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Single Molecule Localisation Microscopy

The spatial resolution of images obtained with optical microscopes
is limited by light diffraction phenomena.

SMLM Super-Resolution techniques allow to overcome the
diffraction barrier. The acquisition process involves fluorescent
molecules, sequentially activated and deactivated at random. SMLM
data consist of a stack of noisy blurred frames.

Acquisition Process

y∈ RM×M (coarse grid) observed image is a realisation of
Y∼ Poisson(Ax) with A= RLH ∈ RM 2×N 2

� H ∈ RN 2×N 2 convolution operator (PSF)
� RL ∈ RM 2×N 2 down-sampling operator

with x∈ RN×N (fine grid) with N = LM

Weighted-`2-`0 Variational Model

x∗ ∈ arg min
x∈RML×ML

Gw`0(x) := 1
2

(
(Ax)j − yj

)2

yj
+λ‖x‖0+i≥0(x), λ > 0

� Fidelity accounting for signal-dependent Poisson noise
� Sparsity-promoting regularisation term

`0-norm =⇒ non-smooth, non-continuous, non-convex, combina-
torial and NP-hard. To overcome this issue, a new class of con-
tinuous non-convex penalties (relaxations of the `0-norm) has
been studied for the `2-`0 problem.

Weighted-CEL0 relaxation

We derive a continuous exact relaxation of Gw`0 by comput-
ing its biconjugate functional (applying twice Fenchel conjugation):

GwCEL0(x) := 1
2

(
(Ax)j − yj

)2

yj
+ ΦwCEL0(x;λ; A; y) + i≥0(x)

GwCEL0 is non-smooth, non-convex but continuous=⇒ the
associated problem is efficiently solved algorithmically.
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Weighted-CEL0 penalty

Non-convex non-smooth continuous penalty defined by:

ΦwCEL0(x;λ; A; y) :=
N 2∑
i=1

λ− ‖ãi‖
2

2

(
|xi| −

√
2λ
‖ãi‖

)2

1{|xi|<
√

2λ
‖ãi‖
}

where ai is the i-th column of the matrix A and ãi := ai./y.
Compared to the ΦCEL0 penalty for the
standard `2−`0 problem, the new penalty
ΦwCEL0 presents an explicit dependence
on both the model (i.e. the columns of
the operator A, as for CEL0) and the
data y, reflecting the intrinsic signal-
dependence encoded into the consid-
ered Poisson modelling.

Numerical Results

High-density ISBI SMLM 2013 dataset: 361 frames stack

(a) GT (b) y (c) y4 frame

(d) CEL0 (e) wCEL0 (f) D-S

(g) GT (h) CEL0 (i) wCEL0 (j) D-S

� N=256, M=64, L=4
� Gaussian PSF,

FWHM = 258.2nm
We compare the proposed
wCEL0 method with the
previous CEL0 method (which
describes Additive Gaussian
White Noise) and Deep-
STORM, a deep-learning based
model for super-resolution
microscopy.
1st-row: (a) ground truth, (b)
sum of all the acquisitions, (c)
4th acquired frame. 2nd row:
(d) CEL0 result, (e) wCEL0 re-
sult, (f) Deep-STORM result.
3rd row: close-up on a detail.

J0 J2 J4 CD FN FP
CEL0 0.042 0.467 0.552 121 96 3
wCEL0 0.057 0.552 0.659 151 67 14
Deep-STORM 0.025 0.037 0.038 217 1 8157

Table: Number of Correctly Detected molecules CD, False Negatives FN, False
Positives FP for tolerance radius δ = 4. Jaccard index Jδ ∈ [0, 1] up to tolerance
radius δ ∈ {0, 2, 4}, computed as mean over the frames. Jδ ∈ [0, 1] is the ratio
between CD and the sum of CD, FN and FP.
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