Wasserstein distance for document classification

Thierry Klein & Willy Rodríguez

École Nationale de l'Aviation Civile. thierry.klein@math.univ-toulouse.fr; willyrv@gmail.com

Introduction

One of the most common tasks in Natural Language Processing (NLP) is to classify documents according to different criteria. A crucial step in this process is to define a notion of **document similarity** capable of capturing the information we would like take into account for the classification.

LDA decomposition applied to the ASRS corpus

The ASRS (Aviation Safety Reporting System) is a reporting system operated by NASA that collects anonymous reports about accidents or incidents in the United States, having a potential impact for aviation safety. The dataset contains more that 300K reports. We applied the LDA algorithm to a subset of this corpus, using 15 for the number of topics.

The LDA outputs

 θ : Documents representation

K: Number of topics

V: Number of words

n: Number of documents

 β : Topics representation

 β_{11} β_{12} \ldots β_{1V}

 $\beta = \begin{bmatrix} \vdots & \ddots & & \\ \beta_{K1} & \beta_{K2} & \dots & \beta_{KV} \end{bmatrix}$

 $\theta = \begin{bmatrix} \theta_{11} & \theta_{12} & \dots & \theta_{1K} \\ \dots & \ddots & & \dots \\ \theta_{n1} & \theta_{n2} & \dots & \theta_{nK} \end{bmatrix}$

LDA topics decomposition on the ASRS

TOPICS	TOP WORDS	PROPORTION IN THE CORPUS
0	flight, management, officer, arrival, clearance, computer, control, traffic, fix, route	4.12
1	degree, heading, told, officer, turn, zzz, departure, engine, controller, said	2.04
2	damage, fix, aircraft, time, intermediate, pilot, aviation, officer, federal, foreign	3.66
3	aircraft, radar, smt, airport, mile, engine, fix, control, intermediate, falcon	2.85
4	flight, feet, foot, level, traffic, altitude, climb, air, control, rules	17.77
5	aircraft, line, time, zhu, hour, slide, ir, paperwork, flight, sfo	1.92
6	gear, landing, runway, aircraft, nose, approach, did, light, radar, fix	3.2
7	engine, flight, aircraft, landing, crew, captain, information, normal, reference, gate	7.77
8	flight, fuel, aircraft, maintenance, engine, zzz, control, landing, officer, emergency	11.57
9	approach, aircraft, traffic, runway, control, air, feet, turn, tower, visual	18.31
10	speed, airspeed, aircraft, indicated, knots, captain, control, air, emergency, normal	1.69
11	runway, aircraft, tower, ground, taxiway, takeoff, clear, taxi, officer, flight	12.85
12	aircraft, minimum, officer, flight, equipment, list, knot, landing, flying, pilot	4.3
13	rptr, maintenance, flight, aircraft, propeller, minute, information, said, circuit, fix	3.35
14	aircraft, flight, frequency, sector, carrier, air, time, pilot, weather, fix	4.62

Even though it does not give a direct way to compute document similarities, the Latent Dirichlet Allocation (LDA) method [1], is often used to classify texts. In this work we describe a new distance between documents based on LDA, Optimal Transport [4] and Word2Vect [3].

LDA and documents distances

Let β be the topics representation matrix. β_{ij} : probability of the word j appearing in a document of topic i. Shape of β is $K \times V$. K: the number of topics, V: size of the vocabulary. The following distance [2] between topics can be defined:

Two stage Wasserstein distance

First stage: Compute distance between topics using the word embedding

Word Embeddings

$$\xi_{ij} = \sum_{v \in V} \mathbb{I}_{\beta_{iv} \neq 0} \mathbb{I}_{\beta_{jv} \neq 0} |\log(\beta_{iv}) - \log(\beta_{jv})|$$

Also, θ : document representation. θ_{ij} : proportion of words from topic j in document i. Distance between documents based on the differences between the proportion of topics they have in common:

$$\sigma_{ij} = \sum_{k \in K} \mathbb{1}_{\theta_{ik} \neq 0} \mathbb{1}_{\theta_{jk} \neq 0} |\log(\theta_{ik}) - \log(\theta_{jk})|$$

Wasserstein distance

Let a and b be two 1-Dimension probability distributions and M be a distance matrix of $n \times n$. The Wasserstein distance between a and b is defined by:

> $\mathcal{W}_{a,b} = \min_{\gamma \in \mathbb{R}^{n \times n}_{+}} \sum_{i,j} \gamma_{i,j} M_{i,j}$ $s.t.\gamma \mathbb{I} = a; \gamma^T \mathbb{I} = b; \gamma \geq 1$

Applying the new distance to real data

We compute the distance using [4]

References

- Blei, David M and Ng, Andrew Y and Jordan, Michael I, |1| Latent dirichlet allocation, Journal of machine Learning research (2003).
- Chaney, Allison J.B. and Blei, David M., Visualizing |2| Topic Models, Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (2012).
- Tomas Mikolov and Kai Chen and Greg Corrado and |3| Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space, preprint arXiv:1301.3781 (2013).
- Flamary, Rémi and Courty, Nicolas, POT Python Op-[4] *timal Transport library*, https://pythonot.github.io/, (2017).

Acknowledgements: This research is supported by the ENAC Safety Management Chair funded by Airbus.

