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Musical score

ﬁﬁﬁel Non-negative Matrix Factorization (NMF)
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ﬁﬁiﬁel Non-negative Matrix Factorization (NMF)
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ﬁﬁﬁel Non-negative Matrix Factorization (NMF)
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28 Non- -negative Matrix Factorization

® Factorization of a matrix V € RF*7 as a product V ~ W H

® Rank reduction: W € Rf*S and H € R$*" where S < min(F, T)

®m Usual applications:

= Image analysis, data mining, spectroscopy, finance, etc.
= Audio signal processing:
— Multi-pitch estimation, onset detection
— Automatic music transcription
Musical instrument recognition
Source separation
Audio inpainting
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ﬁﬁmi NMF-based automatic transcription

m Algorithm
w
Estimation of
MIDI pitch
Input ) Time-frequency L] Nonnegative Transcriotion > MIDI
signal representation decomposition P file
Detection of the attacks
and ends of notes
H
® Demo

» Original signal (Liszt): ¥
= Transcribed signal: ¢

negative Matrix Factorization Applied to Polyphonic Music Transcription". |EEE Trans. on Audio,

N. Bertin, R. Badeau, and E. Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Non-
Speech, and Lang. Proc., 18(3): 538-549, Mar 2010. J
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ﬁﬁgﬁ“ Score-based informed source separation

®m Algorithm

notes MIDI
T

ndes)

= Round Midnight (Thelonious Monk): € € ¢ «

R. Hennequin, B. David, and R. Badeau. "Score informed audio source separation using a para-
metric model of non-negative spectrogram”. In ICASSP, May 2011. J
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—hedFi | Watermarking-informed source separation
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® Mix Tape (Jim's Big Ego): @ ¥ @ @

A. Liutkus, R. Badeau, and G. Richard. "Informed source separation using multichannel NMF".
In LVA/ICA, Sep 2010. J
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i 28 (70 NMF probabilistic models

® Mixture models with (hidden) latent variables
+ can exploit a priori knowledge
+ can use well-known statistical inference techniques
® Probabilistic models of time-frequency distributions:
= Magnitude-only models (phase is ignored)
— Additive Gaussian noise [Schmidt, 2008],
— Probabilistic Latent Component Analysis [Smaragdis, 2006],
— Mixture of Poisson components [Virtanen, 2008],
= Phase-aware models (theoretical ground for Wiener filtering)
— Mixture of Gaussian components [Févotte, 2009],
— Mixture of alpha-stable components [Liutkus & Badeau, 2015]

[1] A. Liutkus, R. Badeau, "Generalized Wiener filtering with fractional power spectrograms," in
ICASSP, Apr 2015, pp. 266—270. J
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ﬁggﬁ“ Gaussian model [Févotte, 2009]
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xs(f, 1)

Xs

ﬁggﬁ“ Gaussian model [Févotte, 2009]
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ﬁggﬁ“ Gaussian model [Févotte, 2009]

het
all time-frequency
xs(f, 1) ~ N\oO, s |02 (f, 1) = Wi ht bins are independent
Xs VS
v het
max L(Y)
H
¢
S—1 st N
y(f,t)= > xs(f,t)| ~ AN \0, | Wy h=> o,z(s(f, t) min Dig(V = |Y)3| V)
s=0 s=0
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il 28Tl Review of Itakura-Saito NMF (IS-NMF)

B Estimation of W and H:
= The maximum likelihood estimate is obtained by minimizing the IS
divergence between the spectrogram V = |Y|2 and V
= Methods: multiplicative update rules or SAGE algorithm
®m Advantages of IS-NMF:
* The MMSE estimation of x;(f, t) leads to Wiener filtering
= The existence of phases is taken into account
® Drawbacks of IS-NMF:

= xs(f,t) for all s, f, t are assumed uncorrelated
* The values of phases in the STFT matrix Y are ignored
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ﬁﬁim‘l Questions

B Can we design time-frequency (TF) transforms such that the
assumption of uncorrelated TF bins is best satisfied?

® For which class of stochastic processes can this assumption be
satisfied? (TF bins of sinusoidal and impulse signals will always
be correlated anyway)

B For stochastic processes whose TF correlations cannot be
withdrawn, is it possible to extend the IS-NMF model in order to
best take these correlations into account?

B What kind of improvement can we expect from modeling these
correlations in applications such as source separation and audio
inpainting?
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Part Il

Designing appropriate TF transforms
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ﬁﬁmi Preservation of whiteness (PW)
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ﬁﬁmi Preservation of whiteness (PW)
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ﬁﬁmi Preservation of whiteness (PW)
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ﬁﬁgﬁ“ Perfect reconstruction (PR)
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Figure: TF transform of a time series
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ﬁﬁmi Perfect reconstruction (PR)

Input
signal

Page 15 / 56

Frequency
-~ 00 -0 0 -
Filter | @ @ - @ @  — Filter
bank |, o0 o060° _| bank
- ee - 0@ -
. Time .
Analysis TF transform Synthesis
Figure: Perfect reconstruction filter bank

Input
signal

19, 201
e 1 ECOM
ParisTech

=23 i |



i 28100 solution of (PW) + (PR)

Frequency
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Figure: Critically sampled paraunitary filter banks: R(z) = E(z)
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ﬁﬁm‘l Examples of solutions

B Real TF transform of real signals: MDCT filter banks
™ 1 F+1
Xit = HGZZ Wn XFt_n COS <F (f + 2) <n+ 2))

B Complex TF transform of complex signals: PR critically decimated
GDFT filter banks with matched analysis and synthesis filters:

j2
X = 3 e o0 (+2 (1 o)+ 7))

nez

B Complex TF transform of real signals: same GDFT filter banks,
with F evenand ¢ = }
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ﬁggﬁ“ TF transform of uncorrelated time samples
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ﬁﬁgﬁ“ TF transform of uncorrelated time samples
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—$ed 1l Bis transform of a WSS process
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—$ed 1l Bis transform of a WSS process

Spectral Window: TF
representation: transform:

WSS process

B Smooth PSD
& oy Preservation of whiteness
c - —C
(0] [0]
> = ]
o - -0 )
IC LC Adjacent rows

are approx. uncorrelated

Time

Figure: TF transform of a WSS process with smooth PSD
June 19, 2015
ParisTech

Page 21/ 56 Roland Badeau

Journée "Temps-Fréquence et Non-Stationnarité" =
=23 i |




ﬁﬁﬁ' TF transform of a nonstationary process
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ﬁﬁim‘l Take-home message

B Advantages of whiteness-preserving TF transforms:

= The assumption of uncorrelated TF bins holds approximately
for a wide range of nonstationary signals with smooth TF density.

= No need to care for the consistency of the TF transform, since
it is bijective (no redundancy in the TF domain).

= Preliminary results, in a source separation application involving
NMF modeling and Wiener filtering, showed no performance loss
when using an MDCT instead of an STFT with 75% overlap

® Drawbacks:

= Designing paraunitary STFT filter banks is constrained: solutions
involve non-overlapping rectangular windows or recursive filters.

= The assumption of uncorrelated TF bins does not hold for sinusoids
and impulses: such correlations still need to be properly modeled.
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Part IlI

Modeling correlations in the TF domain
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—hedFi | Linear convolutive mixtures modeling

(a) Convolutive mixture. (b) Binaural mixture.
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ﬁﬁim‘l Convolution in TF domain

® Purpose: implement y(n) = (g = x)(n) in TF domain
® Standard approach: column-wise multiplication of the STFT
x(f, t) by the frequency response cg(f) of filter g(n)

1 t

cqy(f) x(f, 1)

® Advantage: y(f,t) are uncorrelated if x(f, t) are uncorrelated

B Drawbacks: Approximation, holds if g(n) is much shorter than
time frames (unrealistic). Approach restricted to the STFT.
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ﬁﬁﬁ' Convolution in TF domain

B Purpose: implement y(n) = (g = x)(n) in TF domain
B Problem: find transformation 71g in Figure 1 such that the output
is y(n) when the input is x(n)

Trr

Fig. 1: Applying a TF transformation to a TD signal
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ﬁﬁﬁ' Convolution in TF domain

Solution: 71r is represented in the larger frame in Figure 2, where the
input is x(f, t), the output is y(f, t), and Trp is the convolution by g(n)

Fig. 2: Applying a TD transformation to TF data
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i 241170 convolution in TF domain
B This solution can be implemented as a 2D filter:
f

‘2
%_T . iy

Cg(fvva) X(f t) t

® ARMA parametrisation: if g(n) is a causal and stable recursive
(ARMA) filter then cy(f, ¢, 7) can be parametrised as

Vo, T, f, ag(f — ¢, ) * cg(f, o, 7) = by(f,p,7)

[2] R. Badeau and M.D. Plumbley, "Probabilistic Time-Frequency Source-Filter Decomposition of
Non-Stationary Signals," in EUSIPCO, Sep 2013. J
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i 28 {0l Time-domain mixing model

Source Linear Source  Noisy  Mixture
signals filters images = mixing = signals
Xs(n) Ims(N) Yms(N) Nm(N) Ym(n)

Yo,0 Yo

&>
No

X0

o

mn

14

@

Example of a stereophonic setting (M = 2)
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i % & 198 multichannel HR-NMF model
B The TF transforms of the source signals xs(f, t) follow a regular

IS-NMF model: xs(f, t) ~ N (0,3, wz hg,)
m ARMA filtering is implemented via a state-space representation:

zs(f, 1) = xs(f, t) — % as(f,7)zs(f, t — 1)
=1

Py
Yms(F,8) = >° > bms(f, ¢, 7) zZs(f — o, t —T)
p=—Pp 7=0

S-1
= OUtpUt Ym(f7 t) = nm(fa t) + Z Yms(fa t) Wlth nm(f7 t) ~ N(Oa U%)
s=0

mixtures of non-stationary signals in the time-frequency domain" in IEEE Trans. Audio, Speech,

[3] R. Badeau and M.D. Plumbley, "Multichannel high resolution NMF for modelling convolutive
Lang. Proc., vol. 22, no. 11, Nov 2014, pp. 1670—1680. }
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—Ped A Dependency graph

TF innovation TF state TF observation

zs(f, 1) Yms(f, t)
Dependency graph in the TF domain
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ﬁggﬁ“ Particular cases

The HRNMF model encompasses:
® Multichanel NMF [Ozerov & Févotte, 2010] (if Qs = Qp = P, = 0)
® ARMA processes (if K = 1 and h;, is flat)

"L,

m Mixtures of damped sinusoids (if K = 1 and h, is an impulse)

M |

June 19,2015 [,
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i %8 T Estimation of HR-NMF

Various approaches (initially developed for the mono M = 1 case)
® EM algorithm with Kalman filtering [Badeau, 2011]: slow
convergence, high computational complexity
® Multiplicative updates [Badeau & Ozerov, 2013]: fast
convergence but numerical stability issues
® Variational EM algorithm [Badeau & Drémeau, 2013] : low
computational complexity
[4] R. Badeau, "Gaussian modeling of mixtures of non-stationary signals in the time-frequency
domain (HR-NMF)," in WASPAA, Oct 2011, pp. 253—256.
[5] R. Badeau and A. Ozerov, "Multiplicative updates for modeling mixtures of non-stationary sig-
nals in the time-frequency domain," in EUSIPCO, Sep 2013.

[6] R. Badeau and A. Drémeau, "Variational Bayesian EM algorithm for modeling mixtures of non-
stationary signals in the time-frequency domain (HR-NMF)," in ICASSP, May 2013.
ParisTech




i 28 0l variational EM algorithm

B Goal: estimate the parameter 6 of a probabilistic model involving
observations y and latent variables z

® Idea: p(z|y; 0) is approximated by a distribution g
Decomposition of log-likelihood L(#) = In(p(y; 8)):

L(0) = Dk.(qllp(zly; 0)) + L(q; 0), where

* D (allp(zly: ) = (In (5%, (KL divergence)

s ;0 . .
= L(g;0) = <In (%»q (variational free energy)

Since Dx. > 0, £(q; 0) is a lower bound of L(6)

® Method: maximize £(q; 0): at each iteration i,
= E-step (update q): ¢* = argmax £(q; 0i_1)
qeF

= M-step (update 0): 6; = argmax L(q*; 0)
6
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i % 500 variational EM for multichannel HR-NMF

m Parameters: 0 = {as(f,7), bms(f, ¢, 7), 03, Wi, h$))}
B Mean field approximation: q(z) = [] qsr(zs(f, 1))
s,f,t
m Complexity: 4MSFT(1 + 2Pp)(1 + max(Qp, Qa)) (linear w.r.t. all
model dimensions)
® Parallel implementation
® Application to real audio data:

= Always converges to a relevant solution when S = 1
= Needs proper initialization or semi-supervised learning when S > 1

mixtures of non-stationary signals in the time-frequency domain" in /EEE Trans. Audio, Speech,

[3] R. Badeau and M.D. Plumbley, "Multichannel high resolution NMF for modelling convolutive
Lang. Proc., vol. 22, no. 11, Nov 2014, pp. 1670—-1680. J
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Part IV

Application to piano sounds
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ﬁﬁ%ﬁel Application to piano tones

Spectrogram of the original mixture signal
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Spectrogram of the input piano sound (C4 + C3) ¢
(F=C,S=2,M=1, Fs = 8600kHz)
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ﬁﬁﬁel Source separation

4th harmonic (540 Hz)

Separation of two sinusoidal components
(real parts of STFT subband signals)
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—Ped A Audio inpainting (mono)

Spectrogram of the original mixture signal
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Spectrogram of the input piano sound (C4 + C3)
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—hedFi | Audio inpainting (mono)
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—Ped A Audio inpainting (mono)

Restored spectrogram

C4+C3:
C4 alone:
IS-NMF:
HR-NMF:

& L& & &

[ 0.2 0.4 0.6 0.8 1 12
Time (s)

Recovery of the full C4 piano tone

June 19, 2015
risTech
Roland Badeau Journée "Temps-Fréquence et Non-Stationnarité” BRI




ﬁﬁim‘l Audio inpainting (stereo)

Left channel (m = 0)
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ﬁﬁim‘l Audio inpainting (stereo)

Left channel (m = 0)
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ﬁﬁim‘l Audio inpainting (stereo)

Left channel (m = 0)
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ﬁﬁgﬁ“ Overview of the HR-NMF model

® Able to accurately represent multichannel, underdetermined
mixtures of sound sources in presence of reverberation

B Achieved via an accurate TF implementation of ARMA filtering
®m Compatible with any filter bank (either real or complex)
B Accounts for phases and correlations over time and frequency

m Able to separate overlapping sinusoids within the same frequency
band (high spectral resolution)

B Able to restore missing observations (synthesis capability)
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Part V

Source separation benchmark
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ﬁﬁim‘l Source separation benchmark

Benchmark of several NMF-based methods involving phase recovery:
® NMF-Wiener: Wiener filtering with NMF models of spectrograms
B Phase reconstruction based on spectrogram consistency:

* NMF-GL: NMF models with GL algorithm [Griffin & Lim, 1984]
= NMF-LR: NMF models with LR algorithm [Leroux, 2008]

® Complex NMF (CNMF) estimation of the STFTs of the sources:
= CNMF: without any phase constraint [Kameoka, 2009]
= CNMF-LR: with consistency phase constraints [Leroux, 2009]
® HR-NMF (with a reduced frequency resolution in order to
compensate for the extra ARMA parameters)

[7] P. Magron, R. Badeau, B. David, "Phase recovery in NMF for audio source separation: an
insightful benchmark," in ICASSP, Apr 2015, pp. 81-85. J
ParisTech




—Ped A Source separation benchmark

® Datasets:
= Synthetic mixtures of two harmonic signals with additive white noise
= Piano notes mixtures from the MAPS database [Emiya, 2010]
= MIDI audio excerpt (bass and guitar)
® Blind vs. Oracle approaches:
= Blind: model parameters are estimated from the mixtures
= Oracle: model parameters are learned from the isolated sources
B Evaluation criteria: BSS EVAL Toolbox [Vincent, 2006]

= SDR: Source to Distortion Ratio
= SIR: Source to Interference Ratio
= SAR: Source to Artifact Ratio

ParisTech
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—Ped A Oracle separation of a MIDI audio excerpt

Mix 9 | NMF-Wiener | HRNMF
Bass ¢ ¢ ¢
Guitar € <4 <
Keyboard ¢ ¢ 4
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ﬁﬁm‘l Conclusions of the benchmark

B Spectrogram consistency may not be relevant for audio quality

B Oracle results show the potential of the HR-NMF model in source
separation applications

® Blind results show the difficulty of estimating this model without a
proper initialization
® Solutions could involve:

= Semi-supervised learning,

= A priori information (harmonicity, smoothness, sparsity...),

= New estimation methods (MCMC, belief propagation, high
resolution methods,...)
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Part VI

Conclusion
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ﬁﬁim‘l Conclusions

B Take-home message:
= Possibility of designing TF transforms that better fit the assumption
of uncorrelated TF bins
= Importance of modeling phases and correlations in the TF domain
®m Qutlooks of the HRNMF model:
= Introduce high temporal resolution (to model sharp transients)
= 2D linear prediction of TF state zs(f, t)) (to model vibrato, chirps)
= Correlations between components (to model sympathetic vibration)
= Non-stationary filters (to model attack-decay-sustain-release)
® Applications:
= Source coding, source separation, audio inpainting...
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Thank you!
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