
Machine Learning (ML) meets Signal Processing
(SP)

Laurent Oudre and Nicolas Vayatis

Luminy, January 2021

Related research at Centre Borelli

http:\www.centreborelli.fr

http:\www.centreborelli.fr

Our ML/SP group at Centre Borelli

Seniors: Argyris Kalogeratos, Mathilde Mougeot, Laurent Oudre, NV

Juniors: Ioannis Bargiotas, Harry Sevi, Brian Tervil, Charles Truong

PhD students: Mounir Atiq, Nicolas Brunot, Batiste Le Bars, Sylvain
Combettes, Alejandro de la Concha Duarte, Amir Dib, Mathilde Fekom,
Marie Garin, Pierre Humbert, Sylvain Jung, Dimitri Keriven-Serpollet,
Myrto Limnios, Alice Nicoläı, Antoine de Mathelin, Antoine Mazarguil,
Anthea Merida, Ludovic Minvielle, Guillaume Richard, Theo Saillant,
Anne Zhao

Interns: Theo Gnassounou, Frédéric Zheng

*Industrial partners: Autorité des Marchés Financiers, Banque de France,
CEA, CNES, EDF, Engie, Michelin, Renault, SNCF, Sigfox, Tarkett,
Thalès

*Main hospitals: HIA Percy, HIA Bégin, APHP Fernand

Widal-Lariboisière, APHP Necker

Python package: ruptures

PhD of Mathilde Fekom: Epidemics
• Motivation/Setup: Combining concepts from operations

research for sequential decision process and epidemic control

• Central research question: efficient control/propagation of the
diffusion process under partial information with limited
resources

PhD of Pierre Humbert: Depth of
Anesthesia

• Motivation/Setup: monitor the vigilance states of a patient
during general anesthesia through physiological signals

• Central research question: interpretation of frequency patterns
of EEG signals and their correlation to other vital signals
(ECG, blood pressure...)

PhD of Batiste Le Bars:
Telecommunication networks

• Motivation/Setup: Monitoring telecommunication
infrastructure based on low-frequency signals emitted by a
fleet of moving sensors

• Central research question: anomaly detection and changepoint
detection based on graph signal data

Ubiquity of signals

Time-dependent data are everywhere

Meteorology,
Finance,

Healthcare,
Monitoring,
Epidemiology,

Sensor networks…

Univariate vs. multivariate

2D/3D trajectories,
Multivariate time series,
Multimodal data from

sensor networks,
Graph signals

Puzzling questions about signals, e.g.
what is a trend?

Sell or buy | The”hiatus”

Recent projects: (1) Posture assessment
with digital Romberg test

From [Bargiotas et al. On the importance of local dynamics in statokinesigram: A multivariate approach for
postural control evaluation in elderly (PlosOne, 2018)]

Recent projects: (2) Gait assessment
during locomotion

From [Truong et al. A Data Set for the Study of Human Locomotion with Inertial Measurements Units (IPOL,

2019)]

→ More details in Wednesday’s workshop by Laurent Oudre!

Time series are complex data

• Measure the behavior of complex systems/phenomena:
biological, economic, industrial...

• Multivariate, multiscale, heterogeneous, multimodal, hidden
variables/structures

• Potentially massive (e.g. sound : sampling frequency 44.1
kHz)

• Measurements in the physical world inherit of sensor/channel
failures: noise, missing data, drift...

• Harder to index than video or images

Typical problems

• Low-level (preprocessing) tasks: denoising, imputation,
segmentation...

• High-level (decision) tasks: classification, prediction, event
detection...

• Indirect (explainability) tasks: structure inference, fine
quantification, interpretation...

What Machine Learning may bring to
Signal Processing

Obvious contributions of Machine
Learning to Signal Processing

• Increased predictive power thanks to nonparametric and/or
nonlinear and/or high dimensional models

• Novel estimation strategies motivated by structural
assumptions (sparse, low-rank...)

• Inspiring optimization formulations and algorithms to solve
low-level or indirect tasks

• Mathematical theory?

ML may also help on low-level tasks

• Video denoising without flow estimation with a deep
convolutional network [Tassano, Delon, Veit (CVPR’2020)]

• Imputation using graph inference based on graph signal data
using structured sparsity [Humbert, Le Bars, Oudre,
Kalogeratos, Vayatis (under revision, 2020)]

• Segmentation with kernel methods under weak supervision
[Truong, Oudre, Vayatis (ICASSP’2019)]

Main topics for this talk

A. Machine Learning in a nutshell

B. Some straightforward applications

B.1. Predictive modeling and feature design

B.2. Sparse modeling with signal data

C. Machine Learning strategies to face specific issues

C.1. Interpretability → representation learning

C.2. Taking advantage of weak supervision → metric learning

C.3. Model drift → transfer learning

A. Machine Learning in a nutshell

The goal of (supervised) machine learning

Finding a function

• Example : Pedestrian detection from video cameras

• What is the search space for such a function?

• Complexity of learning: how many samples to find the
function?

Modeling (supervised) classification data

• Data sample: {(Xi ,Yi) : i = 1, . . . , n } where

• Xi ’s encode images (pixel-wise or feature-wise)

• Yi ’s are binary values (presence/absence of a pedestrian)

• Probabilistic view on the pairs (Xi ,Yi)

(H1) (X ,Y) random pair with distribution P over Rd × {0,+1}
(convention)

(H2) Data {(Xi ,Yi) : i = 1, . . . , n } are independent and
identically distributed (IID) random variables with
distribution P

Data, Learning, Prediction

• Training data: (X1,Y1), . . . , (Xn,Yn) where Xi s are input
data, Yi s are labels

• Prediction objective: given a new X , predict Y

• Learning objective: estimate a function f̂n which fits the data
on average and makes predictions f̂n(X) hopefully fitting Y on
average

• Examples of prediction objectives in supervised learning:
• Classification: Y is discrete
• Regression: Y ∈ R
• Bipartite ranking or scoring: binary Y ′s but the goal is to rank

the X s according to P{Y = 1 | X = x} rather than predicting
Y

• Other prediction problems: multilabel, multitask, structured...

Decision rules are those functions

• Decision rules in the case of supervised binary classification

h : Rd 7→ {0, 1}

also called classifiers among a hypothesis class H.

• Examples of hypothesis classes of classifiers:
• Linear classifiers:

hθ,θ0(x) = I(θT x + θ0 ≥ 0) , where θ ∈ Rd , θ0 ∈ R.

• More generally:
hf (x) = I(f (x) ≥ 0)

where f : Rd 7→ R and f can be implemented by logistic
regression, decision trees, boosting, random forests, SVM,
neural networks, ...

The key trade-off in Machine Learning

• Denote by L(h) the error measure for any decision function h

• We have: L(h̄) = inf
H

L , and L(h∗) = inf L

• Bias-Variance type decomposition of error for any output ĥ :

L(ĥ)− L(h∗) = L(ĥ)− L(h̄)︸ ︷︷ ︸
estimation (stochastic)

+ L(h̄)− L(h∗)︸ ︷︷ ︸
approximation (deterministic)

The ”mother” of ML algorithms
Penalized optimization

• Learning process as the optimization of a data-dependent
criterion:

Criterion(h) = Training error(h) + λ Penalty(h)

• Training error: data-fitting term related to a loss function

• Penalty: complexity of the decision function

• Constant λ: smoothing parameter tuned through
cross-validation procedure

Machine Learning algorithms

1. Local methods:

a. k-Nearest Neighbors
b. Decision trees (partition-based methods)
c. Local averaging (kernel smoothing)

2. Shallow risk-optimization methods

a. Boosting
b. Support Vector Machines
c. Neural networks (one-hidden layer)

3. Ensemble methods

+ Bagging, Random Forests, Boosting

4. Deep neural networks

What statistical learning theory says

• Local methods (nearest-neighbors, partition-based):
consistency if locality parameter goes to 0 but not too fast
(Stone’s theorem)

• Risk-optimization based methods (boosting, SVM, shallow
neural networks): consistency if

• control on estimation error under complexity control and IID
assumption on training data

• penalized risk optimization performs regularized estimation
and helps monitoring approximation error

• Deep learning methods: consistency if implicit regularization

Definition of Rademacher complexity

• Consider a sample of Dn = (X1, . . . ,Xn) of IID random
variables, and a vector of Rademacher random variables:
ε = (ε1, . . . , εn)T with εi ’s IID and independent of the
training data such that P(εi = 1) = P(εi = −1) = 1/2

• Then the Rademacher complexity of the set of functions H is
the sample-dependent quantity:

R̂n(H) = E

(
sup
h∈H

1

n

n∑
i=1

εih(Xi)

∣∣∣∣∣Dn

)

Generalization error bound for the risk
optimization methods

• Loss function: ` : Y × Y → [0,+∞]

• Empirical risk of a decision rule h: this is a data-dependent
functional

L̂n(h) =
1

n

n∑
i=1

`(h(Xi),Yi)

• ERM = Empirical Risk Minimization

ĥn = argmin
h∈H

L̂n(h)

• Bound on the error: with probability at least 1− δ

L(ĥn) ≤ inf
h∈H

L(h) + R̂n(H) + 3

√
log(2/δ)

2n

New questions in ML with signal data ?

• Same algorithms, same theory (input space can be anything)

• In shallow learning: penalty design can induce specific
structures in the function estimates (sparsity, structured
sparsity, low rank, etc.)

• In deep learning: representation learning with little supervision
(refer to Long Short-Term Memory Neural Networks)

• However, feeding ML with complex data requires huge effort
on preprocessing and modeling the data to convert them into
vectors (featurization) in order to apply them in the real
world! This is the challenge!

B.1. Featurization and predictive
modeling on signal data

Example 1 : Classification of distinct
signals

• Each Xi is a signal and Yi is the signal label

• Example : classify appliances based on distinct electrical
consumption signals

• Main practical issue: how to map (embed) each signal into a
vector?

Hints for featurization

• On one signal: ”hand-crafted” approach combining various
perspectives

• coefficients of basis functions: cosines, wavelets, splines
• statistical indicators: slope, quantiles...
• geometric/expert-based features: zero-crossing, number of

peaks-over-threshold...

• On many signals: spectral methods (with variational
formulations) like Principal Component Analysis (PCA) and
its variants (robust, sparse...), Nonnegative Matrix
Factorization (NMF)...

Less straightforward...

• Case of one signal continuously recorded

• Modeling choices?
• What is the label Y?
• If the X s are portion of signal over time, how to segment

them?

• Theoretical foundation: What about the IID assumption?
Breaks of stationarity and overlapping segments question this
assumption...

About the (lack of) stationarity in time
series

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Smooth evolution vs. abrupt change

How to deal with breaks of stationarity

• Drift: Break of stationarity may be corrected after detrending
the signal

• Abrupt changes: Divide the signal into small frames on which
the signal is assumed to be stationary, amounts to performing
signal segmentation

• A trick: Instead of working on the original signal x [n], use the
signal of successive differences:

x ′[n] = x [n]− x [n − 1]

which in general has nicer stationarity properties

Reference on locally stationary process and macrotile estimation: [Donoho, Mallat, von Sachs, Samuelides (2003)]

Example

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-4

-3

-2

-1

0

1

2

3

4

Use of derivation to make the signal more stationary

B.2. Sparse modeling with signal
data

From LASSO to Fused LASSO

• Enforcing temporal coherence leads to adding a penalty term:

β̂(λ, µ) ∈ argmin
β∈Rd

‖Y − Xβ‖2 + λ‖β‖1 + µ

d∑
j=2

|βj − βj−1|


• Runs after signal approximation, achieves changepoint

detection

References: [Tibshirani et al. (2005)] [Bleakley, Vert (2011)]

C.1. Learning sparse representations
of a signal

Motivations

• Some features (to represent the data) may be good for
compression but not for interpretation (and vice versa); they
may also simply fail to ”lead to” sparse representations (e.g.,
learn functions that use only a few of the features)

• Can we learn data features (representation) so that the
functions we learn (estimate) in that representation (”space”)
are also sparse?

• Idea is to exploit the fact that similar patterns may be
repeated in the data (even if they are not smooth)

• (Can also be used to handle some cases of non-stationarity)

References: Olshausen and Field (1997) Kreutz-Delgado et al. (2003), Mairal, Elad, Sapiro (2008), Gribonval et al.
(2015)

Notion of representation

• In order to learn from time series, it is necessary to study
them in the adequate representation space

• Frequency domain was especially adapted to study time
signals...

• ... but it is not the only one !

• Now, besides off-the-shelf models, it is possible to learn the
representation directly from the time series

Dictionary decomposition

• In many cases, the time series x [n] is represented as a linear
combination of several functions, that are stored into a
dictionary

• K : number of functions in the dictionary

• {dk [n]}1≤k≤K : functions in the dictionary (also called atoms)

x [n] =
K∑

k=1

zkdk [n]

Dictionary decomposition



x [0]
x [1]

...

...

...
x [N − 1]


=



d1[0] d2[0] · · · dK [0]
d1[1] d2[1] · · · dK [1]

...
...

...
...

...
...

...
...

...
...

...
...

d1[N − 1] d2[N − 1] · · · dK [N − 1]




z1
z2
...
zK



x = Dz

• K : number of functions in the dictionary

• D : dictionary

• z : activation coefficients

Looking for sparse representations

• If K ≥ N, the dictionary is likely to contain redundancy, so a
large number of zk will be close to 0

• Finding a ”good” representation boils down to finding a
sparse activation vector

• Finding a sparse activation vector z from an input signal x and
a dictionary D is called sparse coding

Sparse coding - assume D is fixed

• `0-constraint:

z∗ = argmin
z

‖z‖0=K0

‖x− Dz‖22

Resolution: Iterative Hard Thresholding [Blumensath et al.,
2008], Matching Pursuit [Mallat et al., 1993]

• `− 1-relaxation:

z∗ = argmin
z
‖x− Dz‖22 + λ ‖z‖1

Resolution: Iterative Soft Thresholding Algorithm (ISTA)
[Daubechies et al., 2004]

Other approaches for `1-regularization
• FISTA : Fast Iterative Soft Thresholding Algorithm [Beck et

al., 2009]
Additional step after the soft-thresholding step based on
Nesterov momemtum to accelerate gradient descent

• ADMM : Alternate Direction Method of Multiplier [Boyd et
al., 2011]
Introduction of auxiliary variables to split the problem into
one data fitting term and one penalty term that are optimized
independently

• LARS : Least angle regression [Efron et al., 2004]
Iterative addition of activations linked to the atoms that are
the most correlated with the residual and increasing of all
chosen activations in their joint least squares direction

• CD : Coordinate descent
Update each activation with closed-form solution until
convergence

Which choice for the dictionary?

• Depends on the signal, should be based either on expertise or
on maths

• Classical choices:

• Fourier basis (or DCT for real signals): link to DFT + most
signals are bandlimited + handles the sinusoidal and
seasonality component

• Polynomial functions: handle the trend component
• Wavelet dictionary: Haar, Daubechies,... handle multi-scales

+ localized phenomenon

• Other option: Learn the dictionary using a bunch of M signals

Notations

• Input signals is a matrix X composed of the M signals

X =



x1[0] x2[0] · · · xM [0]
x1[1] x2[1] · · · xM [1]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
x1[N − 1] x2[N − 1] · · · xM [N − 1]


• Dictionary D is still of size N × K , but the activation vector becomes an activation matrix Z of size K ×M

D =



d1[0] d2[0] · · · dK [0]
d1[1] d2[1] · · · dK [1]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
d1[N − 1] d2[N − 1] · · · dK [N − 1]


Z =



z1,1 z1,2 · · · z1,M
z2,1 z2,2 · · · z2,M
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
zK,1 zK,2 · · · zK,M



Dictionary learning

D∗ = argmin
∀k,‖dk‖2≤1

‖X− DZ‖2F

• Normalization constraint to prevent D from being arbitrarily
large

• Convex problem with fixed X and Z

• Several solvers: Proximal Gradient Descent, block coordinate
descent, K-Singular Value Decomposition (K-SVD), ADMM...
but also online dictionary learning method that process data
on the fly [Mairal et al., 2009]

Learning activations AND the dictionary

• In the general context the activations are unknown and we
need to solve the global problem

(D∗,Z∗) = argmin
∀k,‖dk‖2≤1
∀k,zk is sparse

‖X− DZ‖2F

• This problem cannot be solved as such: in most cases we
alternate between two subproblems
• Sparse coding with known D
• Dictionary learning with known Z

• Alternated resolution until the norm of the residual becomes
small enough

Macroeconomic series example (1/5)

72 years, 1 sample per month: transformation into 72
non-overlapping frames of 12 samples

Macroeconomic series example (2/5)

K = 3 atoms, `0- sparse coding with K0 = 1

Macroeconomic series example (3/5)

Reconstruction by using all 3 atoms

Macroeconomic series example (4/5)

Reconstruction by using each atom individually

Macroeconomic series example (5/5)

All recession periods are captured by the first atom

C.2. Metric learning

Motivation: activity recognition (1/2)

Context: activity recognition with accelerometric signals recording
gait during a walk protocol

• First step: signal segmentation (unsupervised task)

• Second step: featurization of each segment (”manual” task)

• Third step: learn a classifier (supervised task)

Motivation: activity recognition (2/2)

• Focus on first step: assume supervision of each activity

• Direct use of labels to validate segmentation requires full
annotation

• Partial annotation may be used to improve accuracy on
segmentation by metric learning

Comparing signals: the limitations of
Euclidean distance

dEUC (x, y) =

√√√√ N∑
n=1

(x [n]− y [n])2

• Sensitive to time shifts,
amplitude changes, offsets and
dilatation/contraction

• Necessity to have a perfect
match between the timelines

• Sensitive to outliers

What influences Euclidean distance?

Baseline case

dEUC = 3.5

Offset

dEUC = 9.6

What influences Euclidean distance?

Amplitude shift (70 %)

dEUC = 12.8

Time shift (1.6 %)

dEUC = 5.3

What influences Euclidean distance?

Additive white Gaussian noise

dEUC = 6.9

Outliers

dEUC = 10.3

A classical alternative to Euclidean
distance

New notion of distance : Dynamic Time Warping (DTW)
[Berndt et al., 1994]

• To decrease the sensitivity with respect to timelines
(contraction/dilatation, time shifts...)

• To be able to compare two time series of different lengths

• To take into account nonlinear timeline modifications

Differences between Euclidean and DTW

Euclidean distance

Sample x [n] is associated to sample
y [n]

DTW

Sample x [ik] is associated to sample
y [jk]

Notion of path

• DTW computes a correspondence between the elements of x
and those of y.
• Mapping function called path :

P = ((i1, j1)), · · · , (iKP
, jKP

)) ∈ (N× N)KP ,KP ∈ N

(ik , jk) ∈ P ⇔ y [jk] is matched with x [ik]

Choice of the optimal path

• The path P is evaluated through a cost function

w(P) =

KP∑
k=1

(x [ik]− y [jk])2

• The final DTW distance is computed as the minimal value for
the cost function

dDTW (x, y) =
√

min
P∈P

w(P)

• Note that if KP = N and ik = jk = k , DTW is exactly equal
to the Euclidean distance

• For practical implementation, build acceptable paths

Limitations of DTW

• DTW needs that the first and last samples are aligned, which
can be a limitation in case of time shifts. Some variants exist
to avoid this problem.

• DTW is sensitive to scale (can be solved by normalized time
series beforehand), noise and outliers

ML at rescue: Metric learning
Principle

• Mahalanobis pseudodistance between T -dimensional vectors
x , x ′ defined as:

dM(x , x ′) =
√

(x − x ′)TM(x − x ′)

where M is a square symmetric positive semidefinite (PSD)
matrix such that, for any x , xTMx ≥ 0 (M � 0).

• Denote by ST+ the cone of symmetric PSD real-valued
matrices. For any M ∈ ST+ there exists a matrix L such that
L = LTL. Note that if rank(M) = r then L is rectangular
r × T .

Original metric learning formulation
[Xing, Ng, Jordan and Russell (2002)]

• Setup: Consider n signals X1, . . . ,Xn in RT and assume we
have labels on pairwise comparisons: Yij = 1 if Xi and Xj are
similar, and Yij = 0 otherwise (or if we do not know).

• Formulation: Consider the optimization problem

min
M:M�0

∑
i 6=j

Yijd
2
M(Xi ,Xj) such that

∑
i 6=j

(1−Yij)d
2
M(Xi ,Xj) ≥ 1

• Resolution: The problem is convex but expensive to solve with
Newton’s method if M is of full rank. It may be solved
efficiently with projected gradient descent. Still requires
O(T 3) operations to project on the cone ST+. Other variants
try to avoid PSD constraint.

For more details: [Bellet, Habrard, Sebban (2014)] or [Suarez-Diaz, Garcia, Herrera (2020)]

Results obtained

• Two changepoint detection algorithms have been applied to
detect transition between activities on gait signals:

• greedy kernel based changepoint detection
• test-based changepoint detection with a sliding window

• Accuracy on average (standard deviation) in seconds for the
two methods

Other applications of metric learning in SP

• Clustering with side information

• Classification with nearest-neighbor algorithms

• Application of various-purpose kernel-based algorithms (like
Support vector Machines)

• Pattern matching

C.1. Transfer learning

Motivation: fall detection in nursing
homes (1/2)

• Industrial application: fall detection technology incorporated
in a flooring element

Motivation: fall detection in nursing
homes (2/2)

• Key challenge: from the lab to the field!

• Key observation: signals have different characteristics because
the populations are different

• Real data are not easy to annotate and falls are rare

• Is it possible to transfer knowledge from the lab (source
domain) to the field (target domain)?

ML at rescue: Transfer Learning

• Focus here on transductive transfer learning, also known as
Domain Adaptation

• Assumption: we can learn a same task from data on source
domain and target domain which have different distributions

• Typically, we have no or few labelled data on target domain

Theoretical setup for domain adaptation

• Consider labeling functions f , g and the symmetric loss ` over
pairs of labels which obeys the triangle inequality.

• We introduce the expected loss over any marginal distribution
Q by:

LQ(f , g) = EQ(`(f (X), g(X)))

• Consider a hypothesis class H and the marginal distributions
S on source domain and T on target domain, then the
discrepancy distance between these two is defined as:

∆(S ,T) = max
h,h′∈H

|LS(h′, h)− LT (h′, h)|

Domain adaptation bound
Mansour et al. (2009)

• Consider the true labeling functions f ∗S and f ∗T for each
distribution and define the best in the class by:

h̄Q ∈ argmin
h∈H

LQ(h, f ∗Q), ∀Q ∈ {S ,T}

• Then we have, for any h ∈ H:

LT (h, f ∗T) ≤ LT (h̄T , f
∗
T) + LS(h, h̄S) + ∆(S ,T) + LS(h̄S , h̄T)

• From there, empirical generalization error bounds on the
excess of risk LT (h, f ∗T) ≤ LT (h̄T , f

∗
T) can be derived in terms

of empirical loss of h, discrepancy between empirical
distributions and Rademacher average of the hypothesis class
H.

What domain adaptation theory says

• The driving element to monitor the error on the target domain
is the distance between source and target domains marginal
distributions (expected!).

• Provides guarantees for most practical strategies:
• Instance-based (with reweighting)
• Feature-based (with projections)
• Model-based

Reference: Book by [Redko, Habrard, Morvant, Sebban, Bennani (2019)]

An example of model-based transfer on
decision trees

• SER: Structure Expansion and Reduction

• Idea: train on source domain, extend on target domain the
active nodes, then cut the inactive edges

• Reference: [Segev, Harel, Mannor, Crammer, El-Yaniv (2016)]

A practical solution to the fall detector
problem

• SER has to be adapted to take into account class imbalance
(few falls) with conditional reduction

• Idea: preserve nodes from minority class (condition may be
relaxed depending on the representation of the node in target
domain)

• Reference: [Minvielle, Atiq, Peignier, Mougeot (2019)]

Conclusion

Findings

• Preprocessing is a noble task. Indeed, ML may perform
denoising, segmentation, etc.

• Thanks to nonconvex optimization formulations, it is possible
to build data-driven and meaningful representations for signals
which may serve for several purposes.

• ML ideas such as incorporating soft supervision may improve
unsupervised tasks such as segmentation.

• ML may help to deal with breaks of stationarity (e.g. with
domain adaptation).

Resources

• MVA course by Laurent Oudre

http://www.laurentoudre.fr/ast/

• ruptures: Python package for changepoint detection

https://centre-borelli.github.io/ruptures-docs/

• Human locomotion data set on IPOL

http://www.ipol.im/pub/art/2019/265/

• Reproducible research on IPOL

Statokinesigram example:
https://www.ipol.im/pub/art/2019/251/

Audio example: http://www.ipol.im/pub/art/2015/64/

http://www.laurentoudre.fr/ast/
https://centre-borelli.github.io/ruptures-docs/
http://www.ipol.im/pub/art/2019/265/
https://www.ipol.im/pub/art/2019/251/
http://www.ipol.im/pub/art/2015/64/

