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Introduction
Optimization is at the core of many machine learning problems. Estimating the model parameters can
often be formulated in terms of an unconstrained optimization problem of the form

min
θ∈Rd

f (θ) where f : Rd→ R is differentiable. (1)

• Emergence of adaptive algorithms ADAM,
RMSPROP, AMSGRAD, ADAGRAD in ma-
chine learning.
• Commonly observed that the value of the

training loss decays faster than for stochas-
tic gradient descent. Became the default
method of choice for training feed-forward
and recurrent neural networks.
• Can we provide a theoretical framework

to study adaptive algorithms? Can we
obtain conditions on the hyper-parameters
that guarantee convergence of trajectories?
•What properties make them so well suited

for deep learning? Is it the right class of al-
gorithms to optimize the loss surface given
by deep neural networks?

Figure 1: Training of multilayer neural networks on
MNIST images using dropout stochastic regularization
[3].

Dynamics of first order optimization algorithms
We analyze discrete adaptive optimization algorithms by introducing their continuous time counter-
parts, with a focus on ADAM. The connection between difference equations and continuous differen-
tial equations [4] is an active area of research in both the deterministic and stochastic setting [2].

Continuous equation Discrete optimizer

Gradient flow
Gradient descent
Proximal method

Second order eq. [5, 6]
Heavy ball
Nesterov

? Adaptive algorithms

In our work [1], we study the following general system of differential equations:
θ̇(t) = −m(t)/

√
v(t) + ε

ṁ(t) = h(t)∇f (θ(t))− r(t)m(t)

v̇(t) = p(t) [∇f (θ(t))]2 − q(t)v(t),
(2)

Which allow us to recover several optimization algorithms, such as:
1. Heavy Ball: h(t) ≡ 1, r(t) ≡ γ, and p(t) ≡ q(t) ≡ 0.
2. Nesterov: h(t) ≡ 1, r(t) = r/t, and p(t) ≡ q(t) ≡ 0.
3. A modification of the equation gives ADAGRAD (q ≡ 0) and RMSPROP (p ≡ q ≡ α2).
In order to establish a relation between the continuous ODE and the optimization algorithms, we
study the finite difference approximation of (2) by the forward Euler method

θk+1 = θk − smk/
√
vk + ε

mk+1 = (1− sr(tk+1))mk + sh(tk+1)∇f (θk+1)
vk+1 = (1− sq(tk+1))vk + sp(tk+1) [∇f (θk+1)]2

(3)

where tk = ks. In [1], we address the following questions
• Existence/Uniqueness: Wellposedness of the Cauchy problem (2).
• Convergence analysis: Find sufficient conditions on the functions f and p, q, r, h in order for the

solutions of equation (2) to converge to a critical value of f . We have four main lines of results:
(0) Gradient convergence: Sufficient conditions so that∇f (θ(t))→ 0 when t→∞.
(I) Topological convergence: Sufficient conditions so that θ(t) converges to a critical value of f .

(II) Avoiding local maximum and saddles: Sufficient conditions so that the dynamics avoid local
maximum and saddle points and only converge to local minimum.

(III) Rate of convergence: Under the convexity assumption, find the rate of convergence.

Connection to existing optimization algorithms: ADAM

Iterative method generating a sequence (θk,mk, vk) ∈ Rd × Rd × Rd+. The algorithm can be re-
formulated as follows: for any constants β1, β2 ∈ (0, 1), ε > 0 and initial vectors θ0 ∈ Rd,m0 =
∇θf (θ0), v0 = ∇θf (θ0)2 and for all k ≥ 0

θk+1 = θk − s mk/
√
vk + ε

gk+1 = ∇f (θk+1)
mk+1 = µk+2mk + (1− µk+2)gk+1
vk+1 = νk+2vk + (1− νk+2)g2k+1

(4)

where the two parameters for the moving average, depending on the iterations, are given by µk =

β1(1 − βk−11 )/(1 − βk1 ) and νk = β2(1 − βk−12 )/(1 − βk2 ). Consider now the family of differential
equations (2) where the coefficients are given by

h ≡ r ≡ gA1 (t, λ, α1, α2), p ≡ q ≡ gA2 (t, λ, α1, α2), gAi (t, λ, α1, α2) =
1− e−λ/αi

λ
(
1− e−t/αi

),
where (λ, α1, α2) are positive real numbers. Note that both functions have a simple pole at t = 0.
Now, let us consider the associated discretization (3) with learning rate s and a sub-family of discrete

models parametrized by (β1, β2) ∈ (0, 1)× (0, 1) which are given by λ = s and βi = e−λ/αi. It easily
follows that for i = 1, 2

sgAi ((k + 1)s, λ, α1, α2) = 1− β1
1− βk1
1− βk+11

= 1− µk+1,

which recovers ADAM’s discrete system. We can now present a simplified version of our results:
Theorem 1 (Convergence of ADAM). Suppose that f is a C2 and coercive function, ε > 0 and

3 + β2 > 4β1, where βi = exp(−λ/αi), i = 1, 2.

(0) Convergence of the gradient: Suppose that the loss function f is bounded from below and its
gradient∇f is globally Lipschitz and bounded. Then∇f (θ(t))→ 0 when t→∞.

(I) Topological convergence: We have that f (θ(t)) → f?, m(t) → 0 and v(t) → 0 when t → ∞,
where f? is a critical value of f .

(II) Non-local minimum avoidance: Suppose that assumptions f is Morse. Fix t0 > 0 and denote by
St0 the set of initial conditions (θ0,m0, v0) ∈ Rd×Rd×Rd≥0 such that θ? ∈ ω(θ(t)), where θ? is not
a local-minimum of f . Then St0 has Lebesgue measure zero.

(III) Rate of convergence: Suppose that f is convex. There exists a constant K > 0 which depends on
f , θ0 and v0, so that:

lim
t→∞

f (θ(t))− f (θ?) < K
1− e−λ/α2

α1(1− e−λ/α1)
= K ln(1/β1)

1− β2
s(1− β1)

.

The rate of convergence to this neighbourhood, furthermore, is of order O(1/t).

Empirical observations

Figure 2: Comparison between gradient descent and ADAM for f (x, y) = (x + y)4 + (x/2 − y/2)4. Gradient Descent
outperforms ADAM in this example because β1, β2 are large and ADAM keeps memory of the past large gradients. Both
trajectories start from the point (0.5,−2.5).

Figure 3: Fixing β2 and changing the learning rate s lead to different dynamics. right) Trajectories of ADAM when only
the learning rate is changed and β1, β2 are fixed. left) Comparison of the error between different trajectories.

Conclusions and Forthcoming Research
Conclusions:
• The convergence rate is nonlinear –in the sense that it depends on the variables– and depends on

the history of the dynamics.
•With the standard choices of hyperparameters, adaptivity degrades the rate of convergence to the

global minimum of a convex function compared to gradient descent.
Questions:
1. Does adaptivity reduces the variance (compared to SGD) and speed up the training for convex

functional?
2. Is the fast training observed in deep learning induced by the specificity of the loss surface and

common initialization scheme for the weights?
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