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- musical instrument recognition
« query by example

- automated transcription

rely on the characterization of musical notes.




NATURAL REGULARITY ALONG TIME

The physics of player-instrument interaction
brings regularity in gestures:




GOAL

The TFR reveals short-term regularity (~50 ms).

Goal: to build a meaningful decomposition such that
musical notes are regular (~500 ms).
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TEMPLATE-BASED METHODS

- Hard constraints, e.g. Markovian.
- see Kereliuk & Depalle (2008) on partial tracking.

- useful for fine-grain audio effects...
... but exposed to low-level detection errors.

- Loose constraints, e.g. Bayesian.
- see Fuentes et al. (2013) on harmonic PLCA.
- encompasses a broad range of meaningful priors...
... but timbral regularity remains challenging.



TEMPLATE-FREE APPROACHES

- In fact, most tasks do not require rigid templates.
- We advocate a progressive decomposition instead.

- ConvNets perform a data-driven decomposition,
but they need a large annotated training set.

- We design a nonlinear scattering transform with
- regularity
- time-frequency localization
- sparsity
iIn mind.



1. Nonstationary source-filter model

2. Leveraging harmonicity

3. Applications to classification and reconstruction



1. Nonstationary source-filter model




HARMONIC SOURCE

We define the harmonic source as a Dirac pulse train.
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FILTER

We define the filter as a regular spectral envelope.

log w




STATIONARY SOURCE-FILTER MODEL

The stationary source-filter model is
r(t) = lex hl(t) i.e. T(w) = [é X h](w)

We neglect these in
this st
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DEFORMATIONS

Let O(t) € C° be a time warp function.
A(t) > 0 is the fundamental frequency of

eo(t) = (e 0 0)(2).
v(t) > 0 is the position of the formant (spectral peak)

h,(t) = (hov)(t).

The nonstationary source-filter model is defined as
To.,(t) = leg * h,](2).



EXAMPLE 1 : TROMBONE GLISSANDO




EXAMPLE 2 : TROMBONE CRESCENDO




A TIME-FREQUENCY PERSPECTIVE

We need a time-frequency representation that is
1. localized enough in time

(a) to have 4(t) approximately constant,

(b) to have ©(t) approximately constant,

2. localized enough in frequency
(a) to distinguish the first peaks of é(w),

(b) to have /1(w) approximately constant.

We will use a constant-Q filter bank of wavelets.



ANALYTIC WAVELETS

Wavelets are oscillating, localized filters.

By dilating a mother wavelet w(t), we trade
frequency resolution for time resolution.

VA1, YA, (1) = AMYp(Art)

Analyticity property: Vw < 0, @(w) — 0.
Complex modulus improves regularity.




WAVELET FILTER BANK
X1

Q"\

In base 2: log \; = 41 A

number of filters per octave

where the integer part j; is the octave index
and x1 €{0...(Q — 1)} is the chroma.
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WAVELET RIDGE THEOREM

by Delprat, Escudié, Guillemain, Kronland-Martinet,
Torrésani, and Tchamitchian (1992).

Let f(t) = a(t) cosO(t) and ¥y, (t) = Aig(Ait) exp(ilit).
[f * ¢A1](t) .
— a(t) exp(i(0(t) — \t)) x (g (1 9;?) + e(t, )\1))

The corrective term £(t, A1) is small if

. amplitude modulation is slow: ||a/al|Z., ||d/allcc < A7,
. frequency modulation is slow: |||, < A\?, and

» (t, A1) is near aridge: 9(¢) =~ \;.




FACTORIZATION IN THE SCALOGRAM

For () between 12 and 24, we have

|339,1/ * ¢>\1| — ?7;)‘1 <k9(t)) h <V)Ei)>

where k is such that \; ~ k6(t).
In log-frequency and after logarithmic compression:

def
Ujzg,(t,log A1) ="log|zg , * ]

= Uje(log A1 — log 0(t)) + Uqph(log Ay — log (t))
—_— N~

translated source translated filter



2. Leveraging harmonicity

Shepard (1964).
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HARMONICITY PROPERTY

The harmonic comb is self-similar:
é(w) = é(2w) forall w>1land j€N.

Regularity across octaves for a given chroma:
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SPECTRAL SMOOTHNESS PROPERTY

The spectral envelope is regular across semitones:

dlog |h|  Olog|é]
Ow < Ow

Regularity along chromas within an octave:




PARTIAL DERIVATIVE ALONG TIME

By linearity and chain rule formula:

aIJ-leH,V
ot

(t, lOg )\1)
(9(?5) C.Ule
Q(t) d(Og )\1)

V(t) CUlh
(t) d(log A1)

(log A\, — log 6(t))

(log A1 — log (1)),



PARTIAL DERIVATIVE ALONG CHROMAS

By linearity:
aleel/ (f_Ule :
—(t,log A1) = — log A1 — log 0(t
a(log)\1>( Y Og 1) d(Og)\l)(Og 1 Og ())
dU1h
| log A1 — logv(t
d(lOg)\l)(Og 1 Ogy( ))
N —— —_—

—_—

neglected because of
spectral smoothness



PARTIAL DERIVATIVE ACROSS OCTAVES

By linearity:

AUqzp , AU;e '

—(t,log A1) = log Ay — log 0(t
Al (t,log A1) Ay (log A1 og 0(t))
— ——

neglected because of

harmonicity
AUk

| 1 _logt
A (log A1 — log (1)).



OPTICAL FLOW EQUATION

U,z behaves like an object in rigid motion,
hence an optical flow equation in ¢, log A1, and 7.

OU1zg,, 6’(t) (3’U T
—(t,log A1) = 10 t,log A\
V(t) AUl.I‘QV
-~ —— (¢, log A1),
v(t)  Aja ( 8 M)

(- Motion in (log A1, j1) is best expressed on a spiral:
W/~ the chroma is angular, the octave is radial.
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SHEPARD-RISSET HELIX

Two continuous paths from C2 to C3
. « staircase » : chirp

. « |ift » : attenuation of odd-
numbered partials

Fig. from Shepard (1964).

We replace the 3D helix by a 2D spiral.
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ROTATING MOTION IN THE SPIRAL

A chirp has a rotating motion in the spiral.




RADIAL MOTION IN THE SPIRAL

A formantic change has a radial motion in the spiral.




TWO DEGREES OF FREEDOM

AV

N\ ' 7 . . . .
O_ Musical transients are not regular in time-frequency...
=/~ ... butin time-chroma-octave.




3. Spiral scattering




SPIRAL WAVELETS

Accepted at GRETSI 2015 with Stéphane Mallat:
Transformée de scattering en spirale temps-chroma-octave.

Wia,8,7)(t) = Ya(t) X Ps(log A1) X 1., ([log A1 ])




FREQUENCIES VS. QUEFRENCIES

Wia,5,)(t) = a(t) x g(log A1) X 1 ([log A1),

- (¢ is a modulation frequency along time, in Hertz.

a~ L is typically between 1 ms and 100 ms.

. 3 is a « quefrency » along chromas, in cycles per octaves.
|37t is typically between 1 semitone and 1 octave.

~ is a quefrency across octaves, in cycles per octaves.
|v_1\ Is typically between 1 and 4 octaves.

We define the multiindex frequency variable Ao = (v, 5, 7).
By convention, log As = (log o, log 3, sign 3, log v, sign ).



SCATTERING CASCADE

Wavelet filter banks scatter the energy from U, to U, 1.
Complex modulus improves regularity and phase invariance.

t
Usz(t,log A1) = |z x 1y, |(2)
Uz.fl?(t, lOg )\1, lOg )\2) = |U1£IZ‘ 0 \If)\Q‘(t, lOg )\1)

multivariable convolution

A lowpass filter ¢(t) enforces the amount of
translation invariance that is required by the classification task.

S,2(t,log \) = Uyz % ¢
Sox(t,log A1) = Usz # ¢



SOURCE-FILTER PROPERTIES

- Vanishing moment property:
Convolving a wavelet with a linear function yields almost zero.

- Harmonicity and spectral smoothness rewrite as

Ulegzkl w,y — () and ‘Ulhy >§l<1 @Dﬁ‘%@

 The spiral scattering transform boils down to

t,X1,J1
Uizg, & W,

(Uleg B wﬁ) « (Ulhy - ¢7> Y




SPIRAL WAVELET RIDGES

- Applying the wavelet ridge theorem three times yields:

t,X1,J1
lee,y B

W,

_ |U169 X ¢5| Uih, % o,

- Ridges are on a plane whose Cartesian equation is

8%

- The same holds for averaged coefficients Sa2xy ., over 1’ if
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SPATIAL LOCALIZATION OF RIDGES

Below:

Uqx of the word « lion ».
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(v, B,7) LOCALIZATION OF RIDGES

Top: p log Ay
U, of atrombone note. L aj_f—>f6_r:l
— — 1 (b) 1
(a) attack part with e i
. o |
upwards glissando - = !
]
— | rl— ———
(b) release part with iﬁ-ﬁi——q:-:-p:
downwards glissando. - T —
u = - /
. b
Bottom: Usx slices for 4! (b)
. I
.o~ =46 ms 5

. fixed ¢ and log A;.




PHONEME CLASSIFICATION

Submitted to MLSP 2015 with Joakim Andén and Stéphane Mallat:
Joint Time-frequency Scattering for Audio Classification.

Phoneme error rate on the TIMIT dataset [Fisher et al. 1986].
MFCC and SVM 18,3 %

MFCC and GMM commitee

[Chang & Glass, 2007] 16.7%
« scattering and SVM 17,3 %
(v, B) scattering and SVM 15,8 %

(v, B,7y) scattering coming next



INVARIANT RECONSTRUCTION

Problem:
« find a translation-invariant representation that

allows the most plausible signal reconstruction ».

Given a target S°° = (S7{°,S5°), the gradient descent
AUla;' — ASlx i QE

U \ _
+R Z( 17 ® P, XAU2x>®\P>\2 .

\ ‘U1I®\If)\2‘
- 2 -

converges to a local minimum of the loss function

E(z) = [|S17 — 8772 + [[S2z — 857|2.
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CONCLUSIONS

Natural sounds are nonstationary, but physically regular.

In the pitch spiral, source-filter transients become translations.
Spiral scattering yields source-filter velocities without detection.

Encouraging results in classification and invariant reconstruction.

Experiments can be reproduced at:
www.github.com/lostanlen/




