| Introduction | 1D-SST | 2D-SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
|              |        |        |                   |            |
|              |        |        |                   |            |

Analysis of superimposed oriented patterns via synchrosqueezing. M. Clausel (LJK–Grenoble), V. Perrier (LJK–Grenoble) and T. Oberlin (LJK–Grenoble)

| Introduction | 1D-SST                                  | 2D-SST | Preliminary tests | Conclusion |
|--------------|-----------------------------------------|--------|-------------------|------------|
| 0000         |                                         |        |                   |            |
| Introduction | 1                                       |        |                   |            |
| muouucuor    | l i i i i i i i i i i i i i i i i i i i |        |                   |            |

• Oriented textures = highly oscillating patterns admitting at each point a dominant orientation.

- 4 ⊒ ▶

| Introduction | 1D-SST | 2D-SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
| 00000        |        |        |                   |            |
|              |        |        |                   |            |
| Introduction |        |        |                   |            |

- Oriented textures = highly oscillating patterns admitting at each point a dominant orientation.
- Wide range of applications : medical imaging, fingerprints analysis...

| Introduction<br>●0000 | 1D-SST<br>0000000 | 2D–SST<br>000000000000 | Preliminary tests | Conclusion |
|-----------------------|-------------------|------------------------|-------------------|------------|
| Introduction          |                   |                        |                   |            |

- Oriented textures = highly oscillating patterns admitting at each point a dominant orientation.
- Wide range of applications : medical imaging, fingerprints analysis...



Some oriented patterns synthetized by G. Peyré....

2D synchrosqueezing and oriented pattern analysis

| Introduction | 1D-SST | 2D-SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
| 00000        |        |        |                   |            |
| 1            |        |        |                   |            |
| Introduction |        |        |                   |            |

• A mathematical model for oriented patterns : locally parallel textures ([G. Peyré, 2007], [Aujol et al., 2010]).

向下 イヨト イヨト

| Introduction<br>○●○○○ | 1D-SST<br>0000000 | 2D–SST<br>000000000000 | Preliminary tests | Conclusion |
|-----------------------|-------------------|------------------------|-------------------|------------|
| Introduction          |                   |                        |                   |            |

- A mathematical model for oriented patterns : locally parallel textures ([G. Peyré, 2007], [Aujol et al., 2010]).
- Locally parallel texture f :

$$f(x_1, x_2) = A(x_1, x_2) \cos(\varphi(x_1, x_2)), (x_1, x_2) \in \mathbb{R}^2$$
.

| Introduction | 1D-SST | 2D-SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
| Introduction |        |        |                   |            |

- A mathematical model for oriented patterns : locally parallel textures ([G. Peyré, 2007], [Aujol et al., 2010]).
- Locally parallel texture f :

$$f(x_1, x_2) = A(x_1, x_2) \cos(\varphi(x_1, x_2)), (x_1, x_2) \in \mathbb{R}^2$$
.

• A > 0 : amplitude,  $\varphi$  : phase

| Introduction | 1D-SST | 2D-SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
| 0000         |        |        |                   |            |
| Introduction |        |        |                   |            |

- A mathematical model for oriented patterns : locally parallel textures ([G. Peyré, 2007], [Aujol et al., 2010]).
- Locally parallel texture f :

$$f(x_1, x_2) = A(x_1, x_2) \cos(\varphi(x_1, x_2)), (x_1, x_2) \in \mathbb{R}^2$$
.

- A > 0 : amplitude,  $\varphi$  : phase
- f highly oscillating pattern :  $|\nabla A|, |\nabla^2 \varphi| \ll |\nabla \varphi|.$

伺下 イヨト イヨト

| Introduction | 1D-SST | 2D-SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
| 00000        |        |        |                   |            |
| Introduction |        |        |                   |            |

• In some applications more complex models.

| Introduction | 1D-SST  | 2D-SST         | Preliminary tests | Conclusion |
|--------------|---------|----------------|-------------------|------------|
| 00000        | 0000000 | 00000000000000 | 000               | 000        |
| Introduction |         |                |                   |            |
| Introduction |         |                |                   |            |

- In some applications more complex models.
- AM–FM models = superimposition of locally parallel textures :

$$f(x_1, x_2) = \sum_{\ell} A_{\ell}(x_1, x_2) \cos(\varphi_{\ell}(x_1, x_2)), (x_1, x_2) \in \mathbb{R}^2$$

< ∃ >

| Introduction | 1D-SST | 2D–SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
| 00000        |        |        |                   |            |
| Introduction |        |        |                   |            |

Applications in medical imaging for computer aided diagnotics : (for e.g. detection of pneumocosis)



Radiographs of chests ([V.Murray et al., 2009]).

2D synchrosqueezing and oriented pattern analysis

| Introduction | 1D-SST | 2D-SST | Preliminary tests | Conclusion |
|--------------|--------|--------|-------------------|------------|
| 00000        |        |        |                   |            |
| Introduction |        |        |                   |            |

Our goal :

- Consider multi-component images.
- Extract and analyze simulteanously the different components of the image.
- Our tool : an extension to the bidimensional context of the 1D-SynchroSqueezed wavelet Transform (SST) introduced by [Daubechies et al.,2011].

• 3 >



• Multicomponent signal s :

$$s(t) = \sum_{\ell=1}^{L} A_{\ell}(t) \cos(\varphi_{\ell}(t)) \ .$$

• Finding  $A_{\ell}$ ,  $\varphi_{\ell}$  = ill-posed problem in general.

(ロ) (同) (E) (E) (E)

 Introduction
 1D-SST
 2D-SST
 Preliminary tests
 Conclusion

 00000
 000000
 00000000000
 000
 000

The 1D-SST [Daubechies et al.,2011]

Several methods based on wavelet analysis developed in the 90's for decomposition and demodulation of multicomponent signals :

- Reassignment method [Auger-Flandrin 1995],
- Wavelet ridges [Carmona-Hwang-Torrésani 1997, 1999],
- Squeezing method [Daubechies-Maes 1996].

Another point of view : Empirical Mode Decomposition [Huang *et al* 1998], [Flandrin *et al* 2004].....

- ロト - (周ト - (日ト - (日ト - )

#### The 1D-SST [Daubechies et al., 2011]



Multicomponent AM-FM signal f



 $\omega_f(a, b)$  (to approximate  $\varphi'_\ell(b)$ )



Wavelet Transform  $W_f(a, b)$ 



 $SST = S_f(k, b)$ 

< ロ > < 回 > < 回 > < 回 > < 回 > <

3

2D synchrosqueezing and oriented pattern analysis

| Introduction | 1D-SST | 2D-SST        | Preliminary tests | Conclusion |
|--------------|--------|---------------|-------------------|------------|
| 00000        | 000000 | 0000000000000 | 000               | 000        |

Based on :

 The 1D continuous wavelet transform (CWT) : ψ = wavelet, f ∈ L<sup>2</sup>(ℝ),

$$W_f(a,b) = rac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(x) \overline{\psi\left(rac{x-b}{a}
ight)} dx$$

 The pointwise (or Morlet) reconstruction formula : For f analytic (i.e. f̂ vanishes on ℝ\_),

$$f(b) = \frac{1}{c_{\psi}} \int_0^{+\infty} W_f(a,b) \frac{da}{a^{3/2}}$$

with  $c_{\psi} = \int_{-\infty}^{+\infty} \frac{\widehat{\psi}(\xi)}{\xi} d\xi$ .



Example :  $f(x) = A\cos(\omega x)$ .

• CWT of its analytic signal  $F(x) = A e^{i\omega x}$ :

$$W_F(a,b) = rac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} F(x) \overline{\psi\left(rac{x-b}{a}
ight)} dx = A\sqrt{a} \ \overline{\hat{\psi}(a\omega)} \ e^{i\omega b}$$

Then

$$\partial_b W_F(a,b) = i\omega W_F(a,b) \to \omega = -i \frac{\partial_b W_F(a;b)}{W_F(a;b)} ,$$
  
and  $W_F(a_0,b) = \lambda_{\psi} \sqrt{a_0} F(b)$  where  $a_0 = \frac{k_0}{\omega} ,$   
 $(k_0 \text{ peak wavenumber of } \psi).$ 

イロト イポト イヨト イヨト



Extension to the general case :

- Monocomponent complex signal :  $f(x) = A(x) \exp(i\varphi(x))$ , with slowly varying  $A, \varphi$  (IMF).
- Candidate instantaneous frequency :

$$\omega_F(a,b) = -i \frac{\partial_b W_F(a,b)}{W_F(a,b)}, \text{ when } |W_F(a;b)| > \varepsilon$$

Estimate :

$$|\omega_F(a,b)-\varphi'(b)|<\varepsilon$$
,

with suitable conditions  $(C_{\varepsilon})$  on  $A, \varphi$ .

• For  $a\phi'(b) \equiv k_0$ 

$$W_F(a, b) \equiv \lambda_{\psi} \sqrt{aF(b)}$$
,

( $k_0$  peak wavenumber of  $\psi$ ).

イロト イポト イヨト イヨト



• Multicomponent complex signal f(x) : superposition of several IMFs assumed to be slowly varying and well separated in time-frequency domain :

$$f(x) = \sum_{\ell=1}^{L} A_{\ell}(x) \ e^{i\varphi_{\ell}(x)}$$

• SynchroSqueezed wavelet Transform (SST) [h unit window] :

$$S_{f,\varepsilon}^{\delta}(b,k) = \int_{|W_f(a,b)| > \varepsilon} W_f(a,b) \frac{1}{\delta} h\left(\frac{k - \operatorname{Re}(\omega_f(a,b))}{\delta}\right) \frac{da}{a^{3/2}}$$

• Estimate :

$$\lim_{\delta\to 0}\frac{1}{c_{\psi}}\int_{\{k;\,|k-\varphi_{\ell}'(b)|\leq\varepsilon\}}S^{\delta}_{f,\varepsilon}(b,k)dk=A_{\ell}(b)e^{i\varphi_{\ell}(b)}+O(\varepsilon)$$

2D extension of the analytic signal  $\longrightarrow$  monogenic signal

2D synchrosqueezing and oriented pattern analysis

| Introduction | 1D–SST<br>0000000  | 2D–SST<br>●000000000000 | Preliminary tests | Conclusion |
|--------------|--------------------|-------------------------|-------------------|------------|
| The 2D–SST   | rm for unidimensio | nal signals             |                   |            |

• Hilbert transform associated to f,  $\mathcal{H}f$ 

$$\mathcal{H}f(t) = \lim_{\varepsilon \to 0} \left( rac{1}{\pi} \int_{|t-s| > arepsilon} rac{f(s)}{t-s} \, \mathrm{d}s 
ight) \; .$$

- Analytic (complex) signal : F(x) = f(x) + i Hf(x) (F̂ = 0 on ℝ\_-)
- AM–FM analysis :  $F(x) = A(x)e^{i\varphi(x)}$ 
  - Instantaneous amplitude : A(x) = |F(x)|
  - Instantaneous frequency :  $\omega(x) = \varphi'(x)$

向下 イヨト イヨト

| Introduction                      | 1D-SST<br>0000000 | 2D–SST<br>○●○○○○○○○○○○ | Preliminary tests | Conclusion |
|-----------------------------------|-------------------|------------------------|-------------------|------------|
| The 2D–SST<br>The Riesz Transform | and the monogen   | ic signal [Felsber     | g-Sommer 2001]    |            |

• Riesz transform associated to f,  $\mathcal{R}f = \begin{pmatrix} \mathcal{R}_1 f \\ \mathcal{R}_2 f \end{pmatrix}$  with for

$$\mathcal{R}_i f(x) = \lim_{\varepsilon \to 0} \left( \frac{1}{\pi} \int_{|x-y| > \varepsilon} \frac{(x_i - y_i)}{|x-y|^3} f(y) \, \mathrm{d}y \right)$$

• Monogenic signal associated to f:

$$\mathcal{M}f = \begin{pmatrix} f \\ \mathcal{R}f \end{pmatrix} = f + i \mathcal{R}_1 f + j \mathcal{R}_2 f.$$

- AM-FM analysis :  $\mathcal{M}f = \mathcal{A}(x) e^{\varphi(x)n_{\theta}(x)}$ .
  - Instantaneous amplitude :  $A(x) = |\mathcal{M}f(x)|$
  - Instantaneous frequency :  $\omega(x) = \nabla \varphi(x)$
  - Local orientation :  $\theta$ .

伺 ト イヨト イヨト

#### Polar form of the monogenic signal

• Quaternion :

$$q = q_0 + q_1 \text{ i} + q_2 \text{ j} + q_3 \text{ k}, (q_0, q_1, q_2, q_3) \in \mathbb{R}^4$$

(with  

$$i^2 = j^2 = k^2 = -1$$
,  $ij = -ji = k$ ,  $jk = -kj = i$ ,  $ki = -ik = j$ )  
• Modulus :  $|q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$ ,

• Conjugate : 
$$\bar{q} = q_0 - q_1$$
 i  $- q_2$  j  $- q_3$  k  $(q\bar{q} = \bar{q}q = |q|^2)$ .

イロン イヨン イヨン ・ ヨン

## Polar form of the monogenic signal

• Polar form of a unit quaternion q (|q| = 1) s.t.  $(q_1, q_2, q_3) \neq (0, 0, 0)$  :

$$q = (\cos \varphi + n \sin \varphi) = e^{\varphi n}$$
,

with

$$n = \frac{q_1 \mathrm{i} + q_2 \mathrm{j} + q_3 \mathrm{k}}{|q_1 \mathrm{i} + q_2 \mathrm{j} + q_3 \mathrm{k}|}, \operatorname{cos}(\varphi) = \operatorname{Re}(q), \operatorname{sin} \varphi = |q_1 \mathrm{i} + q_2 \mathrm{j} + q_3 \mathrm{k}|.$$

• General quaternions :

$$q = |q| (\cos \varphi + n \sin \varphi) = |q| e^{\varphi n}$$
.

• Monogenic signal associated to f :

$$\mathcal{M}f = \begin{pmatrix} f \\ \mathcal{R}f \end{pmatrix} = f + \mathrm{i} \ \mathcal{R}_1 \mathrm{f} + \mathrm{j} \ \mathcal{R}_2 \mathrm{f} = \mathrm{A}(\mathbf{x}) \ \mathrm{e}^{\varphi \mathbf{n}_{\theta}} ,$$

with  $n_{\theta} = \cos \theta \, i + \sin \theta \, j$ .



• Riesz transform of f :

$$\mathcal{R}f(x) = A_0 \begin{pmatrix} \sin(k \cdot x) \cos \theta_0 \\ \sin(k \cdot x) \sin \theta_0 \end{pmatrix} = A_0 \frac{k}{|k|} \sin(k \cdot x) ,$$

with  $\theta_0 = \operatorname{Arctan}(\frac{k_2}{k_1})$ .

• Monogenic signal associated to f:

$$\mathcal{M}f(x) = \begin{pmatrix} f(x) \\ \mathcal{R}f(x) \end{pmatrix} = A_0 \begin{pmatrix} \cos(k \cdot x) \\ \sin(k \cdot x) \cos \theta_0 \\ \sin(k \cdot x) \sin \theta_0 \end{pmatrix}$$
$$= A_0 e^{(k \cdot x)(\cos \theta_0 \ i + \sin \theta_0 \ j)}$$

• Amplitude, phase and local orientation of f :

$$A(x) = A_0, \ \varphi(x) = k \cdot x, \ \theta(x) = \theta_0 = \operatorname{Arctan}(k_2/k_1) \ .$$

(人間) とうり くうり



• 2D directional CWT [Antoine et al., 2004]

$$c_f(a,b,\alpha) = \int_{\mathbb{R}^2} f(x) \,\overline{\psi_{a,b,\alpha}(x)} \,\mathrm{d}x \,, \ \psi_{a,b,\alpha}(x) = \frac{1}{a} \psi\left(r_{-\alpha} \frac{x-b}{a}\right)$$

If  $\psi$  isotropic,  $\psi_{a,b,\alpha} = \psi_{a,b,0} = \psi_{a,b} c_f(a,b) = c_f(a,b,0)$ .

Pointwise reconstruction formula, in the isotropic case :

$$f(x) = rac{1}{ ilde{C}_\psi} \int_0^{+\infty} c_f(a,x) \, rac{\mathrm{d} a}{a^2} \quad ext{with} \quad ilde{C}_\psi = rac{1}{2\pi} \int_{\mathbb{R}^2} rac{\widehat{\psi}(\xi)}{|\xi|^2} \, \mathrm{d} \xi \; .$$

2D synchrosqueezing and oriented pattern analysis



[Unser-Van De Ville 2009]

• Isotropic CWT of the monogenic signal  $F = \mathcal{M}f = f + \mathcal{R}_1 f i + \mathcal{R}_2 f j$ :

$$c_F(a,b) = (c_f + c_{\mathcal{R}_1 f} i + c_{\mathcal{R}_2 f} j)(a,b).$$

• Monogenic Wavelet Transform of f if  $\psi$  real isotropic :

$$c_f^{(\mathcal{M})}(\boldsymbol{a},\boldsymbol{b},\alpha) = \int_{\mathbb{R}^2} f(x) \; (\mathcal{M}\psi)_{\boldsymbol{a},\boldsymbol{b},\alpha}(x) \; \mathrm{d}x \; .$$

• Link between  $c_F(a, b)$  and  $c_f^{(M)}(a, b, \alpha)$  :

$$c_F(a,b) = \begin{pmatrix} 1 & 0 \\ 0 & -r_{\alpha} \end{pmatrix} c_f^{(M)}(a,b,\alpha) \ .$$

| Introduction | 1D-SST | 2D-SST        | Preliminary tests | Conclusion |
|--------------|--------|---------------|-------------------|------------|
|              |        | 0000000000000 |                   |            |
| Example      |        |               |                   |            |

• Isotropic wavelet transform of F :

$$c_F(a,b) = a\widehat{\psi}(ak)\left(Ae^{(k\cdot b)n_{\theta}}\right)$$

イロト イポト イヨト イヨト

3

.

| Introduction | 1D-SST<br>0000000 | 2D–SST<br>○○○○○○○○●○○○○ | Preliminary tests | Conclusion |
|--------------|-------------------|-------------------------|-------------------|------------|
| Example      |                   |                         |                   |            |

• For 
$$i = 1, 2$$
:

$$\partial_{b_i} c_F(a,b) = \frac{k_i n_\theta}{a \psi(ak)} \left( A e^{(k \cdot b) n_\theta} \right)$$

• Instantaneous frequency k and orientation  $n_{\theta}$ :

$$k_2 n_{\theta} = \partial_{b_2} c_F(a, b) \times (c_F(a, b))^{-1}$$

• On the "ridge"  $a = a_0 = \frac{|k_0|}{|k|}$ 

$$F(b) = \lambda_{\psi} a_0^{-1} c_F(a_0, b) .$$

イロト イヨト イヨト

.



## Intrinsic Monogenic Mode Function (IMMF)

• Intrinsic Monogenic Mode Function (IMMF) with accuracy  $\varepsilon > 0$  :

$$F(x) = A(x) e^{\varphi(x) n_{\theta(x)}}$$
 with  $n_{\theta(x)} = \cos(\theta(x)) i + \sin(\theta(x)) j$ .

•  $A, \varphi, n_{\theta}$  slowly varying functions :

$$|
abla A(x)|, |
abla heta(x)|, |
abla^2 arphi(x)| < arepsilon |
abla arphi(x)| \;.$$

- A : local amplitude of F.
- $\varphi$ ,  $n_{\theta}$  : local scalar phase and orientation of F.
- $\nabla \varphi$  : instantaneous frequency.

- 4 回 ト 4 ヨ ト 4 ヨ ト



• Candidate to approximate the instantaneous frequency :

 $\begin{array}{rcl} \Lambda_1(a,b) &=& \partial_{b_1}c_F(a,b)\times (c_F(a,b))^{-1} \ , \\ \Lambda_2(a,b) &=& \partial_{b_2}c_F(a,b)\times (c_F(a,b))^{-1} \ . \end{array}$ 

• Estimate : for i = 1, 2,

 $|\Lambda_i(a,b) - \partial_{b_i} \varphi(b) n_{\theta(b)}| \leq \varepsilon$  where  $|c_F(a,b)| > \varepsilon$ .

イロト イポト イヨト イヨト 二日



- Multicomponent signal F(x) superposition of IMMFs of
  - accuracy  $\boldsymbol{\varepsilon}$ , well separated in the space-frequency domain :

$$F(x) = \sum_{\ell=1}^{L} A_{\ell}(x) e^{\varphi_{\ell}(x)n_{\theta_{\ell}(x)}}$$

• MSST = local CWT-reconstruction at fixed point *b*, in the  $\varepsilon$ -vicinity of the estimated instantaneous frequencies  $(\Lambda_1, \Lambda_2)$ :

$$S_{F,\varepsilon}^{\delta}(b, k, n) = \int_{|c_F(a,b)| > \varepsilon} c_F(a,b) \frac{1}{\delta^2} \prod_{i=1}^2 h\left(\frac{k_i - \operatorname{Re}(\overline{n} \Lambda_i(a,b))}{\delta}\right) \frac{\mathrm{d}a}{a^2}$$
$$(h \in C_c^{\infty} \text{ s.t. } \int h = 1).$$

2D synchrosqueezing and oriented pattern analysis



 $\ell^{\textit{th}}\text{-IMMF}$  estimate ( $\hat{\psi}$  compactly supported) :

$$\begin{split} \lim_{\delta \to 0} \frac{2\pi}{\tilde{C}_{\psi}} \int_{\mathbb{S}^1} \int_{\{k; \max_i | k_i n - \partial_{b_i} \varphi_{\ell}(b) n_{\theta_{\ell}(b)} | \le \varepsilon\}} S^{\delta}_{f,\varepsilon}(b,k,n) \mathrm{d}k \mathrm{d}n \\ = A_{\ell}(b) \mathrm{e}^{\varphi_{\ell}(b) n_{\theta_{\ell}(b)}} + O(\varepsilon) \,. \end{split}$$

Э

→ ∃ >





#### Monogenic Synchrosqueezed Wavelet Transform of Images

A (1) > (1)





$$\begin{cases} f_1(x_1, x_2) &= e^{-10((x_1 - 0.5)^2 + (x_2 - 0.5)^2))} \sin(10\pi(x_1^2 + x_2^2 + 2(x_1 + 0.2x_2))) \\ f_2(x_1, x_2) &= 1.2 \sin(40\pi(x_1 + x_2)) \\ f_3(x_1, x_2) &= \cos(2\pi(70x_1 + 20x_1^2 + 50x_2 - 20x_2^2 - 41x_1x_2)) \end{cases}$$

イロト イポト イヨト イヨト





2D synchrosqueezing and oriented pattern analysis

<177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177

| Introduction | 1 <b>D-SST</b><br>0000000 | <b>2D–SST</b><br>0000000000000 | Preliminary tests | Conclusion<br>●○○ |
|--------------|---------------------------|--------------------------------|-------------------|-------------------|
| Conclusion   |                           |                                |                   |                   |

- 2D generalization of the SynchroSqueezed wavelet Method in the monogenic Signal framework.
- MSST allows to link local orientations to instantaneous frequency : new tool for characterization of oriented textures.
- Applications on real datas, comparison with other Mode Decompositions (EMD).

| Introduction | 1D-SST<br>0000000 | <b>2D–SST</b><br>000000000000 | Preliminary tests | Conclusion<br>○●○ |
|--------------|-------------------|-------------------------------|-------------------|-------------------|
| Bibliography |                   |                               |                   |                   |

- **1** G. PEYRÉ, Oriented pattern synthesis, (2007).
- M. UNSER AND D. VAN DE VILLE, Multiresolution Monogenic Signal Analysis Using the Riesz-Laplace Wavelet Transform, (2009).
- S.C. OLHEDE AND G. METIKAS, The Monogenic Wavelet Transform, (2009).
- P. MAUREL, J.F. AUJOL AND G. PEYRÉ, Locally parallel texture modelling, (2010).

| Introduction | 1D-SST<br>0000000 | <b>2D–SST</b><br>000000000000 | Preliminary tests | Conclusion<br>○○● |
|--------------|-------------------|-------------------------------|-------------------|-------------------|
| Bibliography |                   |                               |                   |                   |

- I. DAUBECHIES, Synchrosqueezed Wavelet Transforms : an Empirical Mode Decomposition-like Tool, (2011).
- M.CLAUSEL, V. PERRIER AND T. OBERLIN, The Monogenic Synchrosqueezed Wavelet Transform : A tool for the Decomposition/Demodulation of AM-FM images, preprint hal-00754704 (2012).