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Nonnegative matrix factorization (NMF)

Given a nonnegative matrix V of dimensions F × N, NMF is the
problem of finding a factorization

V ≈WH

where W and H are nonnegative matrices of dimensions F × K
and K × N, respectively.

Dimensions:

I If W tall (K < F ), NMF produces a low-rank approximation.

I If W fat (K > F ), NMF produces an overcomplete
representation (e.g., sparse coding).
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An unsupervised part-based representation

Along VQ, PCA or ICA, NMF provides an unsupervised linear
representation of data

vn ≈ W hn

data vectors “explanatory variables” “regressors”
“basis”, “dictionary” “expansion coefficients”

“patterns” “activation coefficients”

and W is learnt from the set of data vectors V = [v1 . . . vN ].

I nonneg. of W ensures interpretability of the dictionary
(features wk and data vn belong to same space).

I nonneg. of H tends to produce part-based representations
because subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark paper in Nature by Lee

and Seung (1999).
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NMF as a constrained minimization problem

Minimize a measure of fit between data V and model WH, subject
to nonnegativity of W and H:

min
W,H≥0

D(V|WH) =
∑

fn

d([V]fn|[WH]fn)

where d(x |y) is a scalar cost function.

Regularization terms are often added to D(V|WH) to favor certain
properties of W or H (sparsity, smoothness).
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Divergences used in NMF

(selected references)

I Euclidean distance (Paatero and Tapper, 1994; Lee and
Seung, 2001)

I Kullback-Leibler divergence (Lee and Seung, 1999; Finesso
and Spreij, 2006)

I α-divergence (Cichocki et al., 2008)

I β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)

I Bregman divergences (Dhillon and Sra, 2005)

I Itakura-Saito divergence (Févotte et al., 2009)
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Common NMF algorithm design

I Block-coordinate update of H given W(i−1) and W given H(i).

I The updates of W and H are equivalent by transposition:

V ≈WH⇔ VT ≈ HT WT

I The objective function is separable in the columns of H or the
rows of W:

D(V|WH) =
∑

n

D(vn|Whn)

I In the end we are left with nonnegative linear regression

min
h≥0

C (h)
def
= D(v|Wh)

Numerous references in the image restoration literature (Richardson,

1972; Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986)
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Majorization-minimization (MM)

Build G (h|h̃) such that G (h|h̃) ≥ C (h) and G (h̃|h̃) = C (h̃).
Optimize (iteratively) G (h|h̃) instead of C (h).
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Local convergence

I If d(x |y) is convex w.r.t to y , D(V|WH) convex w.r.t either
W or H but not both.

I Not even true if d(x |y) not convex w.r.t y .
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Application to music signal processing
(Smaragdis and Brown, 2003)

activation coefficients

≈ ×

f

n

spectrogram patterns

WV H
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Model choices

activation coefficients

≈ ×

f

n

spectrogram patterns

WV H

I Magnitude or power spectrogram ?

I Which measure of fit should be used for the factorization ?

I NMF approximates the spectrogram by a sum of rank-one
spectrograms. How can we invert these ? What about phase ?
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Itakura-Saito NMF: a generative approach
(Févotte, Bertin, and Durrieu, 2009)

Let X = {xfn} be the (complex-valued) STFT of the signal.
Assume

xfn =
K∑

k=1

ck,fn

ck,fn ∼ Nc (0,wfkhkn)

and the components c1,fn, . . . , cK ,fn are independent given W and
H.

Then

− log p(X|W,H) = DIS (|X|2|WH) + cst.

Additivity assumed in the STFT domain. Phase is preserved in the
model, though in a noninformative way (uniform distribution).

Related work by Benaroya et al. (2003); Parry and Essa (2007)
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Itakura-Saito NMF: a generative approach
(Févotte, Bertin, and Durrieu, 2009)

Main message: Itakura-Saito NMF of the power spectrogram
corresponds to maximum likelihood estimation in a well-defined
generative composite model of the STFT.

This in particular gives a statistically grounded way of
reconstructing the components:

ĉk,fn = E{ck,fn|X,W,H} =
wfkhkn∑

j wfjhjn︸ ︷︷ ︸
time-freq. mask

xfn

Lossless decomposition: xfn =
∑

k ĉk,fn
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Itakura-Saito NMF: a generative approach
(Févotte, Bertin, and Durrieu, 2009)

Alternatively, IS-NMF can be interpreted as maximum likelihood in
multiplicative noise:

vfn = |xfn|2 = [WH]fn . εfn

where εfn is Gamma multiplicative noise with mean value 1.

Related work by Abdallah and Plumbley (2004).
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Noteworthy properties of the IS divergence

I The IS divergence is scale-invariant:

dIS (λ x |λ y) = dIS (x |y)

Implies higher accuracy in the representation of data with
large dynamic range, such as audio spectra. In contrast,

dEUC (λ x |λ y) = λ2 dEUC (x |y)

dKL(λ x |λ y) = λ dKL(x |y)

I The IS divergence in nonconvex (inflexion at y = 2x); was
found to lead to more local minima in practice.
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Other statistical factor models of the spectrogram

Latent factor models for count data inspired from text analysis:

I Poisson models (Le Roux et al., 2007; Cemgil, 2009), similar
to GaP (Canny, 2004)

I Multinomial models (Shashanka et al., 2008; Smaragdis et al.,
2009), similar to PLSI (Hofmann, 1999) or LDA (Blei et al.,
2003; Buntine and Jakulin, 2006)

Not generative models:

I Data |xfn| is modeled as integer.

I Additivity is assumed at the magnitude level

|xfn| =
∑

k
|ck,fn|.
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Small-scale example

!!!! !!!! !!!! !!!!" ##### $
(MIDI numbers : 61, 65, 68, 72)

Figure: Three representations of data.
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IS-NMF on power spectrogram with K = 8
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KL-NMF on magnitude spectrogram with K = 8
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Motivation

I Model the temporal structure in audio signals.
I more accurate estimation of H, and W,
I reduced identifiability ambiguities,
I perceptually more pleasant component reconstruction.

I Many existing models for nonnegative data or for sequences,
but hard to gather desirable properties.

Dynamical models for
real-valued data:

Linear dynamical system (LDS)

Hidden Markov model (HMM)

Static models for
nonnegative data:

Nonnegative matrix factorization

(NMF)

I Goal: bring advantages of LDS, HMM and NMF together in a
simple and elegant framework.
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Linear dynamical system (LDS)
The classic Gaussian model for real-valued data

hn = Ahn−1 + ξn (state dynamics)

vn = Whn + εn (observation model)

I Continuous Markov chain with real-valued variables and
parameters.

I Additive Gaussian innovations with zero mean value.

E [hn|Ahn−1] = Ahn−1

E [vn|Whn] = Whn
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Nonnegative dynamical system (NDS)
(Févotte, Le Roux, and Hershey, 2013)

hn = Ahn−1 ◦ ξn (state dynamics)

vn = Whn ◦ εn (observation model)

I Continuous Markov chain with nonnegative variables and
parameters.

I Multiplicative Gamma innovations with mean value 1.

E [hn|Ahn−1] = Ahn−1

E [vn|Whn] = Whn
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Nonnegative dynamical system (NDS)
(Févotte, Le Roux, and Hershey, 2013)

hn = Ahn−1 ◦ ξn (state dynamics)

vn = Whn ◦ εn (observation model)

I The observation model underlies an Itakura-Saito (IS)
pseudo-likelihood:

− log p(V|WH) = DIS (V|WH) + cst

I When A = IK , we obtain smooth IS-NMF, i.e.,
E
[
hkn|hk(n−1)

]
= hk(n−1). (Févotte, 2011)
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Parameter estimation

MAP approach:

min
W,A,H≥0

C (W,H,A) = − log p(V|WH)︸ ︷︷ ︸
fit

− log p(H|A)︸ ︷︷ ︸
dynamics

Optimization:

I Block-coordinate descent algorithm that updates W, A and H
in turn.

I Adjacent columns of H are coupled in the optimization; we
used a left-to-right block-coordinate descent:

h
(i)
1 → . . .→ h

(i)
n−1︸ ︷︷ ︸

already updated

→ hn → h
(i−1)
n+1 → . . .→ h

(i−1)
n+1︸ ︷︷ ︸

not yet updated

I Updates obtained by majorization-minimization (MM).
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Training a speech model

I Data
I Speech from TIMIT, 16 kHz. exemple 1 exemple 2 exemple 3
I 1000 files per gender (≈ 50 minutes per gender).
I Speaker-independent, gender-dependent training.

I Power spectrogram computation
I Sine window with 50% overlap.
I Frame length: 32 ms to 60 ms.

I NDS specifications
I K = 1000
I Observation: vt = Wht ◦ εt with exponential innovation

(⇔ Gaussian modeling of the complex-valued STFT)
I Dynamics: ht = Aht ◦ ξt with very sparse innovation
⇒ favors very few active coefficients in every frame
⇒ dictionary elements look like phonems
⇒ “relaxed” HMM model
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Previous basis number
C

u
rr

e
n
t 

b
a
s
is

 n
u
m

b
e
r

 

 
1 200 400 600 800 1000

1

200

400

600

800

1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cédric Févotte (CNRS) Itakura-Saito NMF



Generalities about NMF Itakura-Saito NMF NDS Statistical model Speech enhancement

Speech enhancement

x︸︷︷︸
noisy signal

= s︸︷︷︸
clean speech

+ n︸︷︷︸
noise

1. Learn Wtrain, Atrain from clean speech (training data).

2. Compute the power spectrogram V = |X|2 of noisy signal.

3. Produce the decomposition

V = WtrainH + WnoiseHnoise

where
I E

[
hn|Atrainhn−1

]
= Atrainhn−1 a priori.

I WnoiseHnoise forms a “garbage” NMF model of the noise.

4. Produce the source estimate STFT by Wiener filtering

ŝfn =
[WtrainH]fn

[WtrainH + WnoiseHnoise]fn
xfn
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Speech enhancement results
Helicopter
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Speech enhancement results
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Speech enhancement results
Helicopter

enhanced with NDS
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Speech enhancement results
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noisy signal
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Speech enhancement results

I 150 mixtures: 10 speech files x 15 texture sounds; 3 SNRs.
I Compared with state-of-the-art OMLSA (Cohen, 2002, 2003).
I 2 “garbage” spectral patterns to model the noise.
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Conclusions

I Itakura-Saito NMF of the power spectrogram is underlain by a
statistical model of superimposed Gaussian components.

I This model is relevant to the representation of audio signals.

I Algorithms can be designed in a principled way in the
majorization-minimization setting.

I Regularized variants, e.g., NDS.

I Possible extension to multichannel data for audio source
separation.

I The latent statistical model opens doors to fully Bayesian
approaches that integrates over W and/or H (Févotte and
Cemgil, 2009; Hoffman et al., 2010; Févotte et al., 2011;
Dikmen and Févotte, 2011)
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