

Probabilistic modeling of non-stationary signals in time-frequency domain Application to music signals

Roland Badeau Télécom ParisTech / CNRS LTCI

Currently visiting the CIRMMT McGill University, Montreal

June 19, 2015

Journée "Temps-Fréquence et Non-Stationnarité"

Roland Badeau

Page 1 / 56

Part I

Introduction

June 19, 2015

Roland Badeau

≣⇒

Musical score

□ ▶ < 큔 ▶ ▲ 글 ▶ ▲ 글 ▶ 의 의 아이아 Page 3 / 56 Roland Badeau J June 19, 2015

Non-negative Matrix Factorization (NMF)

Musical score

Spectrogram V

June 19, 2015

00110 10, 20

Page 3 / 56 F

Roland Badeau

Non-negative Matrix Factorization (NMF)

June 19, 2015

ELEC

Page 3 / 56

Non-negative Matrix Factorization

- Factorization of a matrix $\boldsymbol{V} \in \mathbb{R}_{+}^{F \times T}$ as a product $\boldsymbol{V} \approx \boldsymbol{W} \boldsymbol{H}$
- Rank reduction: $\boldsymbol{W} \in \mathbb{R}^{F \times S}_+$ and $\boldsymbol{H} \in \mathbb{R}^{S \times T}_+$ where $S < \min(F, T)$
- Usual applications:

Page 4 / 56

- Image analysis, data mining, spectroscopy, finance, etc.
- Audio signal processing:
 - Multi-pitch estimation, onset detection
 - Automatic music transcription
 - Musical instrument recognition
 - Source separation
 - Audio inpainting

Roland Badeau

June 19, 2015

MMF-based automatic transcription

Algorithm

N. Bertin, R. Badeau, and E. Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Nonnegative Matrix Factorization Applied to Polyphonic Music Transcription". *IEEE Trans. on Audio, Speech, and Lang. Proc.*, 18(3): 538–549, Mar 2010.

Score-based informed source separation

Round Midnight (Thelonious Monk): 4 4

R. Hennequin, B. David, and R. Badeau. "Score informed audio source separation using a parametric model of non-negative spectrogram". In *ICASSP*, May 2011.

Watermarking-informed source separation

A. Liutkus, R. Badeau, and G. Richard. "Informed source separation using multichannel NMF". In *LVA/ICA*, Sep 2010.

MMF probabilistic models

- Mixture models with (hidden) latent variables
 - + can exploit a priori knowledge
 - + can use well-known statistical inference techniques
- Probabilistic models of time-frequency distributions:
 - Magnitude-only models (phase is ignored)
 - Additive Gaussian noise [Schmidt, 2008],
 - Probabilistic Latent Component Analysis [Smaragdis, 2006],
 - Mixture of Poisson components [Virtanen, 2008],
 - Phase-aware models (theoretical ground for Wiener filtering)
 - Mixture of Gaussian components [Févotte, 2009],
 - Mixture of alpha-stable components [Liutkus & Badeau, 2015]

[1] A. Liutkus, R. Badeau, "Generalized Wiener filtering with fractional power spectrograms," in *ICASSP*, Apr 2015, pp. 266–270.

Gaussian model [Févotte, 2009]

all time-frequency bins are independent

Baussian model [Févotte, 2009]

all time-frequency bins are independent

Page 9 / 56

Roland Badeau

Gaussian model [Févotte, 2009]

副選び Review of Itakura-Saito NMF (IS-NMF)

- Estimation of **W** and **H**:
 - The maximum likelihood estimate is obtained by minimizing the IS divergence between the spectrogram $V = |Y|^2$ and \hat{V}
 - Methods: multiplicative update rules or SAGE algorithm
- Advantages of IS-NMF:
 - The MMSE estimation of $x_s(f, t)$ leads to Wiener filtering
 - The existence of phases is taken into account
- Drawbacks of IS-NMF:

Roland Badeau

- $x_s(f, t)$ for all s, f, t are assumed uncorrelated
- The values of phases in the STFT matrix Y are ignored

- Can we design time-frequency (TF) transforms such that the assumption of uncorrelated TF bins is best satisfied?
- For which class of stochastic processes can this assumption be satisfied? (TF bins of sinusoidal and impulse signals will always be correlated anyway)
- For stochastic processes whose TF correlations cannot be withdrawn, is it possible to extend the IS-NMF model in order to best take these correlations into account?
- What kind of improvement can we expect from modeling these correlations in applications such as source separation and audio inpainting?

Part II

Designing appropriate TF transforms

June 19, 2015

Page 12 / 56 Ro

⊒ >

Roland Badeau

Preservation of whiteness (PW)

Figure: TF transform of a (proper complex) white noise

副選び Preservation of whiteness (PW)

Figure: TF transform of a (proper complex) white noise

June 19, 2015

Journée "Temps-Fréquence et Non-Stationnarité"

Page 13 / 56

Roland Badeau

図 Preservation of whiteness (PW)

Figure: Complex TF transform of a real white noise

Journée "Temps-Fréquence et Non-Stationnarité"

Page 14 / 56

Roland Badeau

Roland Badeau

Figure: TF transform of a time series

June 19, 2015

Journée "Temps-Fréquence et Non-Stationnarité"

Page 15 / 56

Figure: Perfect reconstruction filter bank

June 19, 2015

Journée "Temps-Fréquence et Non-Stationnarité"

Page 15 / 56

Roland Badeau

Roland Badeau

Figure: Critically sampled paraunitary filter banks: $R(z) = \tilde{E}(z)$

June 19, 2015

Journée "Temps-Fréquence et Non-Stationnarité"

Page 16 / 56

警務部間Examples of solutions

Real TF transform of real signals: MDCT filter banks

$$X_{f,t} = \sum_{n \in \mathbb{Z}} w_n x_{Ft-n} \cos\left(\frac{\pi}{F}\left(f + \frac{1}{2}\right)\left(n + \frac{F+1}{2}\right)\right)$$

Complex TF transform of complex signals: PR critically decimated GDFT filter banks with matched analysis and synthesis filters:

$$X_{f,t} = \sum_{n \in \mathbb{Z}} w_n x_{Ft-n} \exp\left(+\frac{i2\pi}{F}(f+\phi)(n+\tau)\right)$$

• Complex TF transform of real signals: same **GDFT filter banks**, with F even and $\phi = \frac{1}{2}$

TF transform of uncorrelated time samples

Page 18 / 56

Roland Badeau Journée "Temps-Fréquence et Non-Stationnarité"

TF transform of uncorrelated time samples

Figure: TF transform of uncorrelated time samples with slowly varying power

TF transform of a WSS process

Figure: TF transform of a WSS process with high stop-band rejection

・ (御) (言) (言)	₹ <i>•</i> १ ९ ९	June 19, 2015	TELECOM
Page 20 / 56 Rola	and Badeau	Journée "Temps-Fréquence et Non-Stationnarité"	ParisTech

TF transform of a WSS process

TF transform of a nonstationary process

Advantages of whiteness-preserving TF transforms:

- The assumption of uncorrelated TF bins holds approximately for a wide range of nonstationary signals with smooth TF density.
- No need to care for the *consistency* of the TF transform, since it is bijective (no redundancy in the TF domain).
- Preliminary results, in a source separation application involving NMF modeling and Wiener filtering, showed no performance loss when using an MDCT instead of an STFT with 75% overlap

Drawbacks:

- Designing paraunitary STFT filter banks is constrained: solutions involve non-overlapping rectangular windows or recursive filters.
- The assumption of uncorrelated TF bins does not hold for sinusoids and impulses: such correlations still need to be properly modeled.

Part III

Modeling correlations in the TF domain

June 19, 2015

Page 24 / 56

Roland Badeau

副選擇的 Linear convolutive mixtures modeling

國務部Convolution in TF domain

Roland Badeau

- **Purpose**: implement y(n) = (g * x)(n) in TF domain
- Standard approach: column-wise multiplication of the STFT x(f, t) by the frequency response $c_g(f)$ of filter g(n)

Advantage: y(f, t) are uncorrelated if x(f, t) are uncorrelated

Drawbacks: Approximation, holds if g(n) is much shorter than time frames (unrealistic). Approach restricted to the STFT.

June 19, 2015

一 送 認Convolution in TF domain

- **Purpose**: implement y(n) = (g * x)(n) in TF domain
- Problem: find transformation T_{TF} in Figure 1 such that the output is y(n) when the input is x(n)

Fig. 1: Applying a TF transformation to a TD signal

Self Convolution in TF domain

Solution: T_{TF} is represented in the larger frame in Figure 2, where the input is x(f, t), the output is y(f, t), and T_{TD} is the convolution by g(n)

Fig. 2: Applying a TD transformation to TF data

ARMA parametrisation: if g(n) is a causal and stable recursive (ARMA) filter then $c_g(f, \varphi, \tau)$ can be parametrised as

$$\forall \varphi, \tau, f, a_g(f - \varphi, \tau) *_{\tau} c_g(f, \varphi, \tau) = b_g(f, \varphi, \tau)$$

[2] R. Badeau and M.D. Plumbley, "Probabilistic Time-Frequency Source-Filter Decomposition of Non-Stationary Signals," in *EUSIPCO*, Sep 2013.

新聞 Time-domain mixing model

Example of a stereophonic setting (M = 2)

June 19, 2015

✓ ☐ ►
Page 30 / 56

Multichannel HR-NMF model

- The TF transforms of the source signals $x_s(f, t)$ follow a regular IS-NMF model: $x_s(f, t) \sim \mathcal{N}(0, \sum_k w_{fk}^s h_{kt}^s)$
- ARMA filtering is implemented via a state-space representation: $z_{s}(f,t) = x_{s}(f,t) \sum_{\tau=1}^{Q_{a}} a_{s}(f,\tau) z_{s}(f,t-\tau)$ $y_{ms}(f,t) = \sum_{\varphi=-P_{b}}^{P_{b}} \sum_{\tau=0}^{Q_{b}} b_{ms}(f,\varphi,\tau) z_{s}(f-\varphi,t-\tau)$ Output: $y_{m}(f,t) = n_{m}(f,t) + \sum_{s=0}^{S-1} y_{ms}(f,t) \text{ with } n_{m}(f,t) \sim \mathcal{N}(0,\sigma_{n}^{2})$

[3] R. Badeau and M.D. Plumbley, "Multichannel high resolution NMF for modelling convolutive mixtures of non-stationary signals in the time-frequency domain" in *IEEE Trans. Audio, Speech, Lang. Proc.*, vol. 22, no. 11, Nov 2014, pp. 1670–1680.

Dependency graph in the TF domain

June 19, 2015

The HRNMF model encompasses:

- Multichanel NMF [Ozerov & Févotte, 2010] (if Q_a = Q_b = P_b = 0)
- ARMA processes (if K = 1 and h_{kt}^s is flat)

 $h_{kt\uparrow}^{s}$

Mixtures of damped sinusoids (if K = 1 and h_{kt}^s is an impulse)

 Page 33 / 56
 Roland Badeau
 Journée "Temps-Fréquence et Non-Stationnarité"
 The Page 33 / 56

部務部Estimation of HR-NMF

Various approaches (initially developed for the mono M = 1 case)

- **EM algorithm** with Kalman filtering [Badeau, 2011]: slow convergence, high computational complexity
- Multiplicative updates [Badeau & Ozerov, 2013]: fast convergence but numerical stability issues
- Variational EM algorithm [Badeau & Drémeau, 2013] : low computational complexity

[4] R. Badeau, "Gaussian modeling of mixtures of non-stationary signals in the time-frequency domain (HR-NMF)," in *WASPAA*, Oct 2011, pp. 253–256.

[5] R. Badeau and A. Ozerov, "Multiplicative updates for modeling mixtures of non-stationary signals in the time-frequency domain," in *EUSIPCO*, Sep 2013.

[6] R. Badeau and A. Drémeau, "Variational Bayesian EM algorithm for modeling mixtures of nonstationary signals in the time-frequency domain (HR-NMF)," in *ICASSP*, May 2013.

Goal: estimate the parameter θ of a probabilistic model involving observations y and latent variables z

Idea: p(z|y; θ) is approximated by a distribution q Decomposition of log-likelihood L(θ) = ln(p(y; θ)):

 $L(\theta) = D_{\mathsf{KL}}(q||p(z|y; \theta)) + \mathcal{L}(q; \theta)$, where

•
$$D_{\mathsf{KL}}(q||p(z|y;\theta)) = \left\langle \ln\left(\frac{q(z)}{p(z|y;\theta)}\right) \right\rangle_q$$
 (KL divergence)

•
$$\mathcal{L}(q; \theta) = \left\langle \ln\left(\frac{p(y, z; \theta)}{q(z)}\right) \right\rangle_q$$
 (variational free energy)

Since $D_{\text{KL}} \geq 0$, $\mathcal{L}(q; \theta)$ is a lower bound of $L(\theta)$

• **Method**: maximize $\mathcal{L}(q; \theta)$: at each iteration *i*,

- E-step (update q): $q^* = \operatorname{argmax} \mathcal{L}(q; \theta_{i-1})$
- M-step (update θ): $\theta_i = \operatorname{argmax} \mathcal{L}(q^*; \theta)$

June 19, 2015

Variational EM for multichannel HR-NMF

- **Parameters:** $\theta = \{a_s(f, \tau), b_{ms}(f, \varphi, \tau), \sigma_n^2, w_{fk}^s, h_{kt}^s)\}$
- Mean field approximation: $q(z) = \prod_{s,f,t} q_{sft}(z_s(f,t))$
- Complexity: 4MSFT(1+2P_b)(1 + max(Q_b, Q_a)) (linear w.r.t. all model dimensions)
- Parallel implementation
- Application to real audio data:
 - Always converges to a relevant solution when S = 1
 - Needs proper initialization or semi-supervised learning when S > 1

[3] R. Badeau and M.D. Plumbley, "Multichannel high resolution NMF for modelling convolutive mixtures of non-stationary signals in the time-frequency domain" in *IEEE Trans. Audio, Speech, Lang. Proc.*, vol. 22, no. 11, Nov 2014, pp. 1670–1680.

Part IV

Application to piano sounds

June 19, 2015

Page 37 / 56

Roland Badeau

⊒ >

Application to piano tones

Spectrogram of the original mixture signal

Spectrogram of the input piano sound (C4 + C3) \P ($\mathbb{F} = \mathbb{C}, S = 2, M = 1, F_s = 8600$ kHz)

 ▲ □ ▷ ◀ ♂ ▷ ◀ 薓 ▷ 浸 ♡ Q (
 June 19, 2015
 TELE

 Page 38 / 56
 Roland Badeau
 Journée "Temps-Fréquence et Non-Stationnarité"
 Tele

Separation of two sinusoidal components (real parts of STFT subband signals)

Audio inpainting (mono)

Spectrogram of the input piano sound (C4 + C3)

副選翻 Audio inpainting (mono)

Masked spectrogram of the input piano sound

Manual Audio inpainting (mono)

Recovery of the full C4 piano tone

June 19, 2015

副 ジ の の Audio inpainting (stereo)

Roland Badeau

▲ 御 ▶ → ▲ 国

Page 41 / 56

Input stereo piano MDCT $y_m(f, t)$ ($\mathbb{F} = \mathbb{R}, S = 1, M = 2, F_s = 11$ kHz)

Journée "Temps-Fréquence et Non-Stationnarité"

June 19, 2015

ELEC Paris

Audio inpainting (stereo)

Stereo image $\hat{y}_{ms}(f, t)$ estimated with $Q_a = Q_b = P_b = 0$

June 19, 2015

TELECOM ParisTech

Journée "Temps-Fréquence et Non-Stationnarité"

✓ ☐ ►
Page 42 / 56

Roland Badeau

Audio inpainting (stereo)

Stereo image $\hat{y}_{ms}(f, t)$ estimated with $Q_a = 2$, $Q_b = 3$, $P_b = 1$

June 19, 2015

Page 43 / 56

Roland Badeau

≣⇒

- Able to accurately represent multichannel, underdetermined mixtures of sound sources in presence of reverberation
- Achieved via an accurate TF implementation of ARMA filtering
- Compatible with any filter bank (either real or complex)
- Accounts for phases and correlations over time and frequency
- Able to separate overlapping sinusoids within the same frequency band (high spectral resolution)
- Able to restore missing observations (synthesis capability)

Part V

Source separation benchmark

Page 45 / 56

Roland Badeau

⊒ >

Source separation benchmark

Benchmark of several NMF-based methods involving phase recovery:

- **NMF-Wiener**: Wiener filtering with NMF models of spectrograms
- Phase reconstruction based on spectrogram consistency:
 - NMF-GL: NMF models with GL algorithm [Griffin & Lim, 1984]
 - NMF-LR: NMF models with LR algorithm [Leroux, 2008]
- Complex NMF (CNMF) estimation of the STFTs of the sources:
 - CNMF: without any phase constraint [Kameoka, 2009]
 - CNMF-LR: with consistency phase constraints [Leroux, 2009]
- HR-NMF (with a reduced frequency resolution in order to compensate for the extra ARMA parameters)

[7] P. Magron, R. Badeau, B. David, "Phase recovery in NMF for audio source separation: an insightful benchmark," in *ICASSP*, Apr 2015, pp. 81–85.

Source separation benchmark

Datasets:

- Synthetic mixtures of two harmonic signals with additive white noise
- Piano notes mixtures from the MAPS database [Emiya, 2010]
- MIDI audio excerpt (bass and guitar)
- Blind vs. Oracle approaches:
 - Blind: model parameters are estimated from the mixtures
 - Oracle: model parameters are learned from the isolated sources
- Evaluation criteria: BSS EVAL Toolbox [Vincent, 2006]
 - SDR: Source to Distortion Ratio
 - SIR: Source to Interference Ratio
 - SAR: Source to Artifact Ratio

Synthetic mixtures of two harmonic signals Synthetic mixtures of two harmonic signals

June 19, 2015

Page 48 / 56

June 19, 2015

Page 49 / 56

June 19, 2015

Page 50 / 56

Mix	NMF-Wiener	HRNMF
Bass		
Guitar		
Keyboard		

June 19, 2015

Page 51 / 56

Roland Badeau

- Spectrogram consistency may not be relevant for audio quality
- Oracle results show the potential of the HR-NMF model in source separation applications
- Blind results show the difficulty of estimating this model without a proper initialization
- Solutions could involve:
 - Semi-supervised learning,
 - A priori information (harmonicity, smoothness, sparsity...),
 - New estimation methods (MCMC, belief propagation, high resolution methods,...)

Part VI

Conclusion

June 19, 2015

Page 53 / 56

Roland Badeau

≣⇒

Take-home message:

- Possibility of designing TF transforms that better fit the assumption of uncorrelated TF bins
- Importance of modeling phases and correlations in the TF domain
- Outlooks of the HRNMF model:
 - Introduce high temporal resolution (to model sharp transients)
 - 2D linear prediction of TF state $z_s(f, t)$ (to model vibrato, chirps)
 - Correlations between components (to model sympathetic vibration)
 - Non-stationary filters (to model attack-decay-sustain-release)
- Applications:
 - Source coding, source separation, audio inpainting...

Thank you!

June 19, 2015

Bibliography

- A. Liutkus and R. Badeau, "Generalized wiener filtering with fractional power spectrograms," in *ICASSP*, Apr. 2015, pp. 266–270.
- R. Badeau and M. D. Plumbley, "Probabilistic time-frequency source-filter decomposition of non-stationary signals," in *EUSIPCO*, Sep. 2013.
 - —, "Multichannel high resolution NMF for modelling convolutive mixtures of non-stationary signals in the time-frequency domain," *IEEE Trans. Audio, Speech, Lang. Process.*, vol. 22, no. 11, Nov. 2014, 1670–1680.
- R. Badeau, "Gaussian modeling of mixtures of non-stationary signals in the time-frequency domain (HR-NMF)," in WASPAA, Oct. 2011, pp. 253–256.

- R. Badeau and A. Ozerov, "Multiplicative updates for modeling mixtures of non-stationary signals in the time-frequency domain," in *EUSIPCO*, Sep. 2013.
- R. Badeau and A. Drémeau, "Variational Bayesian EM algorithm for modeling mixtures of non-stationary signals in the time-frequency domain (HR-NMF)," in *ICASSP*, May 2013, pp. 6171–6175.
- P. Magron, R. Badeau, and B. David, "Phase recovery in NMF for audio source separation: an insightful benchmark," in *ICASSP*, Apr. 2015, pp. 81–85.

TELECOM ParisTech

