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Roadmap

We shall present some classical parametric ML models

As in Lecture 2, we shall denote X the n × p data matrix or
design matrix
White box models vs black box models

Some models are white-box models, meaning that the knowledge
of their coefficients brings clear information about the impact of
each input variables. Examples : Linear Models, Decision Tress
The opposite are black box models. Examples : Ensemble
Methods, Neural Networks
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Linear Regression

Dn = {(xi, yi) ∈ X × R, i = 1, · · · , n}

fβ(x) = βjxj + β0?

Least-squares fit (equivalent to MLE under the assumption of
Gaussian noise):

β̂ := Argmin‖Y − X · β‖2 = (XTX)−1XY

Solution uniquely defined when XTX invertible
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Ridge regression (Hoerl & Kennard 1970)

To ensure uniqueness, one may add a penalty and solve

β̂ := Argmin‖Y − X · β‖2 + λ‖β‖2

Solution unique and always exists

β̂ := (XTX + λI)−1XY

λ is an hyperparameter. Has to be tuned!
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Ridge regression (Hoerl & Kennard 1970)
Tuning of λ?

Data splitting strategy: cross-validation:

Cut the training set in k equally-sized chunks.

K folds: one chunk to test, the K − 1 others for training

Cross-validation score: perf averaged over the K folds.
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Ridge regression (Hoerl & Kennard 1970)
Tuning of λ?
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Ridge regression (Hoerl & Kennard 1970)
Tuning of λ?

On each fold we use a grid search on λ
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Ridge regression (Hoerl & Kennard 1970)
A practical example

We study data from D. Card (2001) about the impact of
education on labor market earnings1

The dataset can be downloaded on
http://fmwww.bc.edu/ec-p/data/wooldridge/card.dta

We try to explain the variable educ in function of the other ones

We compare OLS and Ridge without tuning of λ

1https://davidcard.berkeley.edu/papers/return-to-schooling.pdf
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Ridge regression (Hoerl & Kennard 1970)
A practical example

A small improvement with ridge
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Logistic Regression

If y ∈ {−1, 1}, linear regression makes no sense!



Linear and Logistic Regression SVM Decision Trees Random forest and GBT Uncertain prediction in ML

Logistic Regression

Model the log-odds ratio as a linear function of x?

log
(

P[Y = 1|x]
1 − P[Y = 1|x]

)
=

∑
j

βjxj + β0 = fβ(x)

One can also add a regularization.
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Support Vector Machine (SVM)

How can we find a separating hyperplane between two classes?
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Support Vector Machine (SVM)
Linear SVMs for classification problems

We want to find a decision function of SVM of the form
fw(x) = sgn(wTx + b)
That is

wTx + b = 0 : decision boundary
if wTx + b > 0 assign label yi = 1
if wTx + b < 0 assign label yi = 1
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Support Vector Machine (SVM)
Linear SVMs for classification problems

How can we find a separating hyperplane between two classes?
Solution : we maximize the margin
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Support Vector Machine (SVM)
Linear SVMs for classification problems

Margin maximization can be reformulated as the non-smooth,
penalized convex optimization problem

Argminw

∑
i

min(1 − yi(wTxi + b), 0) + ‖w‖2

Solved using quadratic programming in the dual domain.

Observe that predicting the label of a new observation involves
only a scalar product (fw(x) = sgn(wTx + b))
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Support Vector Machine (SVM)
Non linear SVMs for classification problems

What can we do in the non linear case?
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Support Vector Machine (SVM)
Non linear SVMs for classification problems

Transform the non linear problem into a linear one, using a non
linear function φ and adapt linear SVM

In the non linear SVM algorithm, the only quantity involved for
the prediction of the label of any new observation is
K(xnew, ·) =< φ(xnew), φ(·). It is a kernel

It means that in non linear SVM we have only to choose this
kernel K. It is the kernel trick. It means that the mapping can be
defined only implicitly.

Several possible kernels available in sklearn
https://scikit-learn.org/stable/modules/svm.htmlsvm-kernels
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Support Vector Machine (SVM)
Non linear SVMs for classification problems

Comparison on SVM classifiers on Iris dataset

Different kernels : linear, polynomial, RBF

Polynomial seems to be optimal
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Decision trees

Decision trees
An exploratory analysis tool

Representation of the data in a hierarchical manner by a
sequence of test allowing to predict an output variable
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Decision trees
Who should be saved in Titanic?
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Decision trees

Each node is corresponding to a variable and test it

One generates several leafs at each iteration corresponding to a
partition in the space of input variables
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Decision trees
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Decision trees

Inputs : points of the features spaces that are characterized by
numerical or categorical variables

Target : classes (classification) or value (regression)
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Decision trees
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Decision trees

A two step procedure to define decision trees

Construction of a maximal tree

Pruning : construction of a sub-sequence of optimal decision
trees to avoid overfitting
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Decision trees
Construction of the maximal tree

Creating a binary decision tree is actually a process of dividing
up the input space.

A greedy approach is used to divide the space called recursive
binary splitting
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Decision trees
Construction of the maximal tree

Splitting rule?

To simplify, let us assume that the input variables are continuous

A split is of the form

{X(j) ≤ d} ∪ {X(j) > d}

Several possible splits? We choose (j, d), minimizing a given
cost function
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Decision trees
Splitting rule in the regression case

The aim is to minimize the intra-group variance after split of a
node t into two nodes tL and tR
The variance of a node t is defined as

V(t) =
1
#t

∑
i, xi∈t

(yi − yt)
2

where yt is the mean of the values yi associated to the
observations of node t

We have then to minimize

V(t) =
#tL
#t

∑
i, xi∈tL

(yi−ytL)2+
#tR
#t

∑
i, xi∈tR

(yi−ytR)2 =
#tL
#t

V(tL)+
#tR
#t

V(tR)
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Decision trees
Splitting rule in the classification case

In the classification case, where the classes belong to {1, · · · ,L},
the impurity of each node could be defined by the means of Gini
index

The Gini index of a node t is defined as

Φ(t) =

L∑
c=1

p̂c
t (1 − p̂c

t )

where p̂c
t is the proportion of observations belonging to class c in

node t.

The aim is then to maximize for each node t and each possible
split

Φ(t) −
#tL
#t

Φ(tL) −
#tR
#t

Φ(tR)
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Decision trees

Second step of the algorithm : pruning

We search for the best pruned sub-tree (best : lowest
generalisation error).

Maximal tree : low bias and high variance

We want to decrease the variance
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Decision trees

Pruning : model selection procedure, where the models are all
possible subtrees

This procedure minimises a penalized criterion where the
penalty is proportional to the number of leafs of the tree

critα(T) = err(T) + α|T |

where
err(T) =

1
n

∑
t leaf of T

∑
(xi,yi)∈t

(yi − yt)
2
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Decision trees
Pro and cons

Pro
Interpretable model

Few preprocessing

Numerical cost low

Inputs can be both qualitative and quantitative

Cons : instability
Few change in the data can lead to very different DT

High variance estimators
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Ensemble methods
Principle

Ensemble methods are techniques that create multiple models
and then combine them to produce improved results

Assume that we are given G1(·), · · · ,Gq(Θq) a collection of ML
models θ1, · · · ,Θq q i.i.d. random variables
We can define a predictor G in several ways

Averaging : G = 1
q
∑

Gs(·)
Majoritary vote : G = argmaxk

∑
s 1Gs(·)=k

In what follows, our building blocks will be decision trees
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Bagging

Bagging consists in the following procedure

We sample by bootstrap from the initial training set q datasets
D
θ1
n , · · · ,D

Θq
n ,

Then q decisions trees are fitted G(·,Dθ1
n ), · · · ,G(·,DΘq

n )

One aggregates these base predictors
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Bagging

General principle
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Random Forests-Random Inputs

Useful when the number of observations and the number of
variables are both large

A first step consists in generating several samples as in bagging
Thereafter on each sample, we apply a variant of CART

To split a node we first draw at random, a given number on tire m
of variables
One searches at the best split among the m selected variables

One aggregates this family of decision trees
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Random Forests-Random Inputs

If m = p, we recover Bagging

If m = 1 we have a procedure very different from Bagging. The
choice of split variable is completely random
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Random Forests-Random Inputs

General principle
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Random Forests-Random Inputs

In practice, performance of RF are better than Bagging

Heuristic explanation : added randomness helps to make as
different as possible the decision trees
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Random Forests-Random Inputs
OOB error

The RF algorithm also allows to estimate the generalisation error
of the model

This error is the Out-Of-Bag (OOB) error
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Random Forests-Random Inputs
OOB error

Let us fix an (xi, yi) of the training set

Let us consider the set of all trees defined on bootstrap samples
not containing this observation

One aggregates only the prediction of these trees to define our
prediction ŷ of yi

After computing this quantity for all observations, one calculate
the global error

This quantity is called OOB error of the Forests-RI predictor
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Gradient Boosting Trees

The algorithm of Gradient boosting in several steps

One fits a decision tree

One calculates the residuals

One fits a decision tree on residuals and one adds it to the
previous one

One iterates the procedure.
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Gradient Boosting Trees
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Why quantile regression?

Classical regression estimate conditional expectation

How could we estimate the median or the percentiles of the
output random variable?
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Why quantile regression?

Quantile regression models the whole distribution of the output
variable whereas classical regression only allows to estimate the
conditional expectation

To perform Quantile Regression, we do not need any assuption
on the output random variable. More robust to misspecification
and outliers

Quantile Regression is invariant with respect to monotonous
transformation
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Why quantile regression?

When should we use quantile regression?

To have prediction intervals

No assumption on the output variable
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An example
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An example

Two situations

Graphique (A) : variance of Y is constant whatever X may be.
Classical regression may be adapted

Graphique (B) : variance of Y increases when X increases.
Quantile regression may be more adapted than classical one
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An example
The Boston Housing Dataset

Boston Housing dataset : 506 observations and 14 variables.

Aim : predict the median price of a property in function of some
variables



Linear and Logistic Regression SVM Decision Trees Random forest and GBT Uncertain prediction in ML

An example
The Boston Housing Dataset

Explicative variables
CRIM: per capita crime rate by town.

ZN: proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS: proportion of non-retail business acres per town.

CHAS: Charles River dummy variable (= 1 if tract bounds river).

NOX: nitrogen oxides concentration (parts per 10 million).

RM: average number of rooms per dwelling.

AGE: proportion of owner-occupied units built prior to 1940.

DIS: weighted mean of distances to five Boston employment centres.

RAD: index of accessibility to radial highways.

TAX: full-value property-tax rate per $10,000.

PTRATIO: pupil-teacher ratio by town.

LSTAT: lower status of the population (percent).
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An example
The Boston Housing Dataset

Heteroscedasticity?
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An example
The Boston Housing Dataset

Classical linear regression
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An example
The Boston Housing Dataset

Quantile regression for five percentiles
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An example
How it works?

Example on yi = xiβ + εi

Classical regression : one minimises the sum of the squares of
the errors

L(β) =
∑

i

(yi − xiβ)2

Median regression : one minimises the sum of absolute values of
the errors

L(β) =
∑

i

|yi − xiβ|

Quantile Regression for an α quantile

Lα(β) =
∑

i

ρα(yi − xiβ) avec ρα(z) =

{
z(α − 1) si z < 0
αz si z > 0
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An example
The Boston Housing Dataset

Confidence intervals for prediction
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Quantile Random forest

1 As in RF, one generates k trees. One keeps in memory all values
of the observations associated to this node

2 For X = x given at each tree t one calculates the quantile
minimising the quantile loss
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Quantile Random forest

The main differences between random forest and quantile random
forest are the following

For each node of each tree, random forest keep only the mean of
the observations associated to this node

Quantile Random Forest keep in memory all values of the
observations associated to this node

We can deduce conditional distributions of the output variable
and not only its conditional mean
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An example
The Boston Housing Dataset

Confidence intervals for prediction
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