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in Super-Resolution microscopy with Poisson data
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Single Molecule Localisation Microscopy Weighted-CELO penalty
The spatial resolution of images obtained with optical microscopes Non-convex non-smooth continuous penalty defined by:
is limited by light diffraction phenomena. ) ALy gz: X 14 N VN 21
wCELO(X; Ay AL Y ). - 9 1 HéZH {|xz|<”é_\/ﬁ}
P where a; is the ¢-th column of the matrix A and &; = a;./y.
\ / - Compared to the ®Ocgg penalty for the
standard /5 — ¢, problem, the new penalty

d,ceLe presents an explicit dependence
on both the model (i.e. the columns of
the operator A, as for CELO) and the
data y, reflecting the intrinsic signal-
w dependence encoded into the consid-
ered Poisson modelling.

SMLM Super-Resolution techniques allow to overcome the
diffraction barrier. The acquisition process involves fluorescent
molecules, sequentially activated and deactivated at random. SMLM
data consist of a stack of noisy blurred frames.

Acquisition Process

ye RM*M (coarse grid) observed image is a realisation of

Numerical Results

Y~ Poisson(Ax) with A= R H € RM <N High-density ISBI SMLM 2013 dataset: 361 frames stack
B HcRY 2><2N 2 2(3()1(1\/01ut101(1 operator (PSF) B N=256, M=64, =4
B R; € RN down-sampling operator B Gaussian PSF

with xe RY*Y (fine grid) with N = LM FWHM = 258.2nm
We compare the proposed

wCELO method with the
previous CELO method (which
describes Additive Gaussian
White Noise) and Deep-
STORM, a deep-learning based
model for super-resolution
IMICroscopy.

(d) CELO (e) wCELO (1) D-S 1st-row: (a) ground truth, (b)
' sum of all the acquisitions, (c)
4th acquired frame. 2nd row:

| , : (d) CELO result, (e) wCELO re-
{p-norm — non-smooth, non-continuous, non-convex, combina- sult, (f) Deep-STORM result.

torial and NP-hard. To overcome this issue, a new class of con- ( GT (h) CELO (i) wCELO (j) D-S  3rd row: close-up on a detail.
tinuous non-convex penalties (relaxations of the fy-norm) has
been studied for the ¢5-f; problem.

Weighted-/,-/, Variational Model

2
1((Ax); — vy,
x" € argmin Gy, (X) = —(( X)i ~ ) FA|x|[o+iso(x), A >0

xERMLXML 2 Y;

B Fidelity accounting for signal-dependent Poisson noise
B Sparsity-promoting regularisation term

Jo Jo J4 CD FN|FP
CELO 0.042 10.467 10.552 |121 96 3
wCELO 0.057 0.552/0.659 151 67 14
Deep-STORM|0.025 10.037 10.038 217 1 |8157

Weighted-CELO relaxation

Table: Number of Correctly Detected molecules CD, False Negatives FN. False

Jers . 1 . F G Positives FP for tolerance radius 6 = 4. Jaccard index Js € |0, 1] up to tolerance
We derive a continuous exact relaxation o wlo DY comput- radius 6 € {0,2,4}, computed as mean over the frames. Js5 € [0, 1] is the ratio

ing its biconjugate functional (applying twice Fenchel conjugation): between CD and the sum of CD, FN and FP.

1 ((AX): — v, ’ .
GceLe(X) ::—(( )] y]) - DyceLo(x A\ ALy) + ix0(x)
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