Reproducing kernel Hilbert C*-module
for data analysis

Yuka Hashimoto

NTT Network Service Systems Laboratories /RIKEN AIP

May 2nd, 2023

e Y. Hashimoto, |. Ishikawa, M. lkeda, F. Komura, T. Katsura, and Y. Kawahara, JMLR,
22(267):1-56 (updated version : arXiv:2101.11410v2)

e Y. Hashimoto, F. Komura, and M. lkeda, Matrix and Operator Equations, to appear

e Y. Hashimoto, M. lkeda, and H. Kadri, AISTATS 2023



Introduction

Yuka Hashimoto
NTT Network Service Systems Laboratories / RIKEN AIP
e 2018 Received Master's degree from Keio University
® 2018- NTT Network Service Systems Laboratories
® 2022 Received Ph.D. from Keio University
® 2022- Visiting researcher at RIKEN AIP

Backgrounds / Interests

e Operator theoretic data analysis
e Kernel methods

® Numerical linear algebra

RKHM for data analysis Yuka Hashimoto 2/21



Contents

1. Motivation and Background

2. Reproducing kernel Hilbert C*-module (RKHM)
2.1 Hilbert C*-module and RKHM
2.2 Representer theorems and kernel mean embedding in RKHMs

3. Applications
3.1 Supervised learning for image data

4. Conclusion

RKHM for data analysis Yuka Hashimoto 3/21



Kernel methods

Feature map ¢

*¢(z)

p complex-valued function
(temperature, traffic amount,...)
X . RKHS?!
(Finite dimensional sp.) (Infinite dimensional Hilbert sp.)
Nonlinear @4 Linear

e Kernel PCA, Kernel SVM

e Learning complex-valued functions

Advantages of RKHS
® Nonlinearity in the original space is transformed into a linear one.

® We can compute inner products in RKHS exactly by computers.

1Schélkopf and Smola, MIT Press, Cambridge, 2001
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Reproducing kernel Hilbert space (RKHS)

Let X beaset. Amap k: X x X — C is called a positive definite kernel if
it satisfies:

1. k(x,y) = k(y,z) for z,y € X and

2. Zzszlak(wt,xs)cs >0 forneN, c,...,cn€C, zq,...,2, € X.

¢(z) := k(-,x) (¢ : X — C¥: feature map associated with k),
Hio:={> 1 d(@)ct| n€N, ¢ €C, € X}, (1)
We can define an inner product (-,-), : Hpo X Hio — C as

(i d@s)es, Yooy Do), = Y0y Yooy Cklws )i (2)

RKHS H}.: completion of Hy, o
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Representer theorem in RKHSs

The representer theorem guarantees that solutions of a minimization
problem are represented only with given samples?.

Hki RKHS
Riy:={a€R | a>0}

Theorem 1 Representer theorem in RKHSs

Let 21,...,2, € X and a1,...,a, € C. Let h: X x C> — R, be an error
function and g : Ry — R satisfy g(¢) < g(d) for ¢ < d. Then, any

u € Hy, minimizing Y1 h(xi, a;, w(x;)) + g(J|ul|x) admits a
representation of the form Y7 | ¢(x;)c; for some ¢y, ..., ¢, € C.

The result can be applied to supervised problems.

2Scholkopf et al., COLT 2001.
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Kernel mean embedding in RKHSs

The kernel mean embedding enables us to generalize the framework of
RKHSs to analyzing measures.

k:X x X — C: positive definite kernel, Hy: RKHS

D(X): set of all complex-valued finite regular Borel measures
Kernel mean embedding in #,,3:

D D(X) = Hy, (D(1),v)y, = [ e v(z)du(z)

_— Featuremap ¢

e _
ramewor
Kernel mean embedding ® * () of RKHSs

X (Data sp.) Hyi. (RKHS)

3Muandet et al., Kernel Mean Embedding of Distributions: A Review and Beyond,
2017.
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Goal: Generalization of data analysis in RKHS to RKHM

Feature map ¢ oo (z)
ple C*-algebra-valued function
(function, 1mage,...)
X RKHM
(Structured data sp.) (Infinite dimensional Hilbert C*-module)
Nonlinear Linear + C*-algebra-valued inner product

Advantages of RKHM:

e (*-algebra-valued inner products extract information of structures.
We constructed a framework of data analysis with RKHM.

® \We can reconstruct existing RKHSs by using RKHMs.

® \We have shown fundamental properties for data analysis in RKHMs
(e.g. representer theorem, kernel mean embedding).
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C*-algebra and von Neumann-algebra

(C'*-algebra : Banach space equipped with a product & an involution * + «

® C(Z2) for a compact space Z
Norm : sup norm, Product : pointwise product,
Involution : pointwise complex conjugate

® IC(H) = {compact operators on a Hilbert space H}
Norm : operator norm, Product : composition, Involution : adjoint

Von Neumann-algebra : C*-algebra that is closed in the strong operator
topology
eg.
® [*°(Z) for a measure space Z
® B(H) = {bounded linear operators on a Hilbert space #}
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Advantages of RKHM

e Enlarge representation spaces using C*-algebras (e.g. use the
C*-algebra of continuous functions for functional data).

— ¢

[ ]
$1(x)
RKHM over A,

\_/.
X p2(x)

b2
RKHM over A,
Aq, A, 1 C*-algebra

e Construct positive definite kernels from the perspective of C*-algebra.
(Make use of the product structure.)
e.g. polynomial kernel k(x,y) = z*y + z*2*yy (x,y € Ay or Ay)
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Hilbert C*-module

A: C*-algebra
M: right A-module (u € M, c € A — uc € M)
Definition 1 .A-valued inner product

A map (-,) : M x M — Ais called an A-valued inner product if it
satisfies the following properties for u,v,w € M and ¢,d € A:

1. (u,ve+ wd) = (u,v) c+ (u,w)d,
2. {v,u) = (u,v)",
3. (u,u) >0 and if (u,u) =0 then u = 0.

— A-valued absolute value |u| := (u,u)"/> — Norm |Ju| := || (u,u) ||'{*

Hilbert C*-module M*: complete A-module equipped with an A-valued
inner-product

“Lance, Cambridge University Press, 1995.
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Review of reproducing kernel Hilbert C*-module

A: C*-algebra

RKHS (Hg):
e (C-valued positive definite kernel k
e (C-valued functions

e (C-valued inner product

RKHM over A (My):
e A-valued positive definite kernel k
e A-valued functions

e A-valued inner product
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Reproducing kernel Hilbert C*-module (RKHM)

Let X beaset. Amap k: X x X — A is called an A-valued positive
definite kernel if it satisfies:

1. k(x,y) = k(y,z)* for z,y € X and
2. Zzszlcfk(:ct,xs)cs >0 forneN,e,...,cn €A x1,...,2, € X.

() = k(-,7) (¢ : X — A%: feature map associated with k),
Mo ={>" d(@)er| nEN, ¢; € A, € X}, (3)
We can define an A-valued inner product (), : Mg o X Myo — A as

< 22:1 é(xs)cs, Z;ls:1 ¢(yt)dt>k = 22:1 Zi:1 cik(zs, ye)dy. (4)

RKHM M. completion of My, o
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Representer theorem in RKHMs

To generalize complex-valued supervised problems to A-valued ones, we
show a representer theorem.

My RKHM over A, | - |x: absolute value in My
Ay :={a€ A | 3be Asuch that a = b*b}

Theorem 2 Representer theorem in RKHMs

Let A be a unital C*-algebra, z1,...,2, € X and aq,...,a, € A. Let
h:X x A% — A, be an error function and g : A, — A, satisfy

g(c) < g(d) for ¢ < d. If Span 4{¢(z;)}7, is closed, any u € My,
minimizing >_;" | h(zs, ai, u(z;)) + g(|uli) admits a representation of the
form Y1 | ¢(x;)c; for some ¢, ..., cp € A.

Key point of the proof:

For a Hilbert C*-module M over a unital C*-algebra A and any finitely
generated closed submodule V of M, u € M is decomposed into

u = uj + ug where u; € V and ug € V*.
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Approximate representer theorem in RKHMs

If Ais a von Neumann algebra, we can show an approximate representer
theorem under mild conditions.

Theorem 3 Approximate representer theorem in RKHMs

Let A be a von Neumann-algebra, z1,...,2, € X and ay,...,a, € A.
Let h: X x A? — A, be a Lipschitz continuous error function with
Lipschitz constant L and g : A, — A, satisfy g(c) < g(d) for ¢ < d.
Assume f(u) := Y"1 1 h(x;, ai, u(z;)) + g(|ulk) has a minimizer u. Then,
for any € > 0, there exists v € M, of the form > 7" | ¢(x;)c; such that

1f(v) = F(w)l] < Lnellu].

Key point of the proof:
If Ais a von Neumann-algebra, we can apply the spectral decomposition
and construct an “orthonormalization” to the module generated by

{o(zi) iy
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Kernel mean embedding in RKHMs

A C B(H), M : Hilbert A-module.

Definition 2 Internal tensor

The completion of M @ H w.r.t.
(w1 ® u1, wa ® ug) = (u1, (wa, Wa) y U2),, is denoted as M @4 H.

Definition 3 Von Neumann module

W =M@ H. ldentify w € M with the map u — w ® 4 u and regard
M C B(H,W). If M C B(H,W) is strongly closed, M is called a von
Neumann A-module.

Assume k is bounded and ¢(x) = k(-,x) € Cp(X,.A) for any z € X.
Assume M is a von Neumann-module (Riesz representation theorem is
available). Kernel mean embedding ® : D(X, A) — My is defined as

B(u) = J o)) (5)
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Supervised learning in RKHM

Zi,...,Tn € X : input training samples (e.g. Circ(p))
ai,...,an € A : output training samples (e.g. CP*P)

EHB ct ' Product structure:
‘ BRAAGA - - (5| Convolution

Circulant matrix

Minimization problem (A > 0 : regularization parameter)

win (3°17) = e+ AT, (6)
=1

feMy

— Apply representer theorem in RKHM.
— Solve the minimization problem using the Gram matrix.
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Supervised learning in RKHM

Example of kernels (g-th degree polynomial kernel)
Ay = Clirc(p) C CP*P =: Ay, X C A? (e.g. images),
Qi j e A (Z =1,...d,5 = 1,...q—|—1>, Ty = [xLl,...,xl’n]

d q q
tonaz) = 3 (Lo sets Jotgosas( T oaaiaens) € e (0

i=1 “Nj=1 j=1

Product in A, (convolution):
Pointwise product of each Fourier component (FC)
. Product in A,:
Ay =Cire(P) |nteraction of different FCs

A, = CP*P

By setting a; j € A2, we beyond the convolution in existing methods.

Yuka Hashimoto 18 / 21
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Connection with CNN

Ay := Cire(p), a1,...,ar,b1,...,bp, € Ay, 01,...,01 : A1 = A;

k(x,y) == or(bpbr + op—1(b_1bp—1+---
+ aa(b3be + 01(bib1 + 2" ajary)azaz) - - -ay_jar-1)arar).  (8)
Then, k is an A;-valued positive definite kernel.

The solution f of the supervised problem is

fl@)=> or®ibr + or (b5 _1br-1+ -

=1 Bias
+ 02(b3bs + 01 (b1b1 + z"ajarz)asaz) - ap_yar—1)agar)c,
Activation Convolution 9)

By setting a1 ...,ar,b1,...,br € Ay D Ay, we beyond CNNs.
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Numerical results

Noise reduction for MNIST (number of samples : 20)

Original

Input p— =
100 200 300 400 500

; ) 4 ) :
- 0
L 3 Epochs
3-layer CNN — 3dayer3x3CNN

2-layer 28 x 28 CNN
ey
RKH M + 1—|ayer CN N ___ 2-layer RKHM
+ 1-layer 3 x 3 CNN

Input and output images
P P g Mean test error versus the
number of epochs

Mean test error

A CNN with an RKHM outperformed a CNN without an RKHM.
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Conclusion

e RKHM is a natural generalization of RKHS.

e \We showed a representer theorem and an approximate representer
theorem in RKHMs and defined a kernel mean embedding in RKHMs.

¢ RKHMs are useful for analyzing image data.
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