Some classical ML models J







@ We shall present some classical parametric ML models

@ As in Lecture 2, we shall denote X the n X p data matrix or
design matrix

@ White box models vs black box models

o Some models are white-box models, meaning that the knowledge
of their coefficients brings clear information about the impact of
each input variables. Examples : Linear Models, Decision Tress

o The opposite are black box models. Examples : Ensemble
Methods, Neural Networks
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Linear Regression

0 D, ={(x;,y) e XxR,i=1,---,n}
o fz(x) = Bix; + Bo?

o Least-squares fit (equivalent to MLE under the assumption of
Gaussian noise):

B := Argmin||Y — X - B> = (X"X)"'xY

Solution uniquely defined when X7X invertible
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Ridge regression (Hoerl & Kennard 1970)

e To ensure uniqueness, one may add a penalty and solve
B = Argmin|[Y - X - BI* + A8
@ Solution unique and always exists
B:i=X'X+AD)"'XY

@ Ais an hyperparameter. Has to be tuned!
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Ridge regression (Hoerl & Kennard 1970)

Tuning of A?

Data splitting strategy: cross-validation:
o Cut the training set in k equally-sized chunks.
o K folds: one chunk to test, the K — 1 others for training

o Cross-validation score: perf averaged over the K folds.
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Ridge regression (Hoerl & Kennard 1970)

Tuning of A?
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Ridge regression (Hoerl & Kennard 1970)

Tuning of A?

On each fold we use a grid search on A

Grid Lawout Randem Layout
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Ridge regression (Hoerl & Kennard 1970)

A practical example

@ We study data from D. Card (2001) about the impact of
education on labor market earnings!

@ The dataset can be downloaded on
http://fmwww.bc.edu/ec-p/data/wooldridge/card.dta

@ We try to explain the variable educ in function of the other ones

@ We compare OLS and Ridge without tuning of A

Thttps://davidcard.berkeley.edu/papers/return-to-schooling.pdf
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Ridge regression (Hoerl & Kennard 1970)

A practical example

oLs RIDGE RIDGE2

Train 0.536856 0.536855 0.536854

Test 0.524978 0.525048 0.525118

A small improvement with ridge
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Logistic Regression

If y € {—1, 1}, linear regression makes no sense!

cHD
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Logistic Regression

@ Model the log-odds ratio as a linear function of x?

PlY = 1|x]
oe 2 ) = S+ o= 0

@ One can also add a regularization.
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Support Vector Machine (SVM)

=1 -2 i 2 4 i B

How can we find a separating hyperplane between two classes?
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Support Vector Machine (SVM)

Linear SVMs for classification problems

@ We want to find a decision function of SVM of the form
fo(x) = sgn(wlx + b)
@ Thatis

o wlx+b =0: decision boundary
o if w'x + b > 0 assign label y; = 1
o if wix + b < 0 assign label y; = 1
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Support Vector Machine (SVM)

Linear SVMs for classification problems

How can we find a separating hyperplane between two classes?
Solution : we maximize the margin
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Support Vector Machine (SVM)

Linear SVMs for classification problems

@ Margin maximization can be reformulated as the non-smooth,
penalized convex optimization problem

Argmin,, Z min(1 — yi(wai + b),0) + ||w||2
i

@ Solved using quadratic programming in the dual domain.

@ Observe that predicting the label of a new observation involves
only a scalar product (f,,(x) = sgn(wa + b))
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Support Vector Machine (SVM)

Non linear SVMs for classification problems

‘What can we do in the non linear case?
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Support Vector Machine (SVM)

Non linear SVMs for classification problems

@ Transform the non linear problem into a linear one, using a non
linear function ¢ and adapt linear SVM

@ In the non linear SVM algorithm, the only quantity involved for
the prediction of the label of any new observation is
K(xnews ") =< ¢(Xnew), #(-). It is a kernel

o It means that in non linear SVM we have only to choose this
kernel K. It is the kernel trick. It means that the mapping can be
defined only implicitly.

Several possible kernels available in sklearn
https://scikit-learn.org/stable/modules/svm.htmlsvm-kernels
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Support Vector Machine (SVM)

Non linear SVMs for classification problems

@ Comparison on SVM classifiers on Iris dataset
o Different kernels : linear, polynomial, RBF

@ Polynomial seems to be optimal
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Decision trees

Decision trees
@ An exploratory analysis tool

@ Representation of the data in a hierarchical manner by a
sequence of test allowing to predict an output variable
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Decision trees

Who should be saved in Titanic?

is sex male?

is age > 9.57 survived

\ 0.73 36%
‘ is sibsp > 2.57
017 B1%

0.05 2% 0.89 2%
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Decision trees

@ Each node is corresponding to a variable and test it

@ One generates several leafs at each iteration corresponding to a
partition in the space of input variables
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Decision trees

@ Inputs : points of the features spaces that are characterized by
numerical or categorical variables

@ Target : classes (classification) or value (regression)
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Decision trees

Tear production rate
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Decision trees

A two step procedure to define decision trees
@ Construction of a maximal tree

@ Pruning : construction of a sub-sequence of optimal decision
trees to avoid overfitting
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Decision trees

Construction of the maximal tree

o Creating a binary decision tree is actually a process of dividing
up the input space.

o A greedy approach is used to divide the space called recursive
binary splitting
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Decision trees

Construction of the maximal tree

e Splitting rule?
o To simplify, let us assume that the input variables are continuous

o A splitis of the form
X9 <dyu x> d)

@ Several possible splits? We choose (j, d), minimizing a given
cost function
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Decision trees

Splitting rule in the regression case

@ The aim is to minimize the intra-group variance after split of a
node ¢ into two nodes 7, and 7

@ The variance of a node ¢ is defined as

V() = mez

z Xi€t

where y, is the mean of the values y; associated to the
observations of node ¢

@ We have then to minimize

mw meﬂ—mez—mwwm

i, X;€ty, i, X;€tR
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Decision trees

Splitting rule in the classification case

o In the classification case, where the classes belong to {1,--- , L},
the impurity of each node could be defined by the means of Gini
index

@ The Gini index of a node  is defined as
L
©@) = Y P -7
c=1

where p7 is the proportion of observations belonging to class ¢ in
node t.

@ The aim is then to maximize for each node ¢ and each possible
split
#11, #15
O@) — —D(t) — —D(¢
(0) = 2 ®(11) — - Dt)
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Decision trees

@ Second step of the algorithm : pruning

@ We search for the best pruned sub-tree (best : lowest
generalisation error).

@ Maximal tree : low bias and high variance

@ We want to decrease the variance
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Decision trees

@ Pruning : model selection procedure, where the models are all
possible subtrees

o This procedure minimises a penalized criterion where the
penalty is proportional to the number of leafs of the tree

crity(T) = eri(T) + a|T)

where

_ 1 a
== ) ) Gi-¥
t leaf of T (xi.ypet
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Decision trees

Pro and cons

Pro

o Interpretable model
@ Few preprocessing
@ Numerical cost low

o Inputs can be both qualitative and quantitative

<

Cons : instability

@ Few change in the data can lead to very different DT

@ High variance estimators

\
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Ensemble methods

Principle

o Ensemble methods are techniques that create multiple models
and then combine them to produce improved results
@ Assume that we are given Gi(-), - -+ , G4(0,) a collection of ML
models 0y, - - ,0, ¢ i.i.d. random variables
@ We can define a predictor G in several ways
o Averaging: G = é 3 Gy(4)
o Majoritary vote : G = argmaxy 3 1G,()=k

o In what follows, our building blocks will be decision trees
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Bagging consists in the following procedure
@ We sample by bootstrap from the initial training set ¢ datasets
Do .. ’z)’(?q’
@ Then g decisions trees are fitted G(-, DZ‘), -, G, Z),(:)")

@ One aggregates these base predictors
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General principle

Lo
Bootstrap
[_:?1 e .C?f ................ ?q
CART
(@) (@) o h(.,©4)
Agrégation

EBAG ( )
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Random Forests-Random Inputs

@ Useful when the number of observations and the number of
variables are both large

o A first step consists in generating several samples as in bagging

@ Thereafter on each sample, we apply a variant of CART

o To split a node we first draw at random, a given number on tire m
of variables
o One searches at the best split among the m selected variables

@ One aggregates this family of decision trees
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Random Forests-Random Inputs

e If m = p, we recover Bagging

e If m = 1 we have a procedure very different from Bagging. The
choice of split variable is completely random
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Random Forests-Random Inputs

General principle

cil
£O1 ﬁf.‘ ﬁfq
Arbre
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Random Forests-Random Inputs

@ In practice, performance of RF are better than Bagging

@ Heuristic explanation : added randomness helps to make as
different as possible the decision trees
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Random Forests-Random Inputs
OOB error

@ The RF algorithm also allows to estimate the generalisation error
of the model

@ This error is the Out-Of-Bag (OOB) error
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Random Forests-Random Inputs
OOB error

@ Let us fix an (x;, y;) of the training set

@ Let us consider the set of all trees defined on bootstrap samples
not containing this observation

@ One aggregates only the prediction of these trees to define our
predictiony of y;

o After computing this quantity for all observations, one calculate
the global error

@ This quantity is called OOB error of the Forests-RI predictor
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Gradient Boosting Trees

The algorithm of Gradient boosting in several steps
@ One fits a decision tree
@ One calculates the residuals

@ One fits a decision tree on residuals and one adds it to the
previous one

One iterates the procedure.



Gradient Boosting Trees

Prediction (Iteration 1)

Random forest and GBT
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Residuals vs. x (lteration 1)
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© Uncertain prediction in ML
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Why quantile regression?

@ Classical regression estimate conditional expectation

@ How could we estimate the median or the percentiles of the
output random variable?
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Why quantile regression?

@ Quantile regression models the whole distribution of the output
variable whereas classical regression only allows to estimate the
conditional expectation

@ To perform Quantile Regression, we do not need any assuption
on the output random variable. More robust to misspecification
and outliers

@ Quantile Regression is invariant with respect to monotonous
transformation
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Why quantile regression?

When should we use quantile regression?
o To have prediction intervals

@ No assumption on the output variable
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An example

Two situations

@ Graphique (A) : variance of Y is constant whatever X may be.
Classical regression may be adapted

@ Graphique (B) : variance of Y increases when X increases.
Quantile regression may be more adapted than classical one

90t percentile

Plot (A) Plot (B) / '. 5?”‘percenlile
E(YX .
. " ’ _- lfi"‘percemile

Homoscedasticity Heteroscedasticity

Figure (B): Homoskedasticity vs. Heteroscedasticity
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An example

The Boston Housing Dataset

@ Boston Housing dataset : 506 observations and 14 variables.

@ Aim : predict the median price of a property in function of some
variables
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An example

The Boston Housing Dataset

Explicative variables

@ CRIM: per capita crime rate by town.
ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS: proportion of non-retail business acres per town.
CHAS: Charles River dummy variable (= 1 if tract bounds river).
NOX: nitrogen oxides concentration (parts per 10 million).
RM: average number of rooms per dwelling.
AGE: proportion of owner-occupied units built prior to 1940.
DIS: weighted mean of distances to five Boston employment centres.
RAD: index of accessibility to radial highways.
TAX: full-value property-tax rate per $10,000.
PTRATIO: pupil-teacher ratio by town.

LSTAT: lower status of the population (percent).
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An example

The Boston Housing Dataset

Heteroscedasticity?
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An example

The Boston Housing Dataset

Classical linear regression
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An example

The Boston Housing Dataset

Quantile regression for five percentiles
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An example

How it works?

Example on y; = x;8 + &;

@ Classical regression : one minimises the sum of the squares of
the errors

Lp) = Z(yi —xB)?

@ Median regression : one minimises the sum of absolute values of
the errors

LB) = Z vi - xBl

@ Quantile Regression for an @ quantile

Lo(B) = ) palyi = xiB) avec po(2) =

i

Za-1)siz<0
azsiz>0



An example

The Boston Housing Dataset

Uncertain prediction in ML
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Confidence intervals for prediction

Values and prediction intervals.

*  Actual
I Predicted interval

Ordered samples.
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Quantile Random forest

@ Asin RF, one generates k trees. One keeps in memory all values
of the observations associated to this node

@ For X = x given at each tree ¢ one calculates the quantile
minimising the quantile loss
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Quantile Random forest

The main differences between random forest and quantile random
forest are the following

@ For each node of each tree, random forest keep only the mean of
the observations associated to this node

@ Quantile Random Forest keep in memory all values of the
observations associated to this node

@ We can deduce conditional distributions of the output variable
and not only its conditional mean



An example

The Boston Housing Dataset

Uncertain prediction in ML
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Confidence intervals for prediction

Values and prediction intervals

= Actual
0 Predicted interval

0 ) 40 ) &
Ordered samples.
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