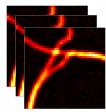
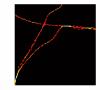
$CO\ell_0RME$

COvariance-based ℓ_0 super-Resolution Microscopy with intensity Estimation

Vasiliki Stergiopoulou, José Henrique de Morais Goulart, Sébastien Schaub, Luca Calatroni, Laure Blanc-Féraud


molecules

Design a sparsity-promoting mathematical model for Super-Resolution in Fluorescence Microscopy.


Features:

- Improved temporal/spatial resolution
- Harmless excitation levels
- Use of standard equipment
- Intensity estimation

 $CO\ell_0RME$

Acquire **short videos** with **high-density** of molecules per frame and use a reconstruction algorithm that codifies the assumption of the **temporal/spatial independence** between emitters and the **sparse distribution** of the fluorescent

Two steps:

*	Non-convex variational problem with a sparsity constraint formulated in the covariance domain
*	Enforce Sparsity: Continuous Exact \mathscr{C}_{0} Relaxation (CEL0) $\Phi_{\text{GELO}}(\mathbf{r}_{\mathbf{x}}; \lambda) = \sum_{i=1}^{L^{2}} \lambda - \frac{\ \mathbf{a}_{i}\ ^{2}}{2} \left((\mathbf{r}_{\mathbf{x}})_{i} - \frac{\sqrt{2\lambda}}{\ \mathbf{a}_{i}\ } \right) \mathbb{1}_{\{ (\mathbf{r}_{\mathbf{x}})_{i} \leq \frac{\sqrt{2\lambda}}{\ \mathbf{a}_{i}\ }\}}, \text{ where } \mathbf{a}_{i} = (\Psi \odot \Psi)_{i}$
*	Estimate intensity, only on the support, and background information
*	Smoothness is promoted on intensity values
	*

$CO\ell_0 RME$: Good localization and reconstruction results!

