Wasserstein distance for document classification

ntroduction " LDA decomposition applied to the ASRS corpus

One of the most common tasks in Natural Lan- The ASRS (Aviation Safety Reporting System) is a reporting system operated by NASA that collects
guage Processing (NLP) is to classify documents anonymous reports about accidents or incidents in the United States, having a potential impact for
according to different criteria. A crucial step in aviation safety. The dataset contains more that 300K reports. We applied the LDA algorithm to a subset
this process is to define a notion of document of this corpus, using 15 for the number of topics.
similarity capable of capturing the information we
would like take into account for the classification. The LDA outputs LDA topics decomposition on the ASRS
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Wasserstein CI'Sta_ Applying the new distance to real dat_

Let @ and b be two 1-Dimension probability distri-

bUtIOnS and M be a dlSta nce matFIX Of n >< n The Cost matrix M (distances between words) Cost matrix M (distances between topics)
Woasserstein distance between a and b is defined
by:
Wap = min > 7i;Mi; /\
’YE T ,] 0 J000 4000 6000 8000 10000 12000 14000 16000 0 2 4 6 8 10 12 14
stAl=a:~ ' T=b;v>1 ﬂ s

We compute the distance using [4] . i
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