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@ipPMLiA Overview of the lecture '

Intro: Image classification or generation, some challenging tasks.

A.

Fighting the curse of dimensionality with Deep Neural
Networks.

1. A fantastic tool to empirically solve high dimensional tasks. ..

2. ... that requires many recipes to be trained.

. Interpretability in deep learning.

1. Under the hood of neural networks.
2. Invariant Representations and Deep Neural Networks.

. Statistical learning results.

1. An opaque black-box from the learning theory perspective.
2. Sometimes, well understood: 1 hidden-layer Neural Networks
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@iipMiia Overview of the Lab session ™

A. Make your own Invertible Neural Networks
B. A tutorial to the Scattering Transform

C. (if we have time) Get insights on a pretrained model.
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@ lipMLA

o R e ° : . Which color should be this
circle”

An example of supervised task: classification
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@iipmia High dimensional images !

e PdF's are difficult to estimate in high dimension.

N=1 N =2

- I
B

e For a fixed number of points and bin size, as N

increases, the bins are likely to be empty.
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@iipmia High dimensional images !

e PdF's are difficult to estimate in high dimension.

N=1 N =2

e For a fixed number of points and bin size, as N
increases, the bins are likely to be empty.

Curse of dimensionality:
occurs in many machine learning problems
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@LpMLiA Supervised task

X = R? Samples space

) = { 70} Labels

Input data > Output data
reX Plr)~yec)

e LEstimating a label y from a sample z, by training a
model & on a training set. Validation of the model
is done on a different test set.

e Examples: prediction, regression, classification,. . .

e Best setting: dimensions of z and y is small, X’ large



8

@iPMLiA Many types of supervision.

D : dataset to construct ¢

e Supervised learning:

D ={(z,y)}

e Unsupervised learning:
D= {(z)}

D = {(z1)} U{(%2,92)}

e Weakly-supervised learning:

D= {(z1,y1 +€1)} U{(x2)}

often few

D ={(x(p),y(p))}  eolddata
e Multi-task, Transter-learning:

e Semi-supervised learning:

e Self-supervised learning:

Dl %DQ
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@ LiPMLIA Simple example: digit-classification. 9

e How to address a supervised task: rRYq9a4 v
= A Y-y
1. Propose a model of your data.
777077177
Ex.: MNIST (60k samples) RIS 5seI B E
2. Design a representation. —

Small deformations

Ex.: Scattering Transform. + Translation

Achieves translation invariance, linearises deformations.
3. Propose a (convex) classifier.

Ex.: Linear SVM.

Displacement

[ () @ [

—>
. R + projection . .o .

4. Obtain reasonable performances.
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@lipMLiA In the following. ..

1. No model known on real images
2. Limited a prior:, except translation invariance
3. Learn each parameters. ..

4. Obtain the best performances

The reason of their success is unclear. ..

.10



@ lipMLA

Large datasets...

T
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@ipmia Large datasets...

e ImageNet 2012: (350GB)
1 million training images, 1 000 classes
400 000 test 1mages
Large coloured images of various sizes

~-, oo (17

w11

Ref.: image-net.org



http://image-net.org

@ipmia Large datasets...

e ImageNet 2012: (350GB)
I million training images, 1 000 classes Rt magecnetong

400 000 test 1mages
Large coloured images of various sizes

e Labels obtained via Amazon Turk (complex process
that requires human labelling)

w11
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Image variabilities

(Geometric variability Class variability

Groups acting on images:

Intraclass variability

translation, rotation, scaling

- LR AN

Other sources : luminosity, occlusion,

, Extraclass variability
small deformations
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@ipmiia Difficult problems due to ™
Image variabilities

(Geometric variability Class variability

Groups acting on images:

Intraclass variability

translation, rotation, scaling

- LR AN

Other sources : luminosity, occlusion,

small deformations

— (JJ

High variance: hard to reduce!




@LpMLA Desirable properties of a
representation

e Invariance to group G of transformation (e.g. roto-

translation):
Vr,Vg € G, P(g.x) = ®(x) A
_—®
e Stability to noise -

vz, y, [|®(z) — ()2 < llz = yll2

e Reconstruction properties B(z)

y=®(z) <=1z =>0"(y)

e Linear separation of the different classes
Vi 7 7, [|E(®(X;)) = E(®(X;))]l2 > 1

Vi,o(®(X;)) < 1

.13



@LpMLA Desirable properties of a
representation

e Invariance to group G of transformation (e.g. roto-

translation):
Vr,Vg € G, P(g.x) = ®(x) A
_—®
e Stability to noise -
v, y, [ ®(x) — 2(y)ll2 < |z -yl
e Reconstruction properties (z)

y=®(z) <=1z =>0"(y)

e Linear separation of the different classes
Vi 7 J, || E(P(X5;)) — E(P(X;))][2 > 1
Vi,o(®(X;)) < 1 Can be difficult to handcraft..

.13



@ lipMLA

Years of
research. ..

Is this solvable?

THIS 1S YOUR MACHINE LEARNING SYSTEM?
V

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

l
WHAT IF THE ANSIERS ARE LIRONG? )

JUAT STIR THE PILE DNTIL
THEY START LOOKING RIGHT:

14



Fighting the curse of dimensionality

with Deep Neural Networks




@ lipMLiA

Solving high-dimensional
tasks with deep learning

.16



@lipmiin Deep Learning

P
-

Q DeepMind

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

T



@lipmiin Deep Learning

S &' DeepMind

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

e Solve several high dimensional problems that
seemed intractable. Impressive benchmarks.

1T



@lipmiin Deep Learning

S ' DeepMind

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

e Solve several high dimensional problems that
seemed intractable. Impressive benchmarks.

e Requires a huge amount of labeled data

1T



@lipmiin Deep Learning

G &' DeepMind n

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

e Solve several high dimensional problems that
seemed intractable. Impressive benchmarks.

e Requires a huge amount of labeled data

e Generic and simple to deploy (present in many final
products) / requires a large expertise (highly
demanded profiles)

17



@lipmiin Deep Learning

7 & DeepMind n

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

e Solve several high dimensional problems that
seemed intractable. Impressive benchmarks.

e Requires a huge amount of labeled data

e Generic and simple to deploy (present in many final
products) / requires a large expertise (highly
demanded profiles)

e Handcrafted features are not required: the algorithm
adapts itself to the specific bias of a task

17
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@UPMiA A biased history of
Deep Learning

Hinton scaling

LeCun designing Bengio starting
NN I N
C'NNs DL libraries CNNs to ImageNet AlphaGo
Neural winter Neural winter

1980 \ 1990 2000 2020
1it’s g0 slow" "kernels are Transformers
provably better" (text)

(GANs

(vision)
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@1iPMLIA What matters in deep learning?.""l-?,

e Accuracies!
O Handcrafted ©O DeepNet

super-human

% accuracy

ImageNet:

------------------------------------------------------------------------------------------------------------------------------------------- 1 million training
AlexNet images, 1 000 classes
60 400 000 test images
2010 2011 2012 2013 2014 2015 2016 2017 Large coloured images

of various sizes

topo - ImageNet

Theory for good performances?



@1Lipmiin Face recognition

z |\ ﬁ
p—— \ |
2|\ 4l
< \/ | o
’_ 4‘ '\
u2J =
wl A\ 1O
w ," ',I | Lis
|/
o ‘
= .« et al.
&L _ c1: M2 c3: L4 LS: L6: F7: F8
Calista_Flockhart_0002 P9 Frontalizaton: I2x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x/x7x16  16x5x5x16 4096d 40304

Detection & Localization @152X152x3 @142x142 @71x71 @E3x63 @55x55 @25x25 221X21

Are two pictures corresponding to the same person?
Above human performances in rough conditions

Who's in These Pholos?
o tsciasitla's o Ref.: DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Trep~o0os wo. Lpizadnd ware ¢ oupad Mo aticn o S0 pou car quich s late anc rot v It encs inteer tichures .
0 wande ean abanys o Poereabia | Taigman et al.

Wineld wiale:




@1iipmiia Colorizing B&W pictures?

Colorful Image Colorization, Zhang et al.

Lightness L Color ab Lab Image
— convi convZ conv3 conv4 convhs conve conv’7 conv8 '
atrous / dilated atrous J cilated

64
128 256
— 256 512 512 512 512 J
Py r / = 2
[ ] f) J| i
64 32 32 32 32 32 64
128 .
(a,b) probability i
distribution

Coloring an image by hand takes several weeks



@ lipMLA

Spectacular results in face generation.

.22




@iipmia Outstanding benchmarks

in text understanding/translations .

e Translation (Google uses Recurrent Neural Networks):

-+

Translation quality
N &)

G

perfect translation

neural (GNMT)

phrase-based (PBMT)

English  English  English  Spanish  French  Chinese DeCOdeI'
Spanish  French  Chinese  English English English
Translation model
Encoder

Applications for HR: sorting CVs

Lel|..

!

NN|PINN

NN

» NN

>

NN

N~

.’

NPINN

.>

L 2

NN

TTTT

!

The “Cat 1S

yellow

or{ ..

.23



@ 1ipMLiA Surprising results in 2
text, image & (source) code generation

e Generating source code via Recurrent Neural
Net WOI‘kS . http://karpathy.github.io/2015/05/21 /rnn-effectiveness/

static void stat PC SEC read mostly offsetof(struct seq argsqgueue, \
pC>[1]);

static void

os_prefix(unsigned long sys)

Real one? (

PUT PARAM RAID(2, sel) = get state state();
set pid sum((unsigned long)state, current state str(),
(unsigned long)-1->1r full; low;



@iipmia Outstanding results with
Game Strategy

- Game of GO: completely impossible to solve with
pure Monte Carlo tree search

Ref.: Mastering the Game of Go with Deep Neural Networks and Tree Search

Silver et al. ‘ N Roll out with
oy NNs

» 00:07:00

® FY 1 1 -+
I ‘
@ /LPHAGO » rv ey &
00:10:29 { ] 1 ¢ LEE SEDOL
O O A / Nl I ) ‘

NN: computes a proba to win
for each of the 2'9° nodes

Self driving cars, Starcratft. . . b DeepMind




@1ipMLiA Outstanding results in Style 26

Transfer
arg min || @z — ®z||? 4+ \||Cov(®y)) — Cov(®7)||?
X Original image Style transfer
Input Target style Output

o

Ref.: Deep Photo Style Transfer, Luan et al.

Direct applications in Web design. ..



@ lipMLiA

A highly non-convex
and difficult optimization to
train a model

21
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@iipmia Multi-Layers Perceptrons?®

input signal output signal
r — Wy P Wy b ... —[p— W, — ®(x)
L0 >1 >}>1 >1— — L —>1 >}>1 >
rjy1 = pWa, ezt =P Wikt
)

No a prior: is introduced here. Typically used as a classifier.
Note that (I)(Qj; Wi, ..., WJ) is non-convex in x or each Wj

where:  p(2) = max(0,2) st |p(x) — p(y)| < |z —y|



@lipmia Convolutional Neural
Networks

input signal

T— Wi —

Schematic .
I . o

2

o L] °

output signal

—

0

—»

Wy — @(x)

A~

-\

.29



@ipmia Convolutional Neural
Networks

ZC—»Wl 2—>... —>,0—>WJ—’(I)()

/
Schematic . “
A o —_— )

input signal output signal

4 r 1
24 | 5 3| s b | —»
| . ‘_—i L. 13 ] ’ 13_ ’ 13 d dense
Engineerin 1 : f\'f-_.
g g o Y 1ood
11 N 192 19 178 May L |
) \ ST E 014
‘| Strides Max 178 Max pocling
Lofa pRowNg pooling
3




@lipmia Convolutional Neural
Networks

input signal

r— Wi — Wa

/
Schematic . “
A o —_— )

ﬁ [ ) [ ] °

output signal

—

0

—»

Wy — @(x)

—\ \
224 , L 3‘

A \ ) N — | '13

Engineering \adg L - _\,- -
\ '-._ = 58 l
.\ .
323.&@. ht dé!\ Max 170 Max
"‘-of PR paoling pooling

Each layer:

that leads to: -Tj—l—l(ua >‘j—|—1) — P(

Sometimes some "pooling" are incorporated, mainly for speed purposes.

Lit1l — ,OWj$j

>

Aj

:Cj(.,)\]) *w>\ A

learned kernel

Again, this leads to a non convex loss.

.29



@1iPMLA Zoom on the parametrisation

Ref.: Signal Processing Tour, Mallat 1999



o . ° ° ‘.°'.30
@LPMLAZoom on the parametrisation
e Very often, the filters of a CNN have a small support (3x3)

‘ " U

2

and are interlaced with downsampling. uy

n )\z—|—1 Z$ */{)\ i1, [2%] t
Ai

Ref.: Signal Processing Tour, Mallat 1999



@1iPMLAZoom on the parametrisatior
he fi.

and are interl

Yln, Air1] = Zaz

e Very often, t

aced

with downsampling.

*]C)\ i1, [2%]

e Similar to a Wavelet Transform.

7

‘ > U

A

ters of a CNN have a small support (3x3)
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@1iPMLAZoom on the parametrisatior
he fi.

e Very often, t

and are interl

Y, Air1] = Zx

e Similar to a Wavelet Transform.

aced

with downsampling.

*]C)\ i1, [2%]

7

‘ > U

A

ters of a CNN have a small support (3x3)
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@1ipMiiA Back-propagation computations?

L — Wi l=pl— sz <—’P<——’WJ<:’10SS(377?/):S
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@1ipMiiA Back-propagation computations?

L — Wi l=pl— sz <—’P<——’WJ<:’10SS(377?/):S
A@l AHZ AQJ
AT AN
L vxj (g) _ 8(PWJ) vxj_l_l (5) : VQ (8) _ a(p ‘]) vxj+1 (g)



@lipMLiAa Back-propagation computationé'“-g.i

T— Wi=lp=Woe= ... —=[Pl— szloss(x,y)z &
A@l A6’2 A@J
_0(pW;) _0(pWy) "
— vZL‘j (5) — 8563' viﬁj+1 (5) v vﬁj (8) — (9(93 vazj+1 (5)

e Intermediary representations objectives are not
explicitly specified.



@lipMLiAa Back-propagation computationé"*g..l..

T— Wi == W= ... —=[Pl— szloss(x,y)z &
A91 AQQ A@J
_0(pW;) _0(pWy) "
— vl’j (5) — 6:1:]- viﬁj+1 (5) v ij (5) — 093 v:cj+1 (5)

e Intermediary representations objectives are not
explicitly specified.

e Difficult to distribute the model ... but GPUs!

Rem.: Yet, this paradigm has simplified lot of frameworks. ex.: pytorch on GPUs!




@ipmin  Training Pipeline 3
e Once the model ®(z;0) and the loss ¢ is fixed the model is
tralined via mini-batch: %

0 = 0" — oy Y V(Lo ®)(X[;0")

1=1



@ipmin  Training Pipeline 3
e Once the model ®(z;0) and the loss ¢ is fixed the model is
tralined via mini-batch: %

Splitting dataset (9t+1 _ (9t — o Z V(€ 5 (I)) (X,f, Ht)

into batches of size

250 1=1 P Error
l backpropagated
Signal
250 :— propagated
] Typical training time on imagenet: 100 epoch
— - about 2 3702111“8 per epoch
L ] —_— AN —
I 91 (92 trammg
] CIrror
] |
T !
]
I Al A
I NVIDIA

CPU GPU



@lipmiin Cooking recipe

e Batch-normalization

e Data augmentation

CIFAR-10 Accuracy
4 train VGG+BN+Dropout —
o D i test VGG+3N+DJropout
I‘OpOUt | train VGG BN —
120 + .
test VGG+3N
train VGG+Dropout —
. test VGG+Dropout
e Learning rate
100 - — —_ e ——
—— Y oty e -
ézz:'_*:::ff_
I”/.A’T/F—‘“‘::‘ )
/’/./..‘
ol /)
V/’) "/
) "‘ "‘
o0 - ll,' ’l'
?l "'
|
1
40 “ |
| T T T T | T T T | T T T T T T T T T T T T T T
0 50 100 150 200 250

epochs



@ lipMLA

A strength of DL
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e A strength of DL

e Data? Computer power? Not only:

e Flexibility& modularity: quickly benchmarking non-
linearity, layer dimension, losses, batch size, learning rate
schedule. . .

e Is it overfitting? Clearly, yet the representations learned
are empirically useful.

.34
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2\
[\ ’ 3 > »
s 3 \
g o 3 ) | / \\
Y] 193 78 2045\ icag \dense
oy 128 \
NN \13 13 / \
3y X S 3\
[\ \ Ky \ g\' N . ....: _‘.-_.___Q‘ 1 h
- \ 3 - 3\ -.\ 3 i e
| F k= = 1 dense| [dense q
\ 7 N \J 3| 13
- 56 \ 3 ... A\l L=t
. 192 122 128 Max
i . 203E .
“Stride Max' 128 Max pooling 2048
-of 4 pooling cooling
3 48

One detailed example: the AlexNet
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27

Zat g

Max
pooling

128

192

-------

ruey
w

192

.......

.35

g \dense

128 Mzx
pocling

One detailed example: the AlexNet

>
13 dense

>
dense

1000

2048

2048






@ lipMLA

Under the hood of
Deep Neural Networks

.37



@1ipmia Model for the first layer #

Ve, pe(u) =

: 7 -" Y= o | oWy g |1 _ Ref.: I Waldspurger’s phd
AR _ =S ' R

FESNGNEgy - ~--: -
NS, =S - .-

INGIS | EEIRLLHEIE |
=SIIZSRNZY: - . § - WZSmNZ
| s Aosee B T | I AT

e Consider Gabor filters and fit the model.



@1ipmia Model for the first layer #

Ref.: T Waldspurger’s phd

UI

IIII\\‘
l"?l[- |f

N / 15 filters
This principle is core / ,

in many models £ / —— 19 filters
(V1, Scattering,... ) j TV "T“




@ipmiModel for the second layer

Ref.: I Waldspurger’s phd

First layer:

U (u)

: .. 2
Visualisation of @

in the frequency plane



@ipmiModel for the second layer

Ref.: I Waldspurger’s phd

First layer:

a(u)

Recombines along )

Why was this possible?

We were aware of the topology
: . . : 2
of the previous layer! Visualisation of ¢

in the frequency plane
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@IileiﬂFighting the curse of dimensionalifj’f? |

e Objective: building a representation ®x of x such that a
simple (say euclidean) classifier §j can estimate the label

’ ’ P . "
. 0. ¢ D>>d o oQg °
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@ LIPMLAFighting the curse of dimensionality"

Objective: building a representation ®x of x such that a
simple (say euclidean) classifier §j can estimate the label

’ ’ o . "
.D o. ¢ D>>d o oQg o
R Rd

Designing ®: must be regular with respect to the class:
[Pz — P2’ || K 1= g(x) = g(z)
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@ LIPMLiAFighting the curse of dimensionalit: V-

e Objective: building a representation ®x of x such that a
simple (say euclidean) classifier §j can estimate the label

e Designing ®: must be regular with respect to the class:
[Pz — P2’ || K 1= g(x) = g(z)
e Necessary dimensionality reduction and separation to

break the curse of dimensionality:

TATG




@1UpMiA Model on the data: low !
dimensional manifold hypothesis?



@1UpMiA Model on the data: low !
dimensional manifold hypothesis?

e Low dimensional manifold: dimension up to 6. Not higher:

Property: if f: R” — [0, 1] is 1-Lipschitz, then let
N = arginf y sup,;< (|f(z) — f(z:)| <e).

Then N, = O(e™P) A/\\




@1UpMiA Model on the data: low !
dimensional manifold hypothesis?

e Low dimensional manifold: dimension up to 6. Not higher:

Property: if f: R” — [0, 1] is 1-Lipschitz, then let
N = arginf y sup,;< (|f(z) — f(z:)| <e).

Then N, = O(e~P) A/\\

e Can be true for MNIST. .. T

KUY Y ahy gy
55555855 6¢
77172717777
29558 L8CF8 4



@ lipMLA

Model on the data: low

T4l

dimensional manifold hypothesis?

e Low dimensional manifold: dimension up to 6. Not higher:

Property: if f: R” — [0, 1] is 1-Lipschitz, then let
N = arginf y sup,;< (|f(z) — f(z:)| <e).

Then N, = O(e™P) A/\\

e Can be true for MNIST. .. T
¥ HA4aqa4d ¥ sy All variabilities
5 5 N & S S5 5§ » are known
7 7 '7 7 7 7 " 7 7 7 '\Small "limited" deformations
<L g & 5 & 4 ® < 4 g +Translation



@1UpMiA Model on the data: low !
dimensional manifold hypothesis?

e Low dimensional manifold: dimension up to 6. Not higher:

Property: if f: R” — [0, 1] is 1-Lipschitz, then let
N = arginf y sup,;< (|f(z) — f(z:)| <e).

Then N, = O(e™P) A/\\

e Can be true for MNIST. .. T
¥ HA4aqa4d ¥ sy All variabilities
5 5 N & S S5 5§ » are known
7 7 '7 7 7 7 " 7 7 7 '\Small "limited" deformations
<L g & 5 & 4 ® < 4 g +Translation

e Yet high dimensional deformations are an issue in the

general C?Se! i (ﬂ ) | T o—




@ lipMLA

Flattening the space:
progressive manifold?

.42



@iipmia  Flattening the space:

progressive manifold?
e Parametrize variability on synthetic data: Lg, 0 € R?

and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

. s L5%@
' F=ARe " o
| . = : : = o - =
' % | bed ! - . -
-~ —_ = h '5 = ": -= ; , ..' - -
B = R B = = = - . - - na
I %_‘_ = = g-‘ B' : _.'
; 'S _ .M %
o s g a8 -
=J=E : - =St BT - - -
(c) Object color (d) Background color

(a) Lighting (b) Scale
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e Parametrize variability on synthetic data: Lg, 0 € R?

and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

. s L5%@
' F=ARe " o
| . = : : = o - =
' % | bed ! - . -
-~ —_ = h '5 = ": -= ; , ..' - -
B = R B = = = - . - - na
I %_‘_ = = g-‘ B' : _.'
; 'S _ .M %
o s g a8 -
=J=E : - =St BT - - -
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@iipmia  Flattening the space:

progressive manifold?
e Parametrize variability on synthetic data: Lg, 0 € R?

and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

o ’ -
f-'g = L s : -
\ . _ : = - 2 -
* = =] ) . -
= ) - = % - a ". .Hri Oo- —
- %_E‘! o .= f‘-;‘l_ e == .
: _ 2 - Pr
e HT = - SeuE §T - - ==
(c) Object color (d) Background color (a) Lighting (b) Scale

e Data tends to live on flattened space. Tangent

? Quooest
space’ -
—~—
‘ ealy e—— T Madrid
G — — one
T pecli
nan walced cli
-~ —
. woms Arka
‘. ") 8van Russis —
king . cov
.‘. walking L ade ottava
apan ———
/_\cue /\(‘\ P Toky
T T )
// / = Vie — RO
- o awinming Boiiin

Male-Female Verb tense Country-Capital
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@ lipMLA

(c) Object color

Flattening the space: i

progressive manifold?
e Parametrize variability on synthetic data: Lg, 0 € R?

and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

(d) Background color

(a) Lighting

(b) Scale

e Data tends to live on flattened space. Tangent

space”’

Male-Female

nan
o
. ‘. wona
- .
A walking
P . cueen
\
-~ T

Verb tense

Qunooest,
pain ~_
—
¥ m——— T Madrid
— Rone

Country-Capital

Difficult to find evidences of such phenomenc



@ lipMLA

Concept of neuron?

Ref.: Intriguing properties of Deep Neural
Networks, Szegedy et al.
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@iPMiA  Concept of neuron?

e Consider: v &€ RlOOQ Lo = alg r{glea%@)x,@ dataset
< atasSe

e Claim 1: v = (0,...,0,1,0,...,0) has a semantic
meaning

Ref.: Intriguing properties of Deep Neural
Networks, Szegedy et al.
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@iPMiA  Concept of neuron?

e Consider: v & Rwoo Ly = arg max(CI)x U>
TED < dataset

e Claim 1: v = (0,...,0,1,0,...,0) has a semantic
meaning

Ref.: Intriguing properties of Deep Neural
Networks, Szegedy et al.

e Claim 2: any unit norm v has a semantic meaning.

G gy T Sg NN
QI 8 A

(a) Direction sensitive to white, spread

flowers.
/ ' | : ‘l‘ o= —“
" / 3; >

(¢) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.
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@LpMia Mechanism proposal:
Flattening the level sets

— class 1

— class 2 Amenable for any supervised task!

Ref.: Understanding Deep Convolutional Linear invariant can be Computed!
Networks, Mallat, 2016
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@LpMia Mechanism proposal:
Flattening the level sets

— class 2 Amenable for any supervised task!

Ref.: Understanding Deep Convolutional Linear invariant can be Computed!
Networks, Mallat, 2016

e How to linearize? Ex.: Gateaux differentiability

| Pz — DT x|
34C, sup
U I'T]
e However, exhibiting T~ can be difficult. (curse of

<Cp = 300,: Tz~ dx+ 0P,.T

dimenstonality) R
Ex.: linear translations 7, (ZIZ‘) (u) — x(u -+ CL) , yet non linear case?



@ lipMLA

Empirical observation:
Progressive separability

45



@ 1ipMLiA Empirical observation: 45

Progressive separability

e Typical CNN exhibits a progressive contraction &
separation, w.r.t. the depth:
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@ 1ipMLiA Empirical observation: 45

Progressive separability

e Typical CNN exhibits a progressive contraction &
separation, w.r.t. the depth:

[ [ ] pW
1 ® °
o o ©® > o o sz . ,OW13 > ....
RD ° e °
o SVM NN In the following, representations are spatially averaged.
100 : : : : :
Best performange |
20 I Nearest Neighbor (NN)
- ° Gaussian SVM
) ® (]
< ° ® - o o °
“ o o ©
o ® < ¢

30

1 2345678 9101112
Depth

e How can we explain it?

Localised classifiers

Ref.: Building a Regular Decision Boundary with Deep Networks, EO



@ipmin Adversarial examples

“gibbon”

llpondol’

nfidence

Q
Q

-]
o

o

% confidence

/

7.7
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e NNs are super sensitive to input noise

W ||-Lipschitz

W

e Indeed, the NN is at most



@ipmin Adversarial examples

“panda” “gibbon”

57.7% confidence 09.3% confidence

e NNs are super sensitive to input noise

e Indeed, the NN is at most |[W;

W ||-Lipschitz

Ref.: Lipschitz Regularity of deep neural

. networks, Scaman and Virmaux
inf €]
D () £ (w+e)
Or even for every class, there are Thresher @ Labrador
algorithms with parameters (G, /i) S.t.: N
- Flagpole Labrador
P(O(X +6)#B(X)) >1—& =
HéH < € % Tibetan mastiff B Tibetan mastiff
— 2

Ref.: Universal adversarial perturbations,
Moosavi et al.
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*

losfrance

Surprising BagNet
Spatial dlstrlbutlon

"BagNet"

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
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@ipmia  Surprising BagNet
Spatial distribution

Ref.: APPROXIMATING CNNS WITH BAG-OF-

n N n
B a g et LOCALFEATURES MODELS WORKS SURPRISINGLY
WELL ON IMAGENET

losfrme | o
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@1pMLiA Reconstruction from a

given layer?
Xo—| Wi |—{p}— W> o P Wy — ®(x)

Learn the operators!

~

CONV1 CONV2 CONV3 CONV4 CONVS

ﬁ
o
I
=

Iﬁfl
I»Fl

Ref.: Inverting Visual Representations with
Convolutional Networks, Dodovistky et al.
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@1ipmiia Reducing mutual information
(Information bottleneck)
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Measures the dependancy between variables
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@1ipMiiAa Reducing mutual information
(Information bottleneck)

e Reducing the information sounds relevant:

: — X O p(a:',y)
I(X,Y)—/RQP( Y1 gp(ﬂ?)p(y)

Measures the dependancy between variables

dedy = H(X) — H(X|Y)

[(X;®1X) > I(X; X)) > ... > I(X; P, X)

"Compress" X
[(X;Y)> (9, X:Y)>...> [(®,X;Y)
. but "reveal" Y
They propose to introduce:

(I)j,A — alr'g i%f[(q)j_lX, (I)]X) — )\I((IDJX, Y)
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@1ipMiiAa Reducing mutual information
(Information bottleneck)

e Reducing the information sounds relevant:

p(x,y)
I(X;Y)Z/ p(z,y)log dzdy = H(X) — H(X|Y)
RQ p(x)p(y) Ref.: Opening the Black Box of Deep Neural Networks via

Information, R Shwartz-Ziv and N Tishby

Measures the dependancy between variables

[(X;®1X) > I(X; X)) > ... > I(X; P, X)

"Compress" X
I(X;Y) > [(®1X;Y)> ... > [(®,X;Y)
but "reveal" Y

They propose to introduce:
(I)j,A — alr'g i%f[(q)j_lX, (I)]X) — )\I((IDJX, Y)

e But one can easily build invertible CNNs. ..

Ref.: i-RevNet: Deep Invertible Networks, J Jacobsen et al.

.49



s li» - ﬂa s Dl l
R AR AR Ml

's ° Y* .
]:'ﬂ, 1 Ref.: i-Revnet, depp invertible
J+ networks Jacobsen, Smeulder and
EO

Z j Lj+1



@ lipMLiA

Invariant Representations
and Deep Learning

5l



@ ipmiin I

Translation

It

z y |z —yll2 = 2

: Rotation :

AR

v
Averaging is the key

to get invariants

y

High dimensionality issues



@ipmia A motivating example
e Translation invariance? Why not:

br(w) = |z(w)
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@ipmia A motivating example

e Translation invariance? Why not:

Doesn’t work!

Let

r(u) =e

iwou—%u

2

and

53

Deformations
Lyx(u) =x(u— 7(u))

(1)

7(u) = su,s >0



@ipmia A motivating example

e Translation invariance? Why not:

br(w) = |2(w) LTxI();)fO:mal??g(ﬁlsT(u))

Doesn’t work!

(1)
Let x(u)= glwou—3u” 4 7(u) = su,s >0

(1;5)W0 wWo W
| Pz, — Px|| = wos = ||V T|wo

which for a fixed s diverges quickly. ..

then:

and:
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@lipMmia Covariance via convolution™

e We say that L is covariant with Wit WL = LW
e We say that A is invariant to L if AL = A

e If W (e.g., convolution), p (e.g., point-wise non-
linearity) are covariant and if A is invariant to L then
by = AWJ,OWJ_l,OWJ_Q...W1$
is invariant. Indeed:
OLxr =ALW;ip. Wiz = x
e It is also possible to have only an approximate

covariance and one measure it via the norm of:

W,L| = WL — LW
example: deformation (ﬂ T)
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@iipmia Progressive Invariances

v

e Interestingly, CNNs often incorporate some poolings
which satisty for |1 — L|| < 1: PL~=P.

)

e It allows to progressively induce more invariance. (and
it’s very similar to a Wavelet Transform)

e Similarly, the non-linearity is point-wise. Interestingly,
point-wise non-linearity are the only non-linearity that
commutes with deformations, ie

p, L] =0 if Vr=(xq1,..,2q),px)=(p(x1),...,p(xq))

Ref.: Phd of Joan Bruna



@lipMLiA Wavelets

e 1 is a wavelet iff/@b(u)du = 0 and /|¢|2(u)du < 00

e Typically localised in space and frequency.

Group action!
o Rotation, dilation of a wavelets: " Voo

Vi = 2% (192(;6)) " "

e Design wavelets selective to rotation variabilities.

N | w | Non-Isotropic

Isotropic ‘ ‘ w ‘ VS -



@ lipMLA

(for sake of simplicity, formula
are given in the isotropic case)

The Gabor wavelet

BT
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Loz % (W) = € 3 (w)i(w)

o 3 B0 i)
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Deformatlons
L.x(u) =x(u— 7(u))

(1) _

e Analytic wavelets permit to build stable invariants

tO: Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

Loz x h(w) = € 93 (w)(w)
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| - T \n )
— Y )
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@iipmiia Invariances via wavelets %

Deformatlons
L.x(u) =x(u— 7(u))

(1)

e Analytic wavelets permit to build stable invariants

tO: Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

Loz x(w) = € “d(w)i(w)
= O w)(w)
o 3 B0 i)

_ iwla T 7
= "0 Y x Y (w)

The variability corresponds to a phase multiplication!

- small deformations:

|(Lrx) x 9 — Le(zx )| < CV||7][o



@1iPMLA How to address deformations;?'é.g.,

e Weak differentiability property:

OLx — P
sup | Lx d < o0 = 4 "weak” 0,P
r Lz —z = OLxr ~ Ox —|—|a;uq)L|‘|‘ o(|| L)

, A linear operator
Displacement [, P

e A linear projection (to kill L) build an invariant

()] o
— ¢
+ projection o




@ipmia Wavelet Transform %

o Wavelet transform: Wz = {x x ¢, 9,z * ¢J}9,j§wJ
A2

e Isometric and linear operator of LZwith » [ g

Walt = 30 [loxvsol+ [axos  Whatle .,
0,5<J - 1 :
e Covariant with translation Lg: e -
WLa — LaW ‘ ‘

e Nearly commutes with diffeomorphisms

‘ ‘ [ ) LT] | | _— C ‘ ‘ 7- | | Ref.: Group Invariant Scattering, Mallat S

e A good baseline to describe an image!




@iipmian Scattering Transform

e Scattering transform at scale J is the cascading of

complex WT with modulus non-linearity, followed

by a low pass-filtering:
Sjx={{x*dy,
- T x Yy, 0,
T

D3/ \;
7,0
Depth /\

\4

Ref.: Group Invariant Scattering, Mallat S

*¢J7

*¢j2,92| * ¢J}

order 0O

WQ order 1

q‘ﬁ/

order 2

e Mathematically well defined for a large class ot

wavelets.

.61



@ lipMLA Feature mano

1st order
coefficients

Example of Scattrin coefficients

.62



@UPMLA Filter bank implementation of-.""G--g.,

a Fast WT
e Assume 11t is possible to find A and g such that
o) = 0(3)9(3)  and q3<w>:7h<2>¢<;’>

e Set:
zj(u,0) =z x¢j(u) = h*(zx+d;-1)(2u) and
xj(u,0) =z xj0(u) = go* (z*¢;-1)(2u)

e The WT is then given byy . — {;(.,0),25(.,0)}<s0
e A WT can be interpreted as a deep cascade of

linear operator, which is approximatively verified
for the Gabor Wavelets.



@ipmia Scattering as a CNN ¢

™ T 37

J =3,0 € {0,

52’4}

Scattering coeflicients
are only at the outpu

: Ref.: Deep Roto-Translation Scattering
Sca’tterlng a’S a’ CNN for Object Classification. EO and S Mallat

Recursive Interferometric Representations, S Mallat
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@ipmia Scattering as a CNN ¢

7T7T37T}
4’927 4

J =3,0 € {0,

L3
To L2
L1
O Modulus h > 0 Scattering coeflicients
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@ipMinStability to deformations

Studying:

L-Ajzx(v) — Ajzx(v) = /a:(’u,) (ps(v —7(v) —u) — ¢s(v — u))

v
and upper bounding this kernel leads to:

LAy — Al < 277797 IVl

Ref.: Invariant Group Scattering
Mallat S., 2012

It is slightly more challenging to obtain:
|[Wj, L]|| < CJ[[VT|loo  where Wjz(v) = {Z *%;(v)}o<j<s

For order 1: | ‘
AJ|VVJ|L,,- — Ayg|W;| = AJlVVJlLT — AJLTHVJ| + AJLT]VVJ| |
— LTAJH"/J‘ : LTAJ“’VJ — AJlI’VJ‘ — -

= AJ”‘/VJ’LT“ T [AJ, LT WVJ‘ T (LTAJ - AJ)“/VJ’

and we iterate... a tighter bound can be obtained by avoiding redundancy
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@iipmiaProperties of a Scattering®
Transform

Deformations
e Scattering is stable: Lryax(u) = z(u — 7(u))

|Ssz— Syl < ||z -yl (1)

e [inearize small deformations:

|5y Lrx — Syl < CIVT|||]]

e Invariant to local tganslation:
| CL ‘ << 2 i S J L a x % S J Ref.: Group Invariant Scattering, Mallat S

e For A\ u, Syz(u, ) is covariant with SO>(R):

if YuVg € SO2(R), g.x(u) = 2(9™ u) then,
S;(g.x)(u,\) = Syz(g  u, g N = .5 z(u, \)
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@iipmia  Scattering moments

e For a stationary process X (e.g., a texture)

E(X % f) = E(X)* f

e This leads to the Expected Scattering:
5’[&] = [ X*’(,b)\ll

X*w)\l‘*QpAz‘

5'[)\1, )\2] = I,
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@iipmia  Scattering moments

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e For a stationary process X (e.g., a texture)

E(X % f) = E(X)* f

e This leads to the Expected Scattering:

S’[)\l] = E|X x ¥y, | Modulus 1s important
because it can be 0!

S[A1, A2] = E||X *ha, | x 9, |

can be estimated via an unbiased estimator:

S[Ala)‘le:/HX*?PAJ*TP/\z\

Energy is preserved:

|SX|* =E

X|?
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@ipMiAa A successful representatiorni
in image classification

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications:
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e Digits 5 s

e Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.
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Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications: All variabilities

TR,
e Digits 5 s

4 ‘f y ¢ \__‘ are known
5— 5 s g C meformations
¢ I A
{ 3 E & &

+Translation

e Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.




8

@ipMLiA A successful representatiori.
in image classification
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TR,
e Digits 5 s
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5— 5 s g C meformations
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@ipMLiA A successful representatiori.
in image classification

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications: All variabilities

TR,
e Digits 5 s

are known

4 4 ¥ & Y
S5 56§ T~
17777
{ 3 E€ § &

Small deformations
+Translation

tion+Scale

e Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.

e The design of the scattering transform is guided by the euclidean
group

e To which extent can we compete with other architectures on more
complex problems (e.g. variabilities are more complex)?
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@iipmia Extension to higher
dimensional groups

e The notion of convolution can be easily extended on a
compact group or a Lie group G via a Haar measure.

e It is the only measure invariant by (left) translations,
i.e., L.p = p which allows to introduce:

L2(Gu0) = {1, [ 1fPd < o)
e And thus the convolution operation:

axb(g) = /G a(g)b(3~ " g)dp(g)

e and some Fourier analysis (on Lie groups):

p:G— L*G) = ®,F,
g— L,

.69



@ipMin An example: the roto- 7
translation
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@ipMin An example: the roto- 7
translation

Ref.: PhD of L. Sifre

e If the convolution is defined on G, G’, one can

extend it to G x G',G x G .

e Roto-translation is a non commutative group:

~

(u,0).(7,0) = (u+ roi, 0 + 0)

e ... and this leads to the following convolution:

v @ U)(g) = / Y () ¥ (g g)dg

/ / (u', 0V (r_g(u—u"),0 —0")dudf
R2 J[0,27]
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Sox:/:z:(u)du and Y (u,00) = |2k g0 ()]
u

Let Slx:/ Y'(u,0)dudf and W(u,8) =1, 0, (w)hr(6)
u,0

)

then, we get:

Y7 o se(050) = / 2 x 1y 00 (W) [55,00+00 (u — )i (6 — 0")du dO

/ /
0’ ,u

Let SQCE:/ Y?(u,0) dudf
u,0

e Then Sz is invariant to roto-translation.
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@iipmiin o
Symmetry group hypothesis

Ref.: Understanding deep
convolutional networks
S Mallat

e To each classification problem corresponds a
canonic and unique symmetry group G-

Ve, Vg € G, Px = Pg.x \

High dimensional

e We hypothesise there exists Lie groups and CNNs

such that:
GocGicCc..cGjyCd@d

vg; € Gj, ¢j(g;.x) = ¢j(x) where z; = ¢;(x)

e kixamples are given by the euclidean group:
G() — Rz,Gl = G() X SLQ(R)
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@lpMinOne generalization among?”
many

e CNN that is convolutional along axis Channel
A

CUj—|-1(Ul, °°°7vjavj—|—1) — p](xj kLot w’uj+1 U1, ..

ZE‘J(UJ) — Z xJ—l(/Ulv'“vvJ—lvvJ) ﬁ
V1,...,VJ—1 £l?1
Ref.: Hiearchical CNNs, Jacobsen et al. — "ﬁ —

e For T, we refer to the variable Ug as an attribute

that discriminates previously obtained layer.

e Representation is finally averaged: invariant along
translations by . Very similar to equivariant CNNs



Statistical learning results

Cr= [ Il £l e
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PipMin  Risk decomposition R

e For a fixed loss ¢, consider the expected and empirical risk:

R(®) —E[(@X,Y)] i Ra(®) = 3 (&X,Y)

with: LR, (P)] = R(P) i<n
e We might be interested in those 3 quantities

Approximation Error

¢,) — inf R(®) < E[inf R, (®) — inf R(®
R(®n) — inf R(®) < E| inf R,(®) — inf R(P)]+

| |+

LR ((i)n> — qlrelg__ R (®))

Optimization error

J: set of functions of interest
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@LPMLIAY o1 might be interested
in. ..

e Several implicit biases results (e.g., double gradient
descent) .. 1t was already discussed on Monday

e Discussions around the optimization landscape .. sort

of discussed yesterday

e Best approximation results of very deep neural
networks.
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@lipmia Rademacher complexity
e The complexity measure allows to compare richness of

classes of functions. Rademacher complexity can be defined
as:

1
Rad, (F) = E., x,),[sup — > &P(X;)

1
decF i<n

e One can link Rademacher complexity to the generalization
error, as (via symmetrisation+loss Lipschitz):

R(®) < E[Rn(®)] + 2Rady (F) + O

)

Bl

e In practice, it can be difficult to estimate.



@ lipMLA

VC dimension

79



@lipMLA VC dimension

e For n points (21, ..., Tm) let: A
[Ir(m)= sup #|{(P(x1),...,P(xn)), P € F}

If IIx(m)=2"" we say that F shatters the set . For a

dataset X, the VC dimension is the largest m such that
H]:(m) = 2™

79



@lipMLA VC dimension

e For n points (x1,...,Tm) let: A
[Ir(m)= sup #|{(P(x1),...,P(xn)), P € F}

If Ilz(m)=2" we say that F shatters the set . For a
dataset X, the VC dimension is the largest m such that
H]:(m) = 2™
e It can be linked to Rademacher complexity via:

R, (F) < \/210gH]:(m)

™m




@lipMLA VC dimension

e For n points (x1,...,Tm) let: A
[Ir(m)= sup #|{(P(x1),...,P(xn)), P € F}

L1y T EX
If Ilz(m)=2" we say that F shatters the set . For a
dataset X, the VC dimension is the largest m such that
H]:(m) = 2™
e It can be linked to Rademacher complexity via:

R, (F) < \/210gH]:(m)

m
e For a neural network of depth L and with W parameters,

Bartlett et al showed that:

VCdim(F) = O(W Llog(W) + W L*)

Ref.: Almost Linear VC Dimension Bounds for
Piecewise Polynomial Network, Bartlett et al

79
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@ipmiA Rethinking generalization™

Empirical Rademacher complexity:

Rad, (F)((Xi)i)

ﬂ 1
= E(.,),[sup = Y ®(X;)]

n

e Typical decomposition of generalisation via

concentration looks like: with high probability 1 — 9,

Generalization error < Rad, (F)((X;);) + (9(\/

e In fact, it is empirical

random labels. ..

log%)
n

ly shown that CNN can fit

T

1US:

Ref.: Understanding Deep Learning requires rethinking generalization, C Zhang et al.

Rad, (F)((X3)) = 1

0
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@1ipmiin Spectral complexity bounds ™

e For a given trained neural network, it is possible to
introduce a spectral complexity that can be no smaller

S (@) > ‘ ‘ |/‘ /. | | - Ref.: Spectrally-normalized margin bounds for
- .] neural networks, Bartlet et al.
) T
7=1

e The main idea of the proof is to employ ane-covering of a
cascade of Lipschitz functions parametrised by1Wi}i .

e Those bounds also imply for the Rademacher complexity
that, with high probability S(®) > Rad(F).
Yet they also be combined with margins.
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D eﬁn e a norm alis e d mar gin: Ref.:Spectrally-normalized margin bounds for neural networks, P Barlett et al.

($,y) r

Margins (barlett)

(Pg)y — maxy, (Px);
R(®)[1 X2

Interestingly, the margin distribution is sensitive to this spectral

complexity. It all

ows to quantify the hardness of datasets:

— cifar
= cifar random
w— NSt
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@ipMia Bounds comparisons

(with margins)

(zeneralization error

Ref.: Stronger generalization bounds for deep
nets via a compression approach, Arora et al

capacity measure

Figure 4: Left) Comparing neural net genrealization bounds.
)00 7% Hf 1 ||A?]]1,00 Bartlett and Mendelson [2002]

Frobenius: ,% 1%, || A2 Neyshabur et al. [2015b],

. .1 pyd oxd A "
spec €120 =7 [[i= [ERIES TR Bartlett et al. [2017]
A2

spee-fro: ;2 [T, 1412 S0, ks U Neyshabur ct al. [2017a]

227 /]2
ours: % maxges ||f(2)[|F XL, ,:3,[:3 !
| Y e
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e In the general case, it is difficult to do better than the best

"mon-convex |

bounds" (i.e., vacuous)
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e In the general case, it is difficult to do better than the best
"non-convex bounds" (i.e., vacuous)

« Example Gradient Descent (SGD is straightforward to
extend): | —

9t+1 — Ht — OétVV(Ht)

Fix V(0) = £(®(0)) — inf £(P(0)) then assuming V' is L-
smooth: *
V(0) <V (01)+VV(01)" (02— 61) + —\\92 01]°

one gets with assumptions on the step size:

inf [|V(6;)[ = o(1)

t<T
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renormalisation:
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vas P e N

Assume that each entry is initialised as:
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e Consider the following NN (without bias), with "NTK"

renormalisation:

1 1 1
(I)JQZ‘ — WJ Wj_l...p W()QZ‘()

vas P e N

Assume that each entry is initialised as: (W;)mn ~ N (0, 1)

e Then, in the infinite width limit, each element of ®gx is an
. . . . . 1
1.1.d. centered Gaussian Process with covariance o(z,z')=—2Ta

Wo
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@ipminInfinite width NN as GPs®

e Consider the following NN (without bias), with "NTK"

renormalisation:

1 1 1
(I)JQZ‘ — WJ Wj_l...p W()QZ‘()

vas P e N

Assume that each entry is initialised as: (W;)mn ~ N (0, 1)

e Then, in the infinite width limit, each element of ®gx is an
. . . . . 1
1.1.d. centered Gaussian Process with covariance o(z,z')=—2Ta

Wo

o Similarly, wy — oo, Wit — 00 We get that @412 is a GP:

Yiyi1(z,2") =E (2, (o, o) ], LPU) PV
7+ ( ; ) (u.0)~ N (O, Zz:;((x,,m/)) sz(;,’,x/))})[ ( ) ( )]

1
proof: (@, 1x),(Pj112")k = Wit (®j$)T‘(Wj)£(Wj)k‘q}jx
J

(W5)k ~ N0, Ly, )
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@iipmia Neural Tangent Kernel

e Assume ?;is real valued, define the NTK as:
J

Ow (z,7") =Y (0w, ®s)" 0w, P,

j=0

e Then the dynamic of a NN for a given loss is given by

d

(@ W) = Z_:E (0w, @ (z; W (1)) Ow, 2.1 (X; W (1)) €' (25(X; W (1))

= —E,[Ow ) (z, X)€(Ps(X; W))]

where ' — i E 0
<M XT;
n —
(
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Let:

Yigile.2 ) =E
+1(Z, %) (u,v)~N(0,[

2 (x, ) zj(m’,m)])[p(u)p(v)]
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2 (x, ) zj(m’,m)])[p(u)p(v)]
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e Theorem (a): In the infinite width limit, we get:
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Let:

Yigile.2 ) =E
+1(2, 2 (u,v)~N<o,[

2 (x, ) Ej(m’,m)])[p(u)p(v)]

Zj(a:,m’) Ej(:c’,a:')

e Theorem (a): In the infinite width limit, we get:
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@iipmia Infinite width NTK

Let:

Yigile.2 ) =E
+1(2, 2 (u,v)~N<o,[

2 (x, ) Ej(m’,m)])[p(u)p(v)]

Zj(a:,m’) Ej(:c’,a:')

e Theorem (a): In the infinite width limit, we get:

e Therorem (b): In the infinite width limit, we also get:

@W(t) (x) x,) 7 @W(O) ($, x,)
d

e Consequence for a least square: —®;, = A(®; — P,)

dt

87



@ipmia Infinite width NTK ¥

Let:

Yigile.z)=E
+1(2, 2 (u,v)~N<o,[

2 (x, ) zj(m’,m)])[p(u)p(v)]

Ej(a:,m’) Ej(a:’,a:')

e Theorem (a): In the infinite width limit, we get:

e Therorem (b): In the infinite width limit, we also get:

@W(t) (33, x,) 7 @W(O) (.CU, x,)
d

e Consequence for a least square: E(I)t = A(®; — D,)

e For a ReLU this kernel is equal to and is semi definite
positive, thus A >0.
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e Consider any neural network ® and let:
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@ipmia Infinite width NNs %

e Consider any neural network ® and let:
(W) = &(W(0)) + Vi ®(W(0))" (W — W(0))

e The dynamic of this parametrisation is given by:

%(T)(W(t)) S [@W(O)E'(@(W(t)))]

e Then, without having the previous NTK parametrisation,
we have:

_ 1
sup ||[W(t) — W (?)| = o(—
s W) =Wl = o )
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@iipmia Lazy training principle

Consider:  ®(0) = ®(Qg) + DP(0¢).(6 — O)

as well as:  £(Q) = 7/\3(&)(@)) and L(0) = 7%(@(@))
 Definition (informal): A lazy regime occurs if the
optimization paths of £ and £ remain close.

e This is in particular true if:

IVL(Oo)||  1D*®(6)] £(Oy) [ D2B(Oy)]
> us lot: (Og) 2
£(0y) DB(O,)]| M1 ) =G, D800

e For a squared loss:

D23(0y)|
[D®(00)]|

K(©o) = [[®(O0) — ¥~ ‘
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@ipMiaAn implicit scaling factor. .

e Introduce the rescaled loss:

L.(0) 2 ifz(acb(@)).

This rescaling is always implicitly present.
e For a MSE loss, the corresponding laziness is:

1 | D2®(0)|]
e Other losses do not require specific theoretical

adaptations (for finite horizons) t0 our measure of
laziness and numerically we observed almost no
differences: no lack in generality.
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analyze):
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e The case of 1-hidden layer models (simpler to
analyze):

®(Op;x) = Z bip(w; = {bi, W; }i<m

IfD(I)(@) # 0 in a ne1ghbourhood of @y and Og ~ N(O, O'Zlgm).

4:["‘%)z(m) (@0)] SJ m 2

1
] Vm

This holds for several atorementioned references, with a(m) =
Chizat and Bach have studied the setting a(m) = — .
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@1pMLiA ... wused in Neural Networkns""g-.l.

e The case of 1-hidden layer models (simpler to
analyze):

®(Op;x) = Z bip(w; = {bi, W; }i<m

IfD(I)( ) # 0 in a ne1ghbourhood of @y and Og ~ N(O O'Zlgm)

4:["‘@(m) (@O)] Smo2

This holds for several atorementioned references, with a(m) = L
m

Chizat and Bach have studied the setting a(m) = i .
Ref.: On the global convergence of gradient descent for over-parameterized models using optimal transport, ChiZtL and Bach
e Generic case of deep CNNs (NTK-like):
| D2|
K @0 — — Oéq)@o —y*

It (I)(@O) = (0 and > 1 implying that Ko <K 1



@LipMmiiA Lazy dynamic

standard dynamic:

linearized dynamic:

O, (t) = =VLa(Oa(1))
O, () = =VLa(Oa(t))

.92



@Lipmiia Lazy dynamic 2

standard dynamic: @; (t) — —V,Ca(@& (t))
linearized dynamic: (:)/a (1) = —V[,_a((:)a(t))
e Theorem (Chizat): Assume that $(©,) = 0. Given T' >0:

1 _ 1
SUup H@a(t) — @OH — O(_) , Sup H@a(t) — @a(t)H — O(_Q)
t€[0,T] o t€[0,T] Q
_ 1
and  sup [[a®(O4 (1)) — a®(O.(?))] = O(—)
t€[0,T] a -

In other words, as alpha is large, the dynamic is close to the linearized dynamic



@Lipmiia Lazy dynamic 82
standard dynamic: @; (t) — —Vﬁa(@& (t))
linearized dynamic: O’ (¢t) = —VL,(04(t))
e Theorem (Chizat): Assume that $(Q,) = 0. Given T >0:
1 - 1

sup [[©4(t) = O0l =0(=) | sup [[©a(f) — Ou(d)] = O(=)
t€[0,T] o t€[0,T] Q
_ 1
and  sup [[a®(O4(t)) — a®(O.(t))| = O(—)
t€[0,T] a -

In other words, as alpha is large, the dynamic is close to the linearized dynamic

e Theorem (Chizat): If R is strongly convex, ®(Og) =0,
rk(D®(0)) 1s locally constant. Then, there exists o, Cy, Cs:

Vo> ap, 305, : [|[®(0%,) — ®(67)| < C1[|®(0%,)]le >
and VCQ(@CO;O) = ()

In other word, lazy regime allows to reach a local minimum.
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100
901
80 -
70 -

60 -

training be competitive?

«+ train accuracy
- test accuracy
- = stability of activations

101

103 10° 107
o (scale of the model)

CIFAR10 experiments using standard practice!!

When & — OO there is a clear
convergence.
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100 ~

90 -

80 A

%

70 1

o °
[ ! o
Sipmin Numerically, can lazy
training be competitive?
CIFAR10 experiments using standard practice!!
______________ When &t — OC there is a clear
convergence.
» train accuracy
- test accuracy
== stability of activations For ReLU, if linearized:
ap(wTz) = ap(wlz) + ap (wl)eT (w — w)

60 -

101

103 10° 107
o (scale of the model)

Thus, if linearized, the activations are stable.

.93



@lpMin Approximation results

approximation
/ A

Generic idea: for a given function space, find a

good approximation bound of a generator.

Ref.: ResNet with one-neuron hidden layers is a
Universal Approximator, Lin and Jegelka

Infinite depth + a single neuron is an universal
approximator in L'.

Deep NNs lead to better approximations than linear
methods for Besov, Sobolev, Holder space. ..

Ref.: Adaptivity of deep ReLU network for
learning in Besov and mixed smooth Besov
spaces: optimal rate and curse of

What about infinite width 1-hidden layer? oo o

94



@ lipMLA

Theoretical results for
1-hidden layer Neural Networks
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@ipMiAUniversal approximation??

e Let f be a compactly smooth supported function:

f:RP — R and a smoothness measure: (' p = / |w]|1 |f(w)‘ dw
RD

and p a non-linearity, bounded, strictly monotically
increasing and continuous(e.g. tanh)

e Theorem: Universal approximation (Cybenko, 1991)

Let’s note: ¥ - {a;, wi}igp and FP(QS) — Z CLi,O(wZTQ’J + b;)
P P a
Then: Ve, 3FT : [|[FF — flloo < €

e Theorem: Approximation and estimation bounds (Barron,

1994) v

If: F*" = arg }I}sz |FP(X5) — F(X))°
j=1

C? DN
then: BI|FMF — £ < O(5) + O(=5- log(P))
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@1ipmia Reproducing Hilbert Space 7

We will explain (one of) the strategy from (Bach,

2014), only in the RKHS setting (more refined
bound can be obtained outside the rkhs)

Breaking the curse of dimensionality with
neural networks, F Bach

Fix a measure 7, {) compact and introduce:

Fo{i@= | pwpeTe 4 bireb.p e m)}
v,b) €
e.g., for a finite number of neurons: f(x E pip(vl s+ b;)

’L

Then, / is a RKHS with kernel
) = [ o+ B)p(uTy + bydds
veEV

and norm

| = inf p c L*(1,V
171 f(w)=fgp(v)p(vTa:+b)dvdbH I pelinV)
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Ref.: Breaking the curse of dimensionality with
convex neural networks, F Bach

1

£(0) = /[02 POpleos(0 — 0))al 9(8) =

Ck(f) = ck(p)'y;c and for a ReLU 7y = {

0,
(—1)F

2
k2 —17

.98

Z C (g)ez’kH

k
it 'k = 2p

if kK =2p
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Ref.: Breaking the curse of dimensionality with
neural networks, F Bach

f(0) = /[02 ]p(O’)p(cos(H— 6"))do’ g(6 ch

k
0, if k=2p+1
(_1)1) k22_17 if k= 2p

sz

Ck(f) = ck(p)'yk and for a ReLU 7y = {

e Let’s focus on functions defined over the 2D sphere:
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f(0) = /[02 ]p(H')p(cos(H— 0'))do'  9(0 ch

k
0, if k=2p+1
(_]_)p k22_17 if k = 2p

sz

Ck(f) = Ck(P)’)’k and for a ReLU 7y = {

e Let’s focus on functions defined over the 2D sphere:
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e Lipschitz functions are in this RKHS.
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Ref.: Breaking the curse of dimensionality with
convex neural networks, F Bach

f(@) — /[O , ]p(g’)p(cos(g s 0/))d0/ g(e) - zk: Ck(g)eiko

0, if k=2p+1
(_1)p k22_17 if k= 2p

Ck(f) = Ck(P)’Yk and for a ReLU 7y = {

e Let’s focus on functions defined over the 2D sphere:

2= la@ir= 3 D0 L 5o

‘ Eve#0 B k=0
e Lipschitz functions are in this RKHS.

(proof via a Poisson kernel)

e Approximation results are easier with this type of results



@1ipmiaOptimization of 1-hidden ¥
layer NN

F(u) = R( / @pdp) + regularization(u)

pde given by: 8tut :'; —diV('Ut/,l,t) : UVt € —8F,(y,t)
(a) if:  Un (t) = % ;5%(75) then Mn (t) = w(t)

Ref.: On the global convergence of gradient
descen t for over-parame terized models using
optimal transpor t
Chizat and Bach

(b) there exists under "nice" conditions ;* s.t.:

Wp(:ut? :LL*) — 0
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layer NIN

e In the mean field limit, one can get convergence
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@ipMiaOptimization of 1-hidden
layer NIN

e In the mean field limit, one can get convergence
guarantees on the flow of an infinite width NN.

F(u) = R( / @pdp) + regularization(u)

pde given by: 8tﬂt —diV(’Utut) Vi € —8F,(/Lt)
(a) if:  n(t 2533 (t) then ln (t) — p(t)

Ref.: On the global convergence of gradient
descen t for over-parame terized models using
optimal transpor t
Chizat and Bach

(b) there exists under "nice" conditions ;* s.t.:

Wp(:ut? :LL*) — 0

e Those guarantees are purely asymptotic and seem
difficult to extend to deeper NNss.
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@iipmiia Limit: the Power of depth™"

Ref.: The Power of Depth for Feedforward
Neural Networks, R Eldan and O Shamir

e Under non-restrictive assumptions (e.g., satisfied by ReLU)
on p, there exists constant ¢,C > 0, such that for any
dimension d, there exists a measure ¢ andg:R? — R:

e ¢ is bounded, with support in B(0, C'\/E) and can be
approximate by a 3 layers NN with a polynomial width.

e BUT any 2 layers NN ¢ such that / | f — g|2du <
has an exponential width.




@1ipmiin Tomorrow’s lab o

e Please try the first tutorial (classifying CIFAR10)
on your own.

e https://edouardoyallon.github.io/cirm2021/
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@lipMLA Conclusion e

e Deep neural networks are difficult tools to analyse. ..

o ... that can lead to super exciting new results.



