Weighted-CEL0 sparse regularisation for molecule localisation in Super-Resolution microscopy with Poisson data

Marta Lazzaretti Joint work with Luca Calatroni and Claudio Estatico

Université Côte d'Azur Università degli Studi di Genova

RESEARCH SCHOOL Mathematics, Signal Processing and Learning CIRM, Luminy, Marseille 25 - 29 January 2021

Single Molecule Localisation Microscopy

Light diffraction phenomena limits the spatial resolution.

SMLM idea: sequential activation/deactivation of molecules ⇒ **stack**.

Final reconstructed image=sum of singular frame reconstruction.

Weighted-CEL0 sparse regularisation

Sparsity-promoting weighted $\ell_2 - \ell_0$ -type model, accounting for signal-dependent Poisson noise in SMLM data:

SMLM data:
$$x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^{ML \times ML}} \sum_{j=1}^{M^2} \frac{1}{2} \frac{\left((Ax)_j - y_j \right)^2}{y_j} + \lambda \|x\|_0$$
 0.1

0.9

0.8

Continuous non-convex relaxation of the ℓ_0 -norm: weighted-CELO penalty

$$\boldsymbol{x}^* \in \operatorname*{arg\,min}_{\boldsymbol{x} \in \mathbb{R}^{ML \times ML}} \sum_{j=1}^{M^2} \frac{1}{2} \frac{\left((\boldsymbol{A} \boldsymbol{x})_j - \boldsymbol{y}_j \right)^2}{\boldsymbol{y}_j} + \boldsymbol{\Phi}_{W\!C\!E\!L\!0}\!\!\left(\boldsymbol{x}, \boldsymbol{\lambda}, \!\! \boldsymbol{A}, \!\! \boldsymbol{y} \right)$$

 Φ_{WCEL0} depends on the degradation matrix A and on the observed data y