MULTIVIEW CANONICAL CORRELATION ANALYSIS

CANONICAL CORRELATION ANALYSIS

- Given N sources, let be a dataset $\{X_m \in \mathbb{R}^{D_m \times N}\}_{m=1}^M$ collected from M= 2 views.
- The <u>goal of CCA</u> is to find lower dimensional $d \ll D_m$ representation of these two views through a linear projection U_1 and U_2 while preserving cross information between two views.

 $[U_1^*, U_2^*] = argmax_{\{U_1, U_2\}}Corr(U_1X_1, U_2X_2)$

- It has been shown that CCA can increase the quality of clustering and various machine learning tasks.
- CCA remains limited because it can only deal with two views and captures linear relationships.
- This original problem leads to various extensions more or less difficult to incorporate :

Multiviews M>2 / Non-linear extension /Awareness of potential geometric structure on sources etc.

• These extensions can be caracterised by some key properties :

	Method	Complexity	Non Linear	>2 views	Graph
[CCA	O(n)	×	×	×

MULTIVIEW CANONICAL CORRELATION ANALYSIS

Multiview Varitional Graph CANONICAL CORRELATION ANALYSIS

- Sources can rely on a graph. Taking care of this graph can improve results but it's increase complexity.
- We propose a probabilistic model based on an existing equivalence between original CCA and a bayesian problem and solved with a variational auto encoders.

•
$$p(X_1, X_2, ..., X_M, A) = \int P(X_1, A|Z) ... P(X_M, A|Z) P(Z) dZ$$

- This model is the only model which deals simultaneously with :
 - M > 2 views,
 - Non linear
 - Accounting for geometric structure
 - Scalable
 - Robust to missing views

$$X_1(:,i),\cdots,X_M(:,i))$$
 $(X_1(:,j),\cdots,X_M(:,j))$

