Weighted-CEL0 sparse regularisation for molecule localisation in Super-Resolution microscopy with Poisson data

Luca Calatroni² Claudio Estatico¹ Marta Lazzaretti¹

²Université Côte d'Azur, CNRS, INRIA, I3S, France ¹Università degli studi di Genova, DIMA, Italy

Single Molecule Localisation Microscopy

The spatial resolution of images obtained with optical microscopes is limited by **light diffraction phenomena**.

Weighted-CEL0 penalty

Non-convex non-smooth *continuous* penalty defined by: $\Phi_{\mathsf{wCEL0}}(\mathbf{x};\lambda;\mathbf{A};\mathbf{y}) := \sum_{i=1}^{N^2} \lambda - \frac{\|\mathbf{\tilde{a}}_i\|^2}{2} \left(|x_i| - \frac{\sqrt{2\lambda}}{\|\mathbf{\tilde{a}}_i\|} \right)^2 \mathbb{1}_{\{|x_i| < \frac{\sqrt{2\lambda}}{\|\mathbf{\tilde{a}}_i\|}\}}$ where \mathbf{a}_i is the *i*-th column of the matrix \mathbf{A} and $\mathbf{\tilde{a}}_i := \mathbf{a}_i . / \mathbf{y}$. Compared to the Φ_{CEL0} penalty for the

SMLM **Super-Resolution** techniques allow to overcome the diffraction barrier. The acquisition process involves fluorescent molecules, sequentially activated and deactivated at random. SMLM data consist of a **stack** of noisy blurred frames.

y∈
$$\mathbb{R}^{M \times M}$$
 (coarse grid) observed image is a realisation of
Y~ *Poisson*(**Ax**) with **A**= **R**_L**H** ∈ $\mathbb{R}^{M^2 \times N^2}$
■ **H** ∈ $\mathbb{R}^{N^2 \times N^2}$ convolution operator (PSF)
■ **R**_L ∈ $\mathbb{R}^{M^2 \times N^2}$ down-sampling operator
with **x**∈ $\mathbb{R}^{N \times N}$ (fine grid) with $N = LM$

Weighted- ℓ_2 - ℓ_0 Variational Model

standard $\ell_2 - \ell_0$ problem, the new penalty Φ_{wCEL0} presents an explicit dependence on both the model (i.e. the columns of the operator \mathbf{A} , as for CEL0) and the data y, reflecting the **intrinsic signal**dependence encoded into the considered Poisson modelling.

Numerical Results

High-density ISBI SMLM 2013 dataset: 361 frames stack

(a) GT

N=256, M=64, L=4Gaussian PSF, FWHM = 258.2nm

We compare the proposed wCEL0 method with the previous CEL0 method (which describes Additive Gaussian White Noise) and Deep-

$\mathbf{x}^* \in \underset{\mathbf{x} \in \mathbb{R}^{ML \times ML}}{\arg\min} G_{w\ell_0}(\mathbf{x}) := \frac{1}{2} \frac{\left((\mathbf{A}\mathbf{x})_j - y_j \right)^2}{y_j} + \lambda \|\mathbf{x}\|_0 + i_{\geq 0}(\mathbf{x}), \quad \lambda > 0$

Fidelity accounting for signal-dependent **Poisson noise Sparsity-promoting** regularisation term

 ℓ_0 -norm \implies non-smooth, non-continuous, non-convex, **combina**torial and NP-hard. To overcome this issue, a new class of *continuous* non-convex penalties (relaxations of the ℓ_0 -norm) has been studied for the ℓ_2 - ℓ_0 problem.

Weighted-CEL0 relaxation

We derive a continuous exact relaxation of $G_{w\ell_0}$ by computing its biconjugate functional (applying twice Fenchel conjugation):

$$G_{\mathsf{wCEL0}}(\mathbf{x}) := \frac{1}{2} \frac{\left((\mathbf{A}\mathbf{x})_j - y_j \right)^2}{y_j} + \Phi_{\mathsf{wCEL0}}(\mathbf{x}; \lambda; \mathbf{A}; \mathbf{y}) + i_{\geq 0}(\mathbf{x})$$

 G_{wCEL0} is non-smooth, non-convex but *continuous* \Longrightarrow the associated problem is efficiently solved algorithmically.

(e) wCEL0 (d) CEL0

(h) CEL0 (i) wCEL0 (j) D-S (g) GT

STORM, a deep-learning based model for super-resolution microscopy.

1st-row: (a) ground truth, (b) sum of all the acquisitions, (c) 4th acquired frame. **2nd row**: (d) CEL0 result, (e) wCEL0 result, (f) Deep-STORM result. 3rd row: close-up on a detail.

	J_0	J_2	J_4	CD	FN	FP
CEL0	0.042	0.467	0.552	121	96	3
wCEL0	0.057	0.552	0.659	151	67	14
Deep-STORM	0.025	0.037	0.038	217	1	8157

(f) D-S

Table: Number of Correctly Detected molecules CD, False Negatives FN, False Positives FP for tolerance radius $\delta = 4$. Jaccard index $J_{\delta} \in [0, 1]$ up to tolerance radius $\delta \in \{0, 2, 4\}$, computed as mean over the frames. $J_{\delta} \in [0, 1]$ is the ratio between CD and the sum of CD, FN and FP.

References

S. Gazagnes, E. Soubies and L. Blanc-Féraud, "High density moleculelocalization for

Acknowledgements

ML and LC acknowledge the support of UCA IDEX JEDI. LC acknowledges the support received by UCA IDEX JEDI and by the NoMADS RISE H2020 project 777826.

- super-resolution microscopy using CEL0 based sparse approximation", IEEE ISBI 2017.
- E. Soubies, L. Blanc-Féraud and G. Aubert, "A continuous exact Openalty (CEL0) for least squares regularized problem", SIAM Journal on Imaging Sciences, 2015.
- A. Sawatzky, "(Nonlocal) Total Variation in Medical Imaging", Ph.D.thesis, University of Munster, 2011.
- M. Nikolova, "Description of the minimizers of least squares regularized with ℓ_0 -norm. uniqueness of the global minimizer", SIAM Journal on Imaging Sciences, 2013.

Download the paper here

