Unscented Variational Bayesian Inference

Anaik Olivero’, Liva Ralaivola*

TLaboratoire d’Analyse, Topologie, Probabilités, Marseille (Aix—‘ e

*Laboratoire d’Informatique Fondamentale, Marseille (N

Journée GdR ISIS "Traitement du signal de données a valeurs complexes”, 12 juin 2013



CONTEXT

v

The phase Retrieval Problem
Given b e C™, find x € C" such that |Ax| = b,

where A is a matrix in C™".

v

Audio Applications
> Source separation [Sturmel, 2011]
> Sound transformation in the time-frequency domain [Olivero, 2012]
> Synthesis via scattering coefficients [Mallat, 2012]

v

Solver for the phase retrieval problem
> lterative algorithms like [Griffin and Lim, 1984]
> Recent algorithms used convex relaxation techniques and semi-definite
programming [Candes, 2011]

v

Our contribution

> Bayesian model
> Unscented transform
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EXAMPLE IN THE GABOR CASE WITH A BABBLE SIGNAL
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PHASE RETRIEVAL PROBLEM

Given b e RY, find x € C" such that |Ax| = b,

where Ais a matrix in C™",

lyl=»b
Find Ax = y € C™ such that { (/- AA")y =0
—_————

n

For noisy y and b, the model reads :

p(y) « exp(-IINyl?), yeC” u
P(brlYim, &m) < €xP {~dm (1Yl = bm)°)

If m = ¢ € R, this model amounts to @

miny, INy1P + lilyl - bI?
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PHASE RETRIEVAL PROBLEM

Given b e RY, find x € C" such that |Ax| = b,

where Ais a matrix in C™",

lyl=»b
Find Ax = y € C™ such that { (/- AA")y =0
—_————

n

For noisy y and b, the model reads :

p(y) « exp(-IINyl?), yeC” u
P(brlYim, &m) < €xP {~dm (1Yl = bm)°)

p(¢m) «« Gamma(a, B) @
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BAYESIAN MODELS

» H : hidden random variables
» V :visible random variables (i.e. observations)
» M : model defining the probabilistic dependencies between H and V

Goal : evaluate the model posterior probablity

PIMIV = v) e p(V = vIM)r(M)
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BAYESIAN MODELS

» H : hidden random variables
» V : visible random variables (i.e. observations)
» M : model defining the probabilistic dependencies between H and V

Goal : evaluate the model posterior probablity

PMIV = v) e p(V = vIM)ztA)
which comes down to evaluate the log-evidence

Em(v) =Inp(V = vIM)
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BAYESIAN MODELS

» H : hidden random variables
» V :visible random variables (i.e. observations)
» M : model defining the probabilistic dependencies between H and V

Goal : evaluate the model posterior probablity

pMIV =v)«<p(V = VIM)M

which comes down to evaluate the log-evidence

Ex(v) = Inp(V = vIM)

Now, we will drop the subscript M
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VARIATIONAL BAYESIAN INFERENCE

E(v)=Inp(V=v)
:Ian(V: v,H = h)

Ian #_h) forany geQ

>Epq{InP(V =v,H)} + Epql-Ing(H)}

Fv(q) Entropy : 6(q)

Lv(q)

£L,(q) is a lower bound of the evidence (ELBO).
&(v) = max £,(q),
qeQ

The optimal distribution is equal to the posterior distribution p(H|V),
but ....
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VARIATIONAL BAYESIAN INFERENCE

E(v) = max £,(q) = En-q I P(V = V. H)} + Ey-ql=Ing(H))

Fv(q) Entropy : G(q)

1. Qs the family of all probabilities of distributions on H.
2. How can we compute %,(q) and G(q) ?

» The popular Mean-Field approximation restricts Q to factorized
distributions [Jordan and al, 1999].

» [Gershman, 2012] proposed a new method is also called
"Nonparametric Variational Inference".
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NONPARAMETRIC VARIATIONAL INFERENCE

&(v) = maxLV(q) Enq{INP(V = v,H)} + En-q{-Inqg(H)}

Fv(q) Entropy : G(q)

» [Gershman, 2012]
1. a(h) = % 2y Gbom oxp {5zl - wnl}.

2. InP(V = v,-) is obtained with a second order approximation.

3. The entropy is lowly bounded.
» We build upon and extend this approach :

1. we will consider a non isotropic mixture of gaussians

2. we use unscented transform to evaluate the expectations.
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UNSCENTED TRANSFORM

[Julier and Uhimann, 1995]

Let X be a random variable with E[X] = X and cov(X) = RR” and
f a twice differentiable function :

Z = f(X) = f(X) + VxfT (X = X) + %(X—Y)TH)‘Y(X -X)
BN (X) + 0 + STEX-X)(X-X)Hi (1)
= 1(X) + 3 THeov(X)Hiy)

For all random variable with mean X and covariance cov(X), we obtain a
second-order approximation of E[f(X)].

» We will construct a discrete random variable y with values y; and
probabilities w;.

(1) a"b=Tra'b) = Tr(ba')
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UNSCENTED TRANSFORM

Let X be a random variable with E[X] = X and cov(X) = RRT.

A set of sigma points {y;} and weights {w;} has the same mean and

covariance.
— K
=X =
X0 wo n+x
— 1
=X n R; R
Xi + VN + kA; Wi 2([7 T K)
— 1 ,
Xitn =X = Vn+«R; wi+n:m, i=1,.,n
R is the i-th column of R
Proposition

2

If f is twice differentiable, then E[f(x)] = Zr], wif(x;) is a second order
i=0

approximation of E[f(X)].
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UNSCENTED TRANSFORM

Let X be a random variable with E[X] = X and cov(X) = UUT + VVT.

We define a set of sigma points : {X?, X}’} with corresponding weights
{wf, u)/‘.’}.

Fori=1,.,n,,j=1,.,n,:

X X
Xi =1 X+alu and X/ ={ X+a/y
X - (Y;l+nu, X - (Yj‘./Jran

with Zw}’+2wj'/:1
i J

Proposition

If f is twice differentiable, then E[f(x)] = X w«f(x«) is a second order
k

approximation of E[f(X)].
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UNSCENTED VARIATIONAL BAYESIAN INFERENCE

E(v) = MaXLu(q) = Breq N P(V = V. H)} + Breql-Ing(H))

Fv(q) Entropy : G(q)

In our approach,
1. The family of distributions is described with

Z’V: 1
n=1 V (27T)D |Zn|

Tn = 021+ W,WT
W, e RP*D with p << D

a(h) = oxp - (x5 (x - )}

==

where {

2. The unscented transform gives a second order approximation of the
expectations.
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LOGISTIC REGRESSION : EXPERIMENTS

T
t=1’

» Hidden variables : H = {w, a}, where w e R?, a e R,

» Obervations : V = {x;, ¢}, where x; e R?, ¢; € {+1}.

The probabilities describing the possible outcomes are modeled using a
logistic function :

1

plalw. x) = o

The regression parameters are given with probabilities :

p(wla) = g(w;0.a7")
p(a) = y(a; a,b)

We compare our approach with the one proposed in [Gershmann, 2012] for
simulated data and UCI datasets

» Comparable results
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CONCLUSION

We show a promising new framework for Variational Bayesian Inference, with
few hypothesis on the joint probabilitiy involved (twice differentiability).
Advantages :

» Flexibility

» Confidence intervals
Drawbacks :

» Computational cost
Future directions :

» Estimation of non-uniform mixture coefficients

» Situations where the function is L-Lipschitz differentiable

» Model selection

» Intensive experiments for the phase retrieval problem
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