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Introduction
We discuss an inspiring use of the links between random processes on graphs and Laplacian-
based numerical algebra:

�Based on random spanning forests, we propose two novel and e�cient Monte Carlo
estimators for smoothing graph signals.

�Moreover, we provide a theoretical analysis on bias and variance of our estimators.

�On the empirical side, these estimators are illustrated in two well-known applications.

Problem Definition
Regularized Regression on Graphs

x̂ = arg min
z∈Rn

q ||y − z||2︸ ︷︷ ︸
Fidelity

+ zTLz︸ ︷︷ ︸
Regularization

, q > 0

where y = (y1, y2, ..., yn) is a graph signal and yi is the measurement from node i.
L denotes the graph Laplacian of the given graph and q sets the trade-o� between
data-�delity and regularization.

The explicit solution to this problem is:

x̂ = Ky with K = (L + qI)−1qI

where I is the identity matrix.

�Direct computation of K requires O(n3) elementary operations due to the inverse.

� For large n, iterative methods and polynomial approximations are the state-of-the-art.
Both compute x̂ in linear time in the number of edges |E|.

Random Spanning Forests on Graphs
For an undirected graph G = (V , E ,W):
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Fig. 1: Original graph, a spanning tree, a rooted spanning tree and a rooted spanning forest

Random Spanning Forests (RSF)

Consider the following parametric distribution over rooted spanning forests:

P (Φq = φ) ∝ q|ρ(φ)|
∏
τ∈φ

∏
(i,j)∈τ

Wi,j

where q is a parameter and ρ(φ) denotes the set of roots in the forest φ. One can
sample from this distribution by a variant of Wilson's algorithm in time O(|E|/q) [1].

A very surprising connection between RSFs and linear algebra appears in the following
simple equation:

P (rΦq
(i) = j) = Ki,j with K = (L + qI)−1qI

where rΦq
(.) returns the root of node i in the spanning forest Φq.

RSF based Estimators
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Fig. 2: An illustration for the estimators

RSF Estimator Formula Expectation Variance

x̃(i) y
[
rΦq

(i)
]

E[x̃(i)] = δiKy
∑
i∈V

Var(x̃(i)) = yT (I− K2)y

x̄(i) 1
|Vt(i)|

∑
j∈Vt(i) yj E[x̄(i)] = δiKy

∑
i∈V

Var(x̄(i)) = yT (K− K2)y

Experiments
Tikhonov denoising of graph signals. We consider an image as a noisy graph signal where
the underlying graph is 2-D grid:
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Fig. 3: Illustration on an image.

SSL for node classi�cation on graphs aims at recovering labels of all nodes with a few
available labels as a priori knowledge. Given labels in yl for class l, the solution [2]
under a smoothness prior regulated by µ > 0 is the classi�cation function fl =
µ

2+µ

(
I− 2

2+µD
−σWDσ−1

)−1

yl = D1−σKDσ−1yl where K = (Q + L)−1 Q and Q = µ
2D.

We run our methods to estimate fl's on a graph with |V| = 3000 and two communities.

Fig. 4: Adjusted Rand Index (ARI) compared on strong (left) and fuzzy (right) communities
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