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Aim of this presentation

To Introduce

Boundedness of composition (Koopman) operators on

reproducing kernel Hilbert spaces with analytic positive
definite functions, J. Math. Anal. Appl. (2022).

This Is a joint work with
. Isao Ishikawa (Ehime Univ.) —s=—Number theory, Machine learning

. Yoshihiro Sawano (Chuo Univ.) =®=—Theory of function spaces

Motivation(roughly)

Want to give a theoretical guarantee to a method of data analysis

- Operator Theoretic Approach «— Koopman operator
 + Kernel Methoa «— Reproducing kernel
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Koopman (composition) operator

+ E,E' . (hon-empty)sets - f:E— E': map
V (resp. W) : function space on E (resp. E’)
* C: V— W:Koopman operator Cfh) :=hef

Advantae of the usage of KO Cla hy + ahy) = a\Chy) + a,Clhy)

Even |f f1s nonlinear, C;is linear|—|Techniques of
functional analysis

- Typical example = (Nonlinear) dynamical system
A1 =f(xt)s re {0,1,---,} — h(xt) — h(f(xt—l)) — Cf(h)(x;_1)

h
— C.Ch .=
Time behavior of x, o 0i-2)

Ifting
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Continuity (Boundedness)

Problem|!s the Koopman operator C;

well-cgleﬂned ? Com?act ? decomptosable ?

Most fundamental  Today’s main Information Time behavior of C;
of spectrum

An operator C : V- W is continuous (bounded)

det
<~ dA>0S.1T ||Ch)|y L Alhlly, VheEY.

IS often assumed to verity a convergence of the finite-

dimensional approximation of C; to itself.



Reproducing kernel Hilbert space (RKHS)

Definition
M. Set
k: M x # — C:. positive definite kernel on .7 iff

forany n>0andx,,...,.x € .4, the matrix
(k(xi’ xj)) -

i,j=1,...,n

IS a positive semi-definite Hermitian matrix

Theorem(Moore-Aronszajn)
k. positive definite kernel on ., k, : # — C;x — k(x,a)
31H,: Hilbert space (RKHS) c C# s.t.
() Vae 4, k, € H,
(i) Yae A, Vh € Hy, (k,h)y =ha)




Positive definite functions

Definition

u: RY - C: positive definite function iff

k(x,y) := u(x —y): positive definite kernel

Theorem(Bochner)

u. continuous positive definite function iff

3. finite Borel measure on R? s.t. u(x) = j(x) := J e2™ '€ du()
Rd

Example
() ux) = e

(ii) u(x) = SIn()

X



Examples of RKHS

{zeC:|z| < 1}
(i) (Hardy space) # =D, k(z,w):=(1 —zw)™!

H, = {h: regularon D : sup J | h(2) |2dz < oo}
|z|=r

O<r<l1

(il) (Fock space) .« = C?, k(z,w):=é& ¥

H,, = < h:regular on c? . J | h(x + iy) |2e_|x|2_|Y|2dxdy < 0
RIx R4

(i) # =R, k(x,y) =ulx—y) wec’nL?*and # L)

Hk={hecOnL2 : [ |2(5)|2ﬁ(a§)—1d5<oo}
Rd



Continuity of Koopman operator

Which f: 2 — % induces a continuous Koopman operator Cf?

Theorem(Littlewood’s subordinate theorem)

A Y r 4

L=Y%=D, kiz,w):= (1 —zw)7},

Cr: Hy — H;: continuous iff f: holomorphic

Theorem(Carswell-MacCluer-Schuster)
L=%=C% kizw) = &V
Cr: Hy — H, : continuous iff f(z) = Az + D,

where, AeM(C), b e C? s.t.
|A] <1
b'¢ =0 for v¢ satisfying |AC| = |(]



Main result

How about «(x,y) =u(x—-y) (te C’'nL?and & € L') case?
Main result(rough)

We determine which f: U — R? induces a continuous Koopman operator
Cf H, — HkIUz for a wide class of positive definite functions u, where

U c R%is an open subset and k(x, y) = u(x — y)

Notation

LA () := {h: mesurable on R ; J | h(&) |2 u(&)dé < oo}

Rd
m, s LX) = LX@); h(&) = e (&) (z € C’)
P, = {p e C[¢&,,...,&,] : total degree of p < n}

Z(u) ;= {A € GLYR) : Lu(ATE) > U(&) for some 1, > 0}



Main result

Main theorem(lkeda-Ishikawa-Sawano)

A Y

u e C'n L% positive definite function
Suppose

() Va>0, 3C>0 S.t. [7(&)] < Ce K

(I) sup (lim sup || mz\li Hl/”) <

zeC n— 00

() £0 € €(u) for some Q € GL (R)

(IV) (2u)p = My (R)

For U c R% open and f: U — R% any map,

We regard P, c L*()

Cy: Hy — Hy ,: continuous iff f(x) =Ax+ b,

where, A € €u) , b € R?



Main result

Remark

» The condition (I) is almost the same as entireness of u (Paley-Winer theorem )
» The condition (Il) always holds if supp(#) is compact or u(x) = e~

» The condition (lll) always holds if « is R-valued (take O = 1)

(

» The condition (IV) always holds if d = 1, supp(#) iIs compact containing open ball at 0O,
Or u(x) = eI

- Characterization of f via properties of ¢, considerably depends on the choice of k

- We also prove ¢, cannot be compact

» The same results are proved by Chacon-Chacon-Gimenez(2007) in the case d =1
and u(x) = sin(x)/x In terms of other method



2. Sketch of the proof



Rough strategy

We only consider U = R? case here
A) "Iif" part is easy
B) "Only if" part is hard
1. Affine-ness for special f:
prove if 3f: C¢ —» C% holomorphic s.t. f|..=/,
then Main theorem holds
2. Analytic continuation of general 1.

prove 3f: C? — C% holomorphic s.t. f|..=f



Proof of "If" part

Let fix)=Ax+b (A€ @), beR?)
-or h € H,, we have

IGh, = J Ch®) P2 de
Rd

_ \Arlj @) P aATE ds
rd

<A1 kg,




Affine-ness: Statement

Theorem A(lkeda-l.-Sawano)

- L4

u € C'n L*: positive definite function
Suppose

() Va>0, 3C>0 s.t. |7(&)] < Ceal

(II) sup (hm sup || m, |, ||1/”> <

zeC n>0

(M) (£W)r = M4R)

For f:R?—> R? s.t. 3f:CY— C% holomorphic with f| ., = f,
it C;: H, — H, : bounded, then f(x) = Ax + b,

where, A€ €uw), b e R?



Affine-ness: Sketch of the proof

Notation

b - cd LZ(ZZ); 7 ezm'zTé;

S:LX@) - Hy; h (ki) Note: §is an isomorphism

Ky := ST'CES : LX(i0) — L*(i) Note: Kp(z) = ¢(f) (z € C)

| emma

Assume (l) in Theorem A. For» > 0and z e C,
Kf (mz(P n)> C mf(z)(P n)

Moreover, for homogeneous polynomial ¢(,, ..., &), we have

Kim (&, &) = mi (J12) - (€),) + (poly. of degree < deg(g)

where Jx(z) is the Jacobian of f at z

By considering K;'s action on polynomials, we can extract information of of J;



Affine-ness: Sketch of the proof

Corollary

Assume (I) in Theorem A. We have the commutative diagram

K m_z.

n—

|12 |12
Sz
(]:[519 R 5@’];@ f(Z) > C[é]a KR éd]n

Cl&,, ..., E/],: Space of homogeneous polynomlals of degree n

§"J(z): natural linear map determined by ¢, — Z

r—l

Proposition

Assume (I) and (ll) in Theorem A. If C;is bounded, z - ttJx(z) is constant.

Forany A € g(u), C,,,1s also bounded, thus tr/,x(z) = trAJx(z) Is also constant.
Therefore, (Ill) deduces Jx(z) is constant




Analytic continuation: Statement

Theorem B(lkeda-I.-Sawano)

A Y L4

u € C'n L*: positive definite function
Suppose
() Va >0, 3C>0 S.t. |#(&)]| < Ce™¢
(I) £0 € @) for some Q € GL (R)
For f: RY - R% any map,

if C;: H, — H,: bounded, then3f: C? - C’: holomorphic with /|, =f



Analytic continuation: [dea of the proof

K:¢(z) must be ¢(f(z)) for some holomorphic f: ¢ - ¢4

. emma

Under (I) in Theorem B, we have
(i) ¢ is an injective L*(#)-valued holomorphic map

(i) ¢~': p(C% — C?is continuous

Steps of the proof
Step 1. show f is continuous (-~ f=¢~'Kp )
Step 2. show £ is analytic on R?

Step 3. Construct f in terms of K, ¢(z) and K_,..(z)



3. Conclusion & Future works



Conclusion & Future works

Conclusion

 Continuity of Koopman operators strongly confines the shape of the maps

. We prove f: U — R%is an affine map if Cr: Hy — Hkle is continuous by means of

the polynomial structures in Lz( 1), and complex analysis, where U C RY is open,
and k(x,y) = u(x — y) for suitable positive definite function u

sup ( lim sup || m, | ||1/”> < o0
Future works «€C ( 120 o

» Remove the condition (ll) in Main theorem Va>0,3C>0 s.t. | Q&) < Ce —

!
» Weaken the condition (I) in Main theorem (consider # decaying more slowly)

 generalize R? to general locally compact abelian groups or Lie groups



