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Introduction RSF based Estimators
We discuss an inspiring use of the links between random processes on graphs and Laplacian-
based numerical algebra: .
e Based on random spanning forests, we propose two novel and etficient Monte Carlo U1

estimators for smoothing graph signals. Ei; 2 “3
e Moreover, we provide a theoretical analysis on bias and variance of our estimators. / - %‘\‘ o
e On the empirical side, these estimators are illustrated in two well-known applications. V3 e e .
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where y = (Y1, Yo, --vs Yn) is. a graph sig.nal and y; is the measurement from node 1. 7(4) y[m}q(i)] E[z(i)] = 6Ky S Var(z(i)) = y7(I — Ky
L denotes the graph Laplacian of the given graph and ¢ sets the trade-off between =y
\ data-fidelity and regularization. (i) \Tl(z)l Zjevt(i) y; Elz(i)] = 6,;Ky %Var(f(i)) = y7(K — K2y
The explicit solution to this problem is: =

x = Ky with K = (L 4 ¢gl) gl

where | is the identity matrix. Experiments
e Direct computation of K requires O(n?) elementary operations due to the inverse.

e For large n, iterative methods and polynomial approximations are the state-of-the-art. Tikhonov denoising of graph signals. We consider an image as a noisy graph signal where
Both compute X in linear time in the number of edges |£]. the underlying graph is 2-D grid:

Random Spanning Forests on Graphs

For an undirected graph G = (V, &, W):

Fig. 3: lllustration on an image.

SSL for node classitication on graphs aims at recovering labels of all nodes with a few
b C b C C available labels as a priori knowledge. Given labels in y; for class [, the solution [2]

e d e d o d under a smoothness prior 1regulatecl by @ > 0 is the classification function f; =
hy fog hy fhg hq\o ?\ g o (1= 55D °WD7!) y; = D' KDy, where K = (Q+ L)' Q and Q = 4D.

We run our methods to estimate f;'s on a graph with || = 3000 and two communities.
Fig. 1: Original graph, a spanning tree, a rooted spanning tree and a rooted spanning forest

Random Spanning Forests (RSF)
Consider the following parametric distribution over rooted spanning forests: _—
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where ¢ is a parameter and p(¢) denotes the set of roots in the forest ¢. One can X N=500 <
sample from this distribution by a variant of Wilson's algorithm in time O(|€]/q) [1] — % N=50 0.3
A very surprising connection between RSFs and linear algebra appears in the following 0.0L | | | | _)E: N=100 0L
simple equation: 0 50 100 150 200 X N=500 0
m
P(Tq)q(i) = ]) = Kz’,j with K = (L + Q|)_1Q|
where TCDQ(') returns the root of node 72 in the spanning forest (I)q_ Fig. 4: Adjusted Rand Index (ARI) compared on strong (left) and fuzzy (right) communities
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