]

ours: $\frac{1}{\gamma^2} \max_{x \in S} ||f(x)||_2^2 \sum_{i=1}^d \frac{\beta^2 c_i^2 \lceil \kappa/s \rceil^2}{\mu_i^2 \mu_{i \to}^2}$

Optimization

Optimization

• In the general case, it is difficult to do better than the best "non-convex bounds" (i.e., vacuous)

Optimization

- In the general case, it is difficult to do better than the best "non-convex bounds" (i.e., vacuous)
- Example Gradient Descent (SGD is straightforward to extend):

$$\theta_{t+1} = \theta_t - \alpha_t \nabla V(\theta_t)$$

Fix $V(\theta) = \ell(\Phi(\theta)) - \inf_{\omega} \ell(\Phi(\theta))$ then assuming V is L-smooth:

$$V(\theta_2) \le V(\theta_1) + \nabla V(\theta_1)^T (\theta_2 - \theta_1) + \frac{L}{2} \|\theta_2 - \theta_1\|^2$$

one gets with assumptions on the step size:

$$\inf_{t \le T} \|V(\theta_t)\| = o(1)$$

EDITION IN AS GPS 185

• Consider the following NN (without bias), with "NTK" renormalisation:

$$\Phi_J x = \frac{1}{\sqrt{w_J}} W_J \rho \frac{1}{\sqrt{w_{J-1}}} W_{J-1} \dots \rho \frac{1}{\sqrt{w_0}} W_0 x_0$$

Assume that each entry is initialised as:

• Consider the following NN (without bias), with "NTK" renormalisation:

$$\Phi_J x = \frac{1}{\sqrt{w_J}} W_J \rho \frac{1}{\sqrt{w_{J-1}}} W_{J-1} \dots \rho \frac{1}{\sqrt{w_0}} W_0 x_0$$

Assume that each entry is initialised as: $(W_j)_{mn} \sim \mathcal{N}(0,1)$

• Then, in the infinite width limit, each element of $\Phi_0 x$ is an i.i.d. centered Gaussian Process with covariance $\Sigma_0(x,x') = \frac{1}{w_0} x^T x'$

• Consider the following NN (without bias), with "NTK" renormalisation:

$$\Phi_{J}x = \frac{1}{\sqrt{w_{J}}} W_{J} \rho \frac{1}{\sqrt{w_{J-1}}} W_{J-1} \dots \rho \frac{1}{\sqrt{w_{0}}} W_{0} x_{0}$$

Assume that each entry is initialised as: $(W_j)_{mn} \sim \mathcal{N}(0,1)$

- Then, in the infinite width limit, each element of $\Phi_0 x$ is an i.i.d. centered Gaussian Process with covariance $\Sigma_0(x,x') = \frac{1}{w_0}x^Tx'$
- Similarly, $w_0 \to \infty, ..., w_{j+1} \to \infty$ we get that $\Phi_{j+1}x$ is a GP: $\Sigma_{j+1}(x, x') = \mathbb{E}_{(u,v) \sim \mathcal{N}(0, \begin{bmatrix} \Sigma_j(x,x) & \Sigma_j(x',x) \\ \Sigma_j(x,x') & \Sigma_j(x',x') \end{bmatrix})} [\rho(u)\rho(v)]$

EPMIAInfinite width NN as GPs.85

• Consider the following NN (without bias), with "NTK" renormalisation:

$$\Phi_{J}x = \frac{1}{\sqrt{w_{J}}} W_{J} \rho \frac{1}{\sqrt{w_{J-1}}} W_{J-1} \dots \rho \frac{1}{\sqrt{w_{0}}} W_{0} x_{0}$$

Assume that each entry is initialised as: $(W_j)_{mn} \sim \mathcal{N}(0,1)$

- Then, in the infinite width limit, each element of $\Phi_0 x$ is an i.i.d. centered Gaussian Process with covariance $\Sigma_0(x,x') = \frac{1}{w_0} x^T x'$
- Similarly, $w_0 \to \infty, ..., w_{j+1} \to \infty$ we get that $\Phi_{j+1}x$ is a GP: $\Sigma_{j+1}(x, x') = \mathbb{E}_{(u,v) \sim \mathcal{N}(0, \begin{bmatrix} \Sigma_j(x,x) & \Sigma_j(x',x) \\ \Sigma_j(x,x') & \Sigma_j(x',x') \end{bmatrix})} [\rho(u)\rho(v)]$

proof:
$$(\Phi_{j+1}x)_k(\Phi_{j+1}x')_k = \frac{1}{w_{j+1}}(\Phi_j x)^T (W_j)_k^T (W_j)_k \Phi_j x$$

$$(W_j)_k \sim \mathcal{N}(0, I_{w_j})$$

Neural Tangent Kernel 186

Wilmia Neural Tangent Kernel

Assume Φ_J is real valued, define the NTK as:

$$\Theta_W(x, x') = \sum_{j=0}^{J} (\partial_{W_i} \Phi_J)^T \partial_{W_i} \Phi_J$$

WIPMIA Neural Tangent Kernel

Assume Φ_J is real valued, define the NTK as:

$$\Theta_W(x, x') = \sum_{j=0}^{J} (\partial_{W_i} \Phi_J)^T \partial_{W_i} \Phi_J$$

• Then the dynamic of a NN for a given loss is given by

$$\begin{split} \frac{d}{dt}\Phi_J(x;W(t)) &= -\sum_{j=0}^J \mathbb{E}_n(\partial_{W_i}\Phi_J(x;W(t)))^T \partial_{W_i}\Phi_J(X;W(t))\ell'(\Phi_J(X;W(t))) \\ &= -\mathbb{E}_n[\Theta_{W(t)}(x,X)\ell'(\Phi_J(X;W))] \end{split}$$

where
$$\mathbb{E}_n = \frac{1}{n} \sum_{i} \delta_{x_i}$$

Let:

$$\dot{\Sigma}_{j+1}(x,x') = \mathbb{E}_{(u,v) \sim \mathcal{N}(0,\begin{bmatrix} \Sigma_{j}(x,x) & \Sigma_{j}(x',x) \\ \Sigma_{j}(x,x') & \Sigma_{j}(x',x') \end{bmatrix})} [\dot{\rho}(u)\dot{\rho}(v)]$$

Let:

$$\dot{\Sigma}_{j+1}(x,x') = \mathbb{E}_{(u,v) \sim \mathcal{N}(0,\begin{bmatrix} \Sigma_{j}(x,x) & \Sigma_{j}(x',x) \\ \Sigma_{j}(x,x') & \Sigma_{j}(x',x') \end{bmatrix})} [\dot{\rho}(u)\dot{\rho}(v)]$$

• Theorem (a): In the infinite width limit, we get:

$$\Theta_{W(0)}(x,x') = \sum_{j=0}^{J} \Sigma_{j}(x,x')\dot{\Sigma}_{j+1}(x,x')...\dot{\Sigma}_{J}(x,x')$$

Let:

$$\dot{\Sigma}_{j+1}(x,x') = \mathbb{E}_{(u,v) \sim \mathcal{N}(0,\begin{bmatrix} \Sigma_{j}(x,x) & \Sigma_{j}(x',x) \\ \Sigma_{j}(x,x') & \Sigma_{j}(x',x') \end{bmatrix})} [\dot{\rho}(u)\dot{\rho}(v)]$$

• Theorem (a): In the infinite width limit, we get:

$$\Theta_{W(0)}(x,x') = \sum_{j=0}^{J} \Sigma_{j}(x,x')\dot{\Sigma}_{j+1}(x,x')...\dot{\Sigma}_{J}(x,x')$$

• Theorem (b): In the infinite width limit, we also get:

$$\Theta_{W(t)}(x, x') = \Theta_{W(0)}(x, x')$$

Let:

$$\dot{\Sigma}_{j+1}(x,x') = \mathbb{E}_{(u,v) \sim \mathcal{N}(0,\begin{bmatrix} \Sigma_{j}(x,x) & \Sigma_{j}(x',x) \\ \Sigma_{j}(x,x') & \Sigma_{j}(x',x') \end{bmatrix})} [\dot{\rho}(u)\dot{\rho}(v)]$$

• Theorem (a): In the infinite width limit, we get:

$$\Theta_{W(0)}(x,x') = \sum_{j=0}^{J} \Sigma_{j}(x,x')\dot{\Sigma}_{j+1}(x,x')...\dot{\Sigma}_{J}(x,x')$$

• Theorem (b): In the infinite width limit, we also get:

$$\Theta_{W(t)}(x, x') = \Theta_{W(0)}(x, x')$$

Consequence for a least square: $\frac{d}{dt}\Phi_t = A(\Phi_t - \Phi_*)$

EDITION INFORMATION INFORMATI

Let:

$$\dot{\Sigma}_{j+1}(x,x') = \mathbb{E}_{(u,v) \sim \mathcal{N}(0,\begin{bmatrix} \Sigma_{j}(x,x) & \Sigma_{j}(x',x) \\ \Sigma_{j}(x,x') & \Sigma_{j}(x',x') \end{bmatrix})} [\dot{\rho}(u)\dot{\rho}(v)]$$

• Theorem (a): In the infinite width limit, we get:

$$\Theta_{W(0)}(x,x') = \sum_{j=0}^{J} \Sigma_{j}(x,x')\dot{\Sigma}_{j+1}(x,x')...\dot{\Sigma}_{J}(x,x')$$

• Theorem (b): In the infinite width limit, we also get:

$$\Theta_{W(t)}(x, x') = \Theta_{W(0)}(x, x')$$

- Consequence for a least square: $\frac{d}{dt}\Phi_t = A(\Phi_t \Phi_*)$
- For a ReLU this kernel is equal to and is semi definite positive, thus A>0.

• Consider any neural network Φ and let:

$$\bar{\Phi}(W) \triangleq \Phi(W(0)) + \nabla_W \Phi(W(0))^T (W - W(0))$$

• Consider any neural network Φ and let:

$$\bar{\Phi}(W) \triangleq \Phi(W(0)) + \nabla_W \Phi(W(0))^T (W - W(0))$$

The dynamic of this parametrisation is given by:

$$\frac{d}{dt}\bar{\Phi}(\bar{W}(t)) = -\mathbb{E}_n[\Theta_{\bar{W}(0)}\ell'(\bar{\Phi}(\bar{W}(t)))]$$

• Consider any neural network Φ and let:

$$\bar{\Phi}(W) \triangleq \Phi(W(0)) + \nabla_W \Phi(W(0))^T (W - W(0))$$

The dynamic of this parametrisation is given by:

$$\frac{d}{dt}\bar{\Phi}(\bar{W}(t)) = -\mathbb{E}_n[\Theta_{\bar{W}(0)}\ell'(\bar{\Phi}(\bar{W}(t)))]$$

Consider any neural network Φ and let:

$$\bar{\Phi}(W) \triangleq \Phi(W(0)) + \nabla_W \Phi(W(0))^T (W - W(0))$$

• The dynamic of this parametrisation is given by:

$$\frac{d}{dt}\bar{\Phi}(\bar{W}(t)) = -\mathbb{E}_n[\Theta_{\bar{W}(0)}\ell'(\bar{\Phi}(\bar{W}(t)))]$$

• Then, without having the previous NTK parametrisation, we have:

$$\sup_{t \in [0,T]} \|\bar{W}(t) - W(t)\| = o(\frac{1}{\text{width}})$$

Lazy training principle

EDITION Lazy training principle

Consider: $\bar{\Phi}(\Theta) \triangleq \Phi(\Theta_0) + D\Phi(\Theta_0).(\Theta - \Theta_0)$

Consider: $\bar{\Phi}(\Theta) \triangleq \Phi(\Theta_0) + D\Phi(\Theta_0).(\Theta - \Theta_0)$

as well as: $\bar{\mathcal{L}}(\Theta) \triangleq \hat{\mathcal{R}}(\bar{\Phi}(\Theta))$ and $\mathcal{L}(\Theta) \triangleq \hat{\mathcal{R}}(\Phi(\Theta))$.

EDMIA Lazy training principle

Consider: $\bar{\Phi}(\Theta) \triangleq \Phi(\Theta_0) + D\Phi(\Theta_0).(\Theta - \Theta_0)$

as well as: $\bar{\mathcal{L}}(\Theta) \triangleq \hat{\mathcal{R}}(\bar{\Phi}(\Theta))$ and $\mathcal{L}(\Theta) \triangleq \hat{\mathcal{R}}(\Phi(\Theta))$.

• **Definition (informal)**: A lazy regime occurs if the optimization paths of \mathcal{L} and \mathcal{L} remain close.

EDITION LAZY training principle

Consider:
$$\bar{\Phi}(\Theta) \triangleq \Phi(\Theta_0) + D\Phi(\Theta_0).(\Theta - \Theta_0)$$

as well as:
$$\bar{\mathcal{L}}(\Theta) \triangleq \hat{\mathcal{R}}(\bar{\Phi}(\Theta))$$
 and $\mathcal{L}(\Theta) \triangleq \hat{\mathcal{R}}(\Phi(\Theta))$.

- **Definition (informal)**: A lazy regime occurs if the optimization paths of \mathcal{L} and \mathcal{L} remain close.
- This is in particular true if:

$$\frac{\|\nabla \mathcal{L}(\Theta_0)\|}{\mathcal{L}(\Theta_0)} \gg \frac{\|D^2 \Phi(\Theta_0)\|}{\|D \Phi(\Theta_0)\|} \text{ thus let: } \kappa(\Theta_0) \triangleq \frac{\mathcal{L}(\Theta_0)}{\|\nabla \mathcal{L}(\Theta_0)\|} \frac{\|D^2 \Phi(\Theta_0)\|}{\|D \Phi(\Theta_0)\|}$$

EDITION LAZY training principle

Consider:
$$\bar{\Phi}(\Theta) \triangleq \Phi(\Theta_0) + D\Phi(\Theta_0).(\Theta - \Theta_0)$$

as well as:
$$\bar{\mathcal{L}}(\Theta) \triangleq \hat{\mathcal{R}}(\bar{\Phi}(\Theta))$$
 and $\mathcal{L}(\Theta) \triangleq \hat{\mathcal{R}}(\Phi(\Theta))$.

- **Definition (informal)**: A lazy regime occurs if the optimization paths of \mathcal{L} and \mathcal{L} remain close.
- This is in particular true if:

$$\frac{\|\nabla \mathcal{L}(\Theta_0)\|}{\mathcal{L}(\Theta_0)} \gg \frac{\|D^2 \Phi(\Theta_0)\|}{\|D \Phi(\Theta_0)\|} \text{ thus let: } \kappa(\Theta_0) \triangleq \frac{\mathcal{L}(\Theta_0)}{\|\nabla \mathcal{L}(\Theta_0)\|} \frac{\|D^2 \Phi(\Theta_0)\|}{\|D \Phi(\Theta_0)\|}$$

EDITION Lazy training principle

Consider:
$$\bar{\Phi}(\Theta) \triangleq \Phi(\Theta_0) + D\Phi(\Theta_0).(\Theta - \Theta_0)$$

as well as:
$$\bar{\mathcal{L}}(\Theta) \triangleq \hat{\mathcal{R}}(\bar{\Phi}(\Theta))$$
 and $\mathcal{L}(\Theta) \triangleq \hat{\mathcal{R}}(\Phi(\Theta))$.

- **Definition (informal)**: A lazy regime occurs if the optimization paths of \mathcal{L} and \mathcal{L} remain close.
- This is in particular true if:

$$\frac{\|\nabla \mathcal{L}(\Theta_0)\|}{\mathcal{L}(\Theta_0)} \gg \frac{\|D^2 \Phi(\Theta_0)\|}{\|D \Phi(\Theta_0)\|} \text{ thus let: } \kappa(\Theta_0) \triangleq \frac{\mathcal{L}(\Theta_0)}{\|\nabla \mathcal{L}(\Theta_0)\|} \frac{\|D^2 \Phi(\Theta_0)\|}{\|D \Phi(\Theta_0)\|}$$

• For a squared loss:

$$\kappa(\Theta_0) = \|\Phi(\Theta_0) - y^*\| \frac{\|D^2\Phi(\Theta_0)\|}{\|D\Phi(\Theta_0)\|}.$$

$$\mathcal{L}_{\alpha}(\Theta) \triangleq \frac{1}{\alpha^2} \hat{\mathcal{R}}(\alpha \Phi(\Theta)).$$

$$\mathcal{L}_{\alpha}(\Theta) \triangleq \frac{1}{\alpha^2} \hat{\mathcal{R}}(\alpha \Phi(\Theta)).$$

This rescaling is always implicitly present.

$$\mathcal{L}_{\alpha}(\Theta) \triangleq \frac{1}{\alpha^2} \hat{\mathcal{R}}(\alpha \Phi(\Theta)).$$

This rescaling is always implicitly present.

$$\mathcal{L}_{\alpha}(\Theta) \triangleq \frac{1}{\alpha^2} \hat{\mathcal{R}}(\alpha \Phi(\Theta)).$$

This rescaling is always implicitly present.

• For a MSE loss, the corresponding laziness is:

$$\kappa_{\alpha}(\Theta_{0}) = \frac{1}{\alpha} \|\alpha \Phi(\Theta_{0}) - y^{*}\| \frac{\|D^{2}\Phi(\Theta_{0})\|}{\|D\Phi(\Theta_{0})\|}.$$

$$\mathcal{L}_{\alpha}(\Theta) \triangleq \frac{1}{\alpha^2} \hat{\mathcal{R}}(\alpha \Phi(\Theta)).$$

This rescaling is always implicitly present.

• For a MSE loss, the corresponding laziness is:

$$\kappa_{\alpha}(\Theta_{0}) = \frac{1}{\alpha} \|\alpha \Phi(\Theta_{0}) - y^{*}\| \frac{\|D^{2} \Phi(\Theta_{0})\|}{\|D \Phi(\Theta_{0})\|}.$$

$$\mathcal{L}_{\alpha}(\Theta) \triangleq \frac{1}{\alpha^2} \hat{\mathcal{R}}(\alpha \Phi(\Theta)).$$

This rescaling is always implicitly present.

• For a MSE loss, the corresponding laziness is:

$$\kappa_{\alpha}(\Theta_{0}) = \frac{1}{\alpha} \|\alpha\Phi(\Theta_{0}) - y^{*}\| \frac{\|D^{2}\Phi(\Theta_{0})\|}{\|D\Phi(\Theta_{0})\|}.$$

• Other losses do not require specific theoretical adaptations (for finite horizons) to our measure of laziness and numerically we observed almost no differences: no lack in generality.

used in Neural Networks.

UPMLA ... used in Neural Networks.

The case of 1-hidden layer models (simpler to analyze):

$$\Phi(\Theta_0; x) = \alpha(m) \sum_{i=1}^{\infty} b_i \rho(w_i^T x), \ \Theta_0 = \{b_i, w_i\}_{i \le m}$$

Generic case of deep CNNs (NTK-like):

LIPMLA ... used in Neural Networks.

The case of 1-hidden layer models (simpler to analyze):

$$\Phi(\Theta_0; x) = \alpha(m) \sum_{i=1}^{m} b_i \rho(w_i^T x), \ \Theta_0 = \{b_i, w_i\}_{i \le m}$$

If $D\Phi(\Theta) \neq 0$ in a neighbourhood of Θ_0 and $\Theta_0 \sim \mathcal{N}(0, \sigma^2 I_{2m})$.

$$\mathbb{E}[\kappa_{\alpha(m)}(\Theta_0)] \lesssim m^{-\frac{1}{2}} + (m\alpha(m))^{-1}$$

Generic case of deep CNNs (NTK-like):

LIPMLA ... used in Neural Networks.

The case of 1-hidden layer models (simpler to analyze):

$$\Phi(\Theta_0; x) = \alpha(m) \sum_{i=1}^{m} b_i \rho(w_i^T x), \ \Theta_0 = \{b_i, w_i\}_{i \le m}$$

If $D\Phi(\Theta) \neq 0$ in a neighbourhood of Θ_0 and $\Theta_0 \sim \mathcal{N}(0, \sigma^2 I_{2m})$.

$$\mathbb{E}[\kappa_{\alpha(m)}(\Theta_0)] \lesssim m^{-\frac{1}{2}} + (m\alpha(m))^{-1}$$

This holds for several aforementioned references, with $\alpha(m) = \frac{1}{\sqrt{m}}$.

Generic case of deep CNNs (NTK-like):

used in Neural Networks

• The case of 1-hidden layer models (simpler to analyze): m

$$\Phi(\Theta_0; x) = \alpha(m) \sum_{i=1}^{m} b_i \rho(w_i^T x), \ \Theta_0 = \{b_i, w_i\}_{i \le m}$$

If $D\Phi(\Theta) \neq 0$ in a neighbourhood of Θ_0 and $\Theta_0 \sim \mathcal{N}(0, \sigma^2 I_{2m})$.

$$\mathbb{E}[\kappa_{\alpha(m)}(\Theta_0)] \lesssim m^{-\frac{1}{2}} + (m\alpha(m))^{-1}$$

This holds for several aforementioned references, with $\alpha(m) = \frac{1}{\sqrt{m}}$. Chizat and Bach have studied the setting $\alpha(m) = \frac{1}{m}$.

Ref.: On the global convergence of gradient descent for over-parameterized models using optimal transport, Chizat and Bach

• Generic case of deep CNNs (NTK-like):

used in Neural Networks

• The case of 1-hidden layer models (simpler to analyze): m

$$\Phi(\Theta_0; x) = \alpha(m) \sum_{i=1}^{m} b_i \rho(w_i^T x), \ \Theta_0 = \{b_i, w_i\}_{i \le m}$$

If $D\Phi(\Theta) \neq 0$ in a neighbourhood of Θ_0 and $\Theta_0 \sim \mathcal{N}(0, \sigma^2 I_{2m})$.

$$\mathbb{E}[\kappa_{\alpha(m)}(\Theta_0)] \lesssim m^{-\frac{1}{2}} + (m\alpha(m))^{-1}$$

This holds for several aforementioned references, with $\alpha(m) = \frac{1}{\sqrt{m}}$. Chizat and Bach have studied the setting $\alpha(m) = \frac{1}{m}$.

Ref.: On the global convergence of gradient descent for over-parameterized models using optimal transport, Chizat and Bach

• Generic case of deep CNNs (NTK-like):

$$\kappa_{\alpha}(\Theta_{0}) = \frac{1}{\alpha} \|\alpha\Phi(\Theta_{0}) - y^{*}\| \frac{\|D^{2}\Phi\|}{\|D\Phi\|^{2}}$$

used in Neural Networks

• The case of 1-hidden layer models (simpler to analyze): m

$$\Phi(\Theta_0; x) = \alpha(m) \sum_{i=1}^{m} b_i \rho(w_i^T x), \ \Theta_0 = \{b_i, w_i\}_{i \le m}$$

If $D\Phi(\Theta) \neq 0$ in a neighbourhood of Θ_0 and $\Theta_0 \sim \mathcal{N}(0, \sigma^2 I_{2m})$.

$$\mathbb{E}[\kappa_{\alpha(m)}(\Theta_0)] \lesssim m^{-\frac{1}{2}} + (m\alpha(m))^{-1}$$

This holds for several aforementioned references, with $\alpha(m) = \frac{1}{\sqrt{m}}$. Chizat and Bach have studied the setting $\alpha(m) = \frac{1}{m}$.

Ref.: On the global convergence of gradient descent for over-parameterized models using optimal transport, Chizat and Bach

• Generic case of deep CNNs (NTK-like):

$$\kappa_{\alpha}(\Theta_{0}) = \frac{1}{\alpha} \|\alpha\Phi(\Theta_{0}) - y^{*}\| \frac{\|D^{2}\Phi\|}{\|D\Phi\|^{2}}$$

If $\Phi(\Theta_0) = 0$ and $\alpha \gg 1$ implying that $\kappa_{\alpha} \ll 1$

Lazy dynamic

standard dynamic: $\Theta'_{\alpha}(t) = -\nabla \mathcal{L}_{\alpha}(\Theta_{\alpha}(t))$

linearized dynamic: $\bar{\Theta}'_{\alpha}(t) = -\nabla \bar{\mathcal{L}}_{\alpha}(\bar{\Theta}_{\alpha}(t))$

Lazy dynamic

standard dynamic: $\Theta'_{\alpha}(t) = -\nabla \mathcal{L}_{\alpha}(\Theta_{\alpha}(t))$

linearized dynamic: $\bar{\Theta}'_{\alpha}(t) = -\nabla \bar{\mathcal{L}}_{\alpha}(\bar{\Theta}_{\alpha}(t))$

• **Theorem** (Chizat): Assume that $\Phi(\Theta_0) = 0$. Given T > 0:

$$\sup_{t \in [0,T]} \|\Theta_{\alpha}(t) - \Theta_{0}\| = O(\frac{1}{\alpha}) \quad , \quad \sup_{t \in [0,T]} \|\Theta_{\alpha}(t) - \bar{\Theta}_{\alpha}(t)\| = O(\frac{1}{\alpha^{2}})$$

and
$$\sup_{t \in [0,T]} \|\alpha \Phi(\Theta_{\alpha}(t)) - \alpha \bar{\Phi}(\bar{\Theta}_{\alpha}(t))\| = O(\frac{1}{\alpha}).$$

In other words, as alpha is large, the dynamic is close to the linearized dynamic

Lazy dynamic

standard dynamic: $\Theta'_{\alpha}(t) = -\nabla \mathcal{L}_{\alpha}(\Theta_{\alpha}(t))$

linearized dynamic: $\bar{\Theta}'_{\alpha}(t) = -\nabla \bar{\mathcal{L}}_{\alpha}(\bar{\Theta}_{\alpha}(t))$

• **Theorem** (Chizat): Assume that $\Phi(\Theta_0) = 0$. Given T > 0:

$$\sup_{t \in [0,T]} \|\Theta_{\alpha}(t) - \Theta_{0}\| = O(\frac{1}{\alpha}) \quad , \quad \sup_{t \in [0,T]} \|\Theta_{\alpha}(t) - \bar{\Theta}_{\alpha}(t)\| = O(\frac{1}{\alpha^{2}})$$

and
$$\sup_{t \in [0,T]} \|\alpha \Phi(\Theta_{\alpha}(t)) - \alpha \bar{\Phi}(\bar{\Theta}_{\alpha}(t))\| = O(\frac{1}{\alpha}).$$

In other words, as alpha is large, the dynamic is close to the linearized dynamic

• **Theorem** (Chizat): If $\hat{\mathcal{R}}$ is strongly convex, $\Phi(\Theta_0) = 0$, $\operatorname{rk}(D\Phi(\Theta))$ is locally constant. Then, there exists α_0, C_1, C_2 :

$$\forall \alpha > \alpha_0, \ \exists \Theta_{\infty}^{\alpha} : \|\Phi(\Theta_{\infty}^{\alpha}) - \Phi(\Theta_{t}^{\alpha})\| \le C_1 \|\Phi(\Theta_{\infty}^{\alpha})\| e^{-C_2 t}$$
 and
$$\nabla \mathcal{L}_{\alpha}(\Theta_{\infty}^{\alpha}) = 0$$

In other word, lazy regime allows to reach a local minimum.

CIFAR10 experiments using standard practice!!

CIFAR10 experiments using standard practice!!

CIFAR10 experiments using standard practice!!

When $\alpha \to \infty$ there is a clear convergence.

CIFAR10 experiments using standard practice!!

When $\alpha \to \infty$ there is a clear convergence.

For ReLU, if linearized:

$$\alpha \rho(w^T x) = \alpha \rho(w_0^T x) + \alpha \rho'(w_0^T x) x^T (w - w_0)$$

Thus, if linearized, the activations are stable.

EPMLA Approximation results

• Generic idea: for a given function space, find a good approximation bound of a generator.

> Ref.: ResNet with one-neuron hidden layers is a Universal Approximator, Lin and Jegelka

- Infinite depth + a single neuron is an universal approximator in L^1 .
- Deep NNs lead to better approximations than linear methods for Besov, Sobolev, Hölder space...

Ref.: Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of

• What about infinite width 1-hidden layer?

dimensionality, T Suzuki

Theoretical results for 1-hidden layer Neural Networks

EPMLAUniversal approximation? ...

• Let f be a compactly smooth supported function:

$$f: \mathbb{R}^D o \mathbb{R}$$
 and a smoothness measure: $C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$

and ρ a non-linearity, bounded, strictly monotically increasing and continuous(e.g. tanh)

EPMLAUniversal approximation? ...

• Let f be a compactly smooth supported function:

$$f: \mathbb{R}^D \to \mathbb{R}$$
 and a smoothness measure: $C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$

and ρ a non-linearity, bounded, strictly monotically increasing and continuous(e.g. tanh)

• Theorem: Universal approximation (Cybenko, 1991)

Let's note:
$$F^P : \{a_i, w_i\}_{i \le P} \text{ and } F^P(x) = \sum_{i \le P} a_i \rho(w_i^T x + b_i)$$

Then: $\forall \epsilon, \exists F^P : ||F^P - f||_{\infty} < \epsilon$

EPMLAUniversal approximation? ...

• Let f be a compactly smooth supported function:

$$f: \mathbb{R}^D \to \mathbb{R}$$
 and a smoothness measure: $C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$

and ρ a non-linearity, bounded, strictly monotically increasing and continuous(e.g. tanh)

• Theorem: Universal approximation (Cybenko, 1991)

Let's note:
$$F^P : \{a_i, w_i\}_{i \le P} \text{ and } F^P(x) = \sum_{i \le P} a_i \rho(w_i^T x + b_i)$$

Then: $\forall \epsilon, \exists F^P : ||F^P - f||_{\infty} < \epsilon$

EPMLA Universal approximation? ...96

• Let f be a compactly smooth supported function:

$$f: \mathbb{R}^D \to \mathbb{R}$$
 and a smoothness measure: $C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$

and ρ a non-linearity, bounded, strictly monotically increasing and continuous(e.g. tanh)

• Theorem: Universal approximation (Cybenko, 1991)

Let's note:
$$F^P: \{a_i, w_i\}_{i \leq P} \text{ and } F^P(x) = \sum_{i \leq P} a_i \rho(w_i^T x + b_i)$$

Then: $\forall \epsilon, \exists F^P: ||F^P - f||_{\infty} < \epsilon$

• Theorem: Approximation and estimation bounds (Barron, 1994)

1994)
If:
$$F^{N,P} = \arg\inf_{F^P} \sum_{j=1}^N ||F^P(X_j) - f(X_j)||^2$$
then: $E||F^{N,P} - f||^2 \le \mathcal{O}(\frac{C_f^2}{N}) + \mathcal{O}(\frac{DN}{P}\log(P))$

Reproducing Hilbert Space ...97

Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach

Reproducing Hilbert Space

• We will explain (one of) the strategy from (Bach, 2014), only in the RKHS setting (more refined bound can be obtained outside the rkhs) $_{\text{Ref.: Breaking the curse of dimensionality with}}$ convex neural networks, F Bach

Reproducing Hilbert Space

- We will explain (one of) the strategy from (Bach, 2014), only in the RKHS setting (more refined bound can be obtained outside the rkhs), Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach
- Fix a measure τ , Ω compact and introduce:

$$\mathcal{F} = \{f, f(x) = \int_{(v,b)\in\Omega} p(v)\rho(v^Tx + b)d\tau(v,b), p \in L^2(\tau)\}$$
 e.g., for a finite number of neurons:
$$f(x) = \sum_i p_i \rho(v_i^Tx + b_i)$$

,

Reproducing Hilbert Space ... 97

- We will explain (one of) the strategy from (Bach, 2014), only in the RKHS setting (more refined bound can be obtained outside the rkhs), Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach
- Fix a measure τ , Ω compact and introduce:

$$\mathcal{F} = \{f, f(x) = \int_{(v,b)\in\Omega} p(v)\rho(v^Tx + b)d\tau(v,b), p \in L^2(\tau)\}$$
 e.g., for a finite number of neurons:
$$f(x) = \sum_i p_i \rho(v_i^Tx + b_i)$$

Then, \mathcal{F} is a RKHS with kernel

$$k(x,y) = \int_{v \in \mathcal{V}} \rho(v^T x + b) \rho(v^T y + b) dv db$$

and norm

$$||f|| = \inf_{f(x) = \int_{\Omega} p(v)\rho(v^Tx + b)dv \, db} ||p||, p \in L^2(\tau, \mathcal{V})$$

d = 1

Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach

..98

Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach

$$f(\theta) = \int_{[0,2\pi]} p(\theta') \rho(\cos(\theta - \theta')) d\theta' \quad g(\theta) = \sum_k c_k(g) e^{ik\theta}$$

$$c_k(f) = c_k(p) \gamma_k \text{ and for a ReLU } \gamma_k = \begin{cases} 0, & \text{if } k = 2p + 1\\ (-1)^p \frac{2}{k^2 - 1}, & \text{if } k = 2p \end{cases}$$

d=1

Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach

$$f(\theta) = \int_{[0,2\pi]} p(\theta') \rho(\cos(\theta - \theta')) d\theta' \quad g(\theta) = \sum_k c_k(g) e^{ik\theta}$$
$$c_k(f) = c_k(p) \gamma_k \text{ and for a ReLU } \gamma_k = \begin{cases} 0, & \text{if } k = 2p + 1\\ (-1)^p \frac{2}{k^2 - 1}, & \text{if } k = 2p \end{cases}$$

• Let's focus on functions defined over the 2D sphere:

$$||p||^2 = \sum_{k} |c_k(p)|^2 = \sum_{k,\gamma_k \neq 0} \frac{|c_k(f)|^2}{\gamma_k^2} + \sum_{k,\gamma_k = 0} |c_k(p)|^2$$

d=1

Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach

$$f(\theta) = \int_{[0,2\pi]} p(\theta') \rho(\cos(\theta - \theta')) d\theta' \quad g(\theta) = \sum_k c_k(g) e^{ik\theta}$$

$$c_k(f) = c_k(p) \gamma_k \text{ and for a ReLU } \gamma_k = \begin{cases} 0, & \text{if } k = 2p + 1\\ (-1)^p \frac{2}{k^2 - 1}, & \text{if } k = 2p \end{cases}$$

• Let's focus on functions defined over the 2D sphere:

$$||p||^2 = \sum_{k} |c_k(p)|^2 = \sum_{k,\gamma_k \neq 0} \frac{|c_k(f)|^2}{\gamma_k^2} + \sum_{k,\gamma_k = 0} |c_k(p)|^2$$

• Lipschitz functions are in this RKHS. (proof via a Poisson kernel)

d = 1

Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach

$$f(\theta) = \int_{[0,2\pi]} p(\theta') \rho(\cos(\theta - \theta')) d\theta' \quad g(\theta) = \sum_k c_k(g) e^{ik\theta}$$

$$c_k(f) = c_k(p) \gamma_k \text{ and for a ReLU } \gamma_k = \begin{cases} 0, & \text{if } k = 2p + 1\\ (-1)^p \frac{2}{k^2 - 1}, & \text{if } k = 2p \end{cases}$$

• Let's focus on functions defined over the 2D sphere:

$$||p||^2 = \sum_{k} |c_k(p)|^2 = \sum_{k,\gamma_k \neq 0} \frac{|c_k(f)|^2}{\gamma_k^2} + \sum_{k,\gamma_k = 0} |c_k(p)|^2$$

- Lipschitz functions are in this RKHS. (proof via a Poisson kernel)
- Approximation results are easier with this type of results

layer NN

$$F(\mu) = R(\int \varphi d\mu) + \text{regularization}(\mu)$$

pde given by:
$$\partial_t \mu_t = -\operatorname{div}(v_t \mu_t), v_t \in -\partial F'(\mu_t)$$
(a) if: $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)} \operatorname{then} \mu_n(t) \to \mu(t)$

Ref.: On the global convergence of gradient descent for over-parameterized models using optimal transport

(b) there exists under "nice" conditions μ^* s.t.: Chizat and Bach

$$\mathcal{W}_p(\mu_t, \mu^*) \to 0$$

layer NN

In the mean field limit, one can get convergence guarantees on the flow of an infinite width NN.

$$F(\mu) = R(\int \varphi d\mu) + \text{regularization}(\mu)$$

pde given by:
$$\partial_t \mu_t = -\operatorname{div}(v_t \mu_t), v_t \in -\partial F'(\mu_t)$$
(a) if: $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)} \operatorname{then} \mu_n(t) \to \mu(t)$
Ref.: On the globa

Ref.: On the global convergence of gradient descent for over-parameterized models using

Chizat and Bach

(b) there exists under "nice" conditions μ^* s.t.:

$$\mathcal{W}_p(\mu_t, \mu^*) \to 0$$

optimal transport

layer NN

In the mean field limit, one can get convergence guarantees on the flow of an infinite width NN.

$$F(\mu) = R(\int \varphi d\mu) + \text{regularization}(\mu)$$

pde given by:
$$\partial_t \mu_t = -\operatorname{div}(v_t \mu_t), v_t \in -\partial F'(\mu_t)$$
(a) if: $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)} \operatorname{then} \mu_n(t) \to \mu(t)$
Ref.: On the globa

Ref.: On the global convergence of gradient descent for over-parameterized models using

Chizat and Bach

(b) there exists under "nice" conditions μ^* s.t.:

$$\mathcal{W}_p(\mu_t, \mu^*) \to 0$$

optimal transport

layer NN

In the mean field limit, one can get convergence guarantees on the flow of an infinite width NN.

$$F(\mu) = R(\int \varphi d\mu) + \text{regularization}(\mu)$$

pde given by:
$$\partial_t \mu_t = -\operatorname{div}(v_t \mu_t), v_t \in -\partial F'(\mu_t)$$
(a) if: $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)} \operatorname{then} \mu_n(t) \to \mu(t)$
Ref.: On the globa

Ref.: On the global convergence of gradient descent for over-parameterized models using

Chizat and Bach

(b) there exists under "nice" conditions μ^* s.t.:

$$\mathcal{W}_p(\mu_t, \mu^*) \to 0$$

optimal transport

In the mean field limit, one can get convergence guarantees on the flow of an infinite width NN.

$$F(\mu) = R(\int \varphi d\mu) + \text{regularization}(\mu)$$

pde given by:
$$\partial_t \mu_t = -\operatorname{div}(v_t \mu_t), v_t \in -\partial F'(\mu_t)$$
(a) if: $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)} \operatorname{then} \mu_n(t) \to \mu(t)$
Ref.: On the global

Ref.: On the global convergence of gradient descent for over-parameterized models using optimal transport

Chizat and Bach

(b) there exists under "nice" conditions μ^* s.t.:

$$\mathcal{W}_p(\mu_t, \mu^*) \to 0$$

• Those guarantees are purely asymptotic and seem difficult to extend to deeper NNs.

Ref.: The Power of Depth for Feedforward Neural Networks, R Eldan and O Shamir

Ref.: The Power of Depth for Feedforward Neural Networks, R Eldan and O Shamir

• Under non-restrictive assumptions (e.g., satisfied by ReLU) on ρ , there exists constant c, C > 0, such that for any dimension d, there exists a measure μ and $g : \mathbb{R}^d \to \mathbb{R}$:

Ref.: The Power of Depth for Feedforward Neural Networks, R Eldan and O Shamir

- Under non-restrictive assumptions (e.g., satisfied by ReLU) on ρ , there exists constant c, C > 0, such that for any dimension d, there exists a measure μ and $g : \mathbb{R}^d \to \mathbb{R}$:
- g is bounded, with support in $\mathcal{B}(0, C\sqrt{d})$ and can be approximate by a 3 layers NN with a polynomial width.

Ref.: The Power of Depth for Feedforward Neural Networks, R Eldan and O Shamir

- Under non-restrictive assumptions (e.g., satisfied by ReLU) on ρ , there exists constant c, C > 0, such that for any dimension d, there exists a measure μ and $g : \mathbb{R}^d \to \mathbb{R}$:
- g is bounded, with support in $\mathcal{B}(0, C\sqrt{d})$ and can be approximate by a 3 layers NN with a polynomial width.

• BUT any 2 layers NN g such that $\int |f-g|^2 d\mu \le c$ has an exponential width.

Tomorrow's lab

- Please try the first tutorial (classifying CIFAR10) on your own.
- https://edouardoyallon.github.io/cirm2021/

Conclusion

.102

Conclusion

• Deep neural networks are difficult tools to analyse...

 $\cdot 102$

Conclusion

- Deep neural networks are difficult tools to analyse...
- ... that can lead to super exciting new results.

·102