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CONTEXT

I The phase Retrieval Problem

Given b ∈ Cm, find x ∈ Cn such that |Ax | = b,

where A is a matrix in Cm×n.

I Audio Applications
I Source separation [Sturmel, 2011]
I Sound transformation in the time-frequency domain [Olivero, 2012]
I Synthesis via scattering coefficients [Mallat, 2012]

I Solver for the phase retrieval problem
I Iterative algorithms like [Griffin and Lim, 1984]
I Recent algorithms used convex relaxation techniques and semi-definite

programming [Candes, 2011]

I Our contribution
I Bayesian model
I Unscented transform
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EXAMPLE IN THE GABOR CASE WITH A BABBLE SIGNAL

Signal reconstructed via Ax Signal reconstructed via |Ax |
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PHASE RETRIEVAL PROBLEM

Given b ∈ Rm
+, find x ∈ Cn such that |Ax | = b,

where A is a matrix in Cm×n.

Find Ax = y ∈ Cm such that


|y | = b
(I − AA†)︸     ︷︷     ︸

Π

y = 0

For noisy y and b, the model reads :

p(y) ∝ exp(−‖Πy‖2), y ∈ Cm

p(bm |ym, φm) ∝ exp
{
−φm (|ym | − bm)2

}
If φm = φ ∈ R+, this model amounts to

miny ‖Πy‖2 + φ‖|y | − b‖2

Π

y

b φ
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PHASE RETRIEVAL PROBLEM

Given b ∈ Rm
+, find x ∈ Cn such that |Ax | = b,

where A is a matrix in Cm×n.

Find Ax = y ∈ Cm such that


|y | = b
(I − AA†)︸     ︷︷     ︸

Π

y = 0

For noisy y and b, the model reads :

p(y) ∝ exp(−‖Πy‖2), y ∈ Cm

p(bm |ym, φm) ∝ exp
{
−φm (|ym | − bm)2

}
p(φm) ∝ Gamma(α, β)

Π

y

b φ α,β
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BAYESIAN MODELS

I H : hidden random variables
I V : visible random variables (i.e. observations)
I M : model defining the probabilistic dependencies between H and V

Goal : evaluate the model posterior probablity

p(M|V = v) ∝ p(V = v |M)π(M)

p(M|V = v) ∝ p(V = v |M)��
�H
HHπ(M)

which comes down to evaluate the log-evidence
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BAYESIAN MODELS

I H : hidden random variables
I V : visible random variables (i.e. observations)
I M : model defining the probabilistic dependencies between H and V

Goal : evaluate the model posterior probablity

p(M|V = v) ∝ p(V = v |M)��
�HHHπ(M)

which comes down to evaluate the log-evidence

E�ZM(v) = ln p(V = v |��ZZM)

Now, we will drop the subscriptM
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VARIATIONAL BAYESIAN INFERENCE

E(v) = ln p(V = v)

= ln
∑

h

p(V = v ,H = h)

= ln
∑

h

q(h)
p(V = v ,H = h)

q(h)
, for any q ∈ Q

≥ EH∼q
{
ln P(V = v ,H)

}︸                        ︷︷                        ︸
Fv (q)

+ EH∼q
{
− ln q(H)

}︸               ︷︷               ︸
Entropy : G(q)︸                                                     ︷︷                                                     ︸

Lv (q)

Lv (q) is a lower bound of the evidence (ELBO).

E(v) = max
q∈Q
Lv (q),

The optimal distribution is equal to the posterior distribution p(H |V ),
but ....
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VARIATIONAL BAYESIAN INFERENCE

E(v) = max
q∈Q
Lv (q) = EH∼q

{
ln P(V = v ,H)

}︸                        ︷︷                        ︸
Fv (q)

+ EH∼q
{
− ln q(H)

}︸               ︷︷               ︸
Entropy : G(q)

1. Q is the family of all probabilities of distributions on H.

2. How can we compute Fv (q) and G(q) ?

I The popular Mean-Field approximation restricts Q to factorized
distributions [Jordan and al, 1999].

I [Gershman, 2012] proposed a new method is also called
"Nonparametric Variational Inference".
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NONPARAMETRIC VARIATIONAL INFERENCE

E(v) = max
q∈Q
Lv (q) = EH∼q

{
ln P(V = v ,H)

}︸                        ︷︷                        ︸
Fv (q)

+ EH∼q
{
− ln q(H)

}︸               ︷︷               ︸
Entropy : G(q)

I [Gershman, 2012]

1. q(h) = 1
N

∑N
n=1

1
(2πσ2

n)D/2 exp
{
− 1

2σ2
n
‖h − µn‖

2
}
.

2. ln P(V = v , ·) is obtained with a second order approximation.

3. The entropy is lowly bounded.

I We build upon and extend this approach :

1. we will consider a non isotropic mixture of gaussians

2. we use unscented transform to evaluate the expectations.
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UNSCENTED TRANSFORM

[Julier and Uhlmann, 1995]

Let X be a random variable with E[X ] = X and cov(X ) = RRT and
f a twice differentiable function :

Z = f (X ) ≈ f (X ) + ∇X f T (X − X ) +
1
2

(X − X )T HfX (X − X )

E[f (X )] ≈ f (X ) + 0 +
1
2

Tr {E[(X − X )T (X − X )]HfX } (1)

= f (X ) +
1
2

Tr {cov(X )HfX }

For all random variable with mean X and covariance cov(X ), we obtain a
second-order approximation of E[f (X )].

I We will construct a discrete random variable χ with values χi and
probabilities ωi .

(1) aT b = Tr(aT b) = Tr(baT )
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UNSCENTED TRANSFORM

Let X be a random variable with E[X ] = X and cov(X ) = RRT .

A set of sigma points {χi } and weights {ωi } has the same mean and
covariance.

χ0 = X ω0 =
κ

n + κ

χi = X +
√

n + κRi ωi =
1

2(n + κ)

χi+n = X −
√

n + κRi ωi+n =
1

2(n + κ)
, i = 1, ..,n

Ri is the i-th column of R

Proposition

If f is twice differentiable, then E[f (χ)] =
2n∑

i=0
ωi f (χi ) is a second order

approximation of E[f (X )].
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UNSCENTED TRANSFORM

Let X be a random variable with E[X ] = X and cov(X ) = UUT + VV T .

We define a set of sigma points : {Xu
i ,X

v
j } with corresponding weights

{ωu
i , ω

v
j }.

For i = 1, ..,nu , j = 1, ..,nv :

Xu
i =


X
X + αu

i ui

X − αu
i+nui

and Xv
j =


X
X + αv

j vj

X − αv
j+nvj

with
∑
i
ωu

i +
∑
j
ωv

j = 1

Proposition
If f is twice differentiable, then E[f (χ)] =

∑
k
ωk f (χk ) is a second order

approximation of E[f (X )].
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UNSCENTED VARIATIONAL BAYESIAN INFERENCE

E(v) = max
q∈Q
Lv (q) = EH∼q

{
ln P(V = v ,H)

}︸                        ︷︷                        ︸
Fv (q)

+ EH∼q
{
− ln q(H)

}︸               ︷︷               ︸
Entropy : G(q)

In our approach,

1. The family of distributions is described with

q(h) =
1
N

N∑
n=1

1√
(2π)D |Σn |

exp
{
−

1
2

(x − µ)>Σ−1
n (x − µ)

}

where

 Σn = σ2
nI + WnW>

n

Wn ∈ R
p×D with p << D

2. The unscented transform gives a second order approximation of the
expectations.
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LOGISTIC REGRESSION : EXPERIMENTS

I Obervations : V = {xt , ct }
T
t=1, where xt ∈ R

D , ct ∈ {±1}.
I Hidden variables : H = {w , α}, where w ∈ RD , α ∈ R+

The probabilities describing the possible outcomes are modeled using a
logistic function :

p(ct |w , xt ) =
1

1 + e−ct wT xt

The regression parameters are given with probabilities :

p(w |α) = g(w ; 0, α−1)

p(α) = γ(α; a,b)

We compare our approach with the one proposed in [Gershmann, 2012] for
simulated data and UCI datasets
I Comparable results
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CONCLUSION

We show a promising new framework for Variational Bayesian Inference, with
few hypothesis on the joint probabilitiy involved (twice differentiability).

Advantages :
I Flexibility
I Confidence intervals

Drawbacks :
I Computational cost

Future directions :
I Estimation of non-uniform mixture coefficients
I Situations where the function is L-Lipschitz differentiable
I Model selection
I Intensive experiments for the phase retrieval problem
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