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What is supervised learning?

Setting

o Starting point : the data D = {(x;, y;),i = 1,--- ,n}
o x; € X ¢ R?is the feature vector which describes the object i
e y; € Y its associated label/response.

@ Represent in a relevant way xp, - -+ ,x,?

@ Predict the class (classification) or the response (regression) of a
new observation in an automatic manner?

@ Define a function f which associates to each x;, its corresponding
response f(x;) € Y




What is supervised learning?

[e]e] lele]e}

What is supervised learning?

A classical pipeline in ML
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What is supervised learning?

@ Always possible to define a function f fitting exactly the data
@ Not always reasonable!

@ Compromise to do between prediction ability of the model and
its complexity

Simple model Complex model
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What is supervised learning?

Some additional questions

@ How can we learn a parametric model f solving the supervised
learning problem ?

@ Classical models : linear/non linear, white-box/black-box
models.

@ How shall we evaluate the prediction properties of a given
parametric model? The key choice of the loss function/metric
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What is supervised learning?

@ Give ideas explaining this compromise between prediction
ability and complexity

@ Present some parametric models to solve a
classification/regression problem

e Additional topics : explore features importance, give confidence
intervals for the prediction
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The ERM principle

The ingredients of a supervised learning problem?

e Dataset D, = {(x;,yi),1=1,--- ,n}. Usually, the (x;, y;) are
assumed to be i.i.d. realisations of an unknown distribution P(x y)

@ Hypothesis class H : shape of the classifier/regressor f.

@ Loss ¢ : evaluation of the error of f on a data point

Question : how can we learn f?
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The ERM principle

@ This function f should minimize over H the risk
R(f) == E[{(f(X), Y)]

@ Since the distribution of the dataset P(x y) is unknown, one
cannot estimate this risk

o In practice, the theoretical risk is replaced with the empirical one
- 1
R(fa Dl’l) = Z Z gv(xi)’ yl)
l

@ The Empirical Risk Minimization principle consists in
minimizing the empirical risk on H on D, to find f
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The ERM principle

o Is this approach theoretically grounded?

@ What about practical evaluation?
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The ERM principle

The ERM principle in practice

More on model’s errors

o In practice, we want to have good predictions on new
observations, not included in the initial dataset used to learn f.

@ We may then distinguish between

o training error : measure of how accurately an algorithm is able to
predict outcomes values on Dy

o generalisation error : measure of how accurately an algorithm is
able to predict outcome values for previously unseen data

@ How can we estimate the generalisation error?
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The ERM principle

The ERM principle in practice

Usual evaluation procedure : split 9, into train and test set and
evaluate on each one!

Training Set Test Sef
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The ERM principle

@ The error of the model can be tested on the test set =
generalisation error

o If the model is too complex, the generalisation error will be too
large
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The ERM principle

How shall we select the best model?
o Training error can be estimated since the data are available

@ We assume that the distribution of future data is the same that
this of the training set !

@ Minimise the training error is it sufficient to minimize the
generalisation error?

@ Comparison between three models
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Training errors

AFD PMCa=10""° PMCa=1

Apprentissage

Err. app. 12% 2,3% 45%

Example extracted from the course of N. Thome (CNAM)
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Test errors
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Err. test 14% 6% 4,6%

Example extracted from the course of N. Thome (CNAM)
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@ The model which has the lowest training error does not have the
lowest test error

e In whole generality, the test error is larger than the training one

o The difference between these two errors depends on the family
of models
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@ We cannot measure generalisation error, we estimate it using the
test set

@ We can also use a theoretical upper bound on the difference
between generalisation error and training error of the form:
generalisation error < training error + bound
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Some difficulties

o If we split the dataset and keep observations for the test we have
less data to learn

o This estimation of the generalisation error has a high variance
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Alternative approach : cross-validation
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More on Generalisation bounds

To simplify, we consider only the classification setting (for all i,
yi €{0,1})
@ Back to assumptions : D, = {(x;,y)) e X x Y, 1=1,--- ,n}iid.
realisations of (X,Y) ~ Py y.
@ We are given ¢ : Y X Y — R* a bounded loss function.
@ Some examples

o Loss 0—1: L(y1,y2) = 1y, 4}
o Hinge loss : L(y1, y2) = max(0, 1 — y1y2)

AV

-1 (8] 1 S(x)
o Quadratic loss L(y1, y2) = (y1 — y2)?
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More on Generalisation bounds

@ The classifier f has to minimize the generalisation error

R(f) = BILFX), V)] = f L), By (x,y) .

XxY

and f € H, H known class of functions.

@ This class of function could be parametric
F =1{fo.0 € ©}.

@ Problem Py y is unknown!
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More on Generalisation bounds

We replace the generalisation error with

— 1 v
R(f.Dy) = — ) LX), Yi)
i=1

Consistance of ERM principle

The ERM principle is said to be consistent if

R Do) - R B 0

and
R, D) D inf Rg)
8EF
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More on Generalisation bounds

Theorem (Vapnik, 1981)
The ERM principle is consistent iff for any & > 0,

n—o00

lim P | sup|R(g) - R(g, Dy)| > & - 0.
g€F

(convergence in probability).
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More on Generalisation bounds

A special case

If the hypothesis class H is finite, for any g € H

@ by definition

— 1 <
R(g. D) = — > U(5(X0). Yi)
i=1

e ther.v. Z; = €(g(X;), Y;) are i.i.d., integrables with expectation
R(g)
we can use the weak law of large numbers.

In whole generality much more complicated :

Vapnik, V. N., & Chervonenkis, A. Y. (1982). Necessary
and sufficient conditions for the uniform convergence of
means to their expectations. Theory of Probability Its
Applications, 26(3), 532-553.
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More on Generalisation bounds

@ Beyond consistency of ERM principle?
@ Generalisation bounds of the form : with probability greater than
1-6
Vf € F, R(F) < R(f, D) + vy -
@ v, : depends on ¢, n and on the complexity of class H

o The relationship between ¢ and v, yields the convergence rate.
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More on Generalisation bounds

Several notions of complexity
@ Vapnik-Chervonenkis complexity

@ Rademacher complexity
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Vapnik-Chervonenkis (VC) dimension

@ The class H shatters D,, = {(x;,y;), i = 1,--- ,n} if for all

assignments of labels to x1, - - - , x,, there exists f € H makes no
errors when evaluating that set of data points

® Q o
o % e “o °
©o ° ° o |®e
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Shattering of 3 points by the family of linear classifiers
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Vapnik-Chervonenkis (VC) dimension

o Let &(H, Dn) = {(x1,f(x1)), -+, (X, f(xn)). f € H} and
C(q’{, I’l) = max|p,|=n |8(97, Z)n)|

o If H is a class of functions from X onto {—1, 1} one defines the
VC dimension of H as

V = max{v, C(H,v) =2"}.

Example : for the linear classifier the VC dimension is 3.
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An example of generalisation bound

Proposition (Vapnik 1981)

Let 5 € (0, 1) and H a class of functions with finite VC dimension V.
With probability greater than 1 — &

8V In(Ren/V) + 81n(4/6)
" .

Vf € F, R(f) < R(f, Dy) + \/

Here one has

Vy =

\/S(V In(2en/V) + 8 In(4/5)

n

fast rate of convergence!
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Comments

@ One has _
R(f) < R(f,D,) + generalisation error
° E(f ,Dy) is the error of f on the test set

@ The more H is a complex family, the more the generalisation
error is large

e Existence of other complexity measures as Rademacher
complexity that can be estimated on data



The ERM principle
0000000000000 00000000000e

Comments

test
error

training
error
-

# parameters



	What is supervised learning?
	The ERM principle

