Reproducing kernel Hilbert C^* -module for data analysis

Yuka Hashimoto

NTT Network Service Systems Laboratories /RIKEN AIP

May 2nd, 2023

- Y. Hashimoto, I. Ishikawa, M. Ikeda, F. Komura, T. Katsura, and Y. Kawahara, JMLR, 22(267):1–56 (updated version: arXiv:2101.11410v2)
- Y. Hashimoto, F. Komura, and M. Ikeda, Matrix and Operator Equations, to appear
- Y. Hashimoto, M. Ikeda, and H. Kadri, AISTATS 2023

Introduction

Yuka Hashimoto

NTT Network Service Systems Laboratories / RIKEN AIP

- 2018 Received Master's degree from Keio University
- 2018- NTT Network Service Systems Laboratories
- 2022 Received Ph.D. from Keio University
- 2022- Visiting researcher at RIKEN AIP

Backgrounds / Interests

- Operator theoretic data analysis
- Kernel methods
- Numerical linear algebra

Contents

- 1. Motivation and Background
- 2. Reproducing kernel Hilbert C^* -module (RKHM)
- 2.1 Hilbert C^* -module and RKHM
- 2.2 Representer theorems and kernel mean embedding in RKHMs
- 3. Applications
- 3.1 Supervised learning for image data
- 4. Conclusion

Kernel methods

- Nonlinearity in the original space is transformed into a linear one.
- We can compute inner products in RKHS exactly by computers.

¹Schölkopf and Smola, MIT Press, Cambridge, 2001

Reproducing kernel Hilbert space (RKHS)

Let \mathcal{X} be a set. A map $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is called a positive definite kernel if it satisfies:

- 1. $k(x,y) = \overline{k(y,x)}$ for $x,y \in \mathcal{X}$ and
- 2. $\sum_{t,s=1}^{n} \overline{c_t} k(x_t, x_s) c_s \ge 0$ for $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{C}$, $x_1, \ldots, x_n \in \mathcal{X}$.

$$\phi(x) := k(\cdot, x) \ (\phi : \mathcal{X} \to \mathbb{C}^{\mathcal{X}})$$
: feature map associated with k),

$$\mathcal{H}_{k,0} := \left\{ \left. \sum_{t=1}^{n} \phi(x_t) c_t \right| \ n \in \mathbb{N}, \ c_t \in \mathbb{C}, \ x_t \in \mathcal{X} \right\}. \tag{1}$$

We can define an inner product $\langle \cdot, \cdot \rangle_k : \mathcal{H}_{k,0} \times \mathcal{H}_{k,0} \to \mathbb{C}$ as

$$\left\langle \sum_{s=1}^{n} \phi(x_s) c_s, \sum_{t=1}^{l} \phi(y_t) d_t \right\rangle_k := \sum_{s=1}^{n} \sum_{t=1}^{l} \overline{c_s} k(x_s, y_t) d_t. \tag{2}$$

RKHS \mathcal{H}_k : completion of $\mathcal{H}_{k,0}$

Representer theorem in RKHSs

The representer theorem guarantees that solutions of a minimization problem are represented only with given samples².

$$\mathcal{H}_k$$
: RKHS $\mathbb{R}_+ := \{ a \in \mathbb{R} \mid a \ge 0 \}$

Theorem 1 Representer theorem in RKHSs

Let $x_1, \ldots, x_n \in \mathcal{X}$ and $a_1, \ldots, a_n \in \mathbb{C}$. Let $h: \mathcal{X} \times \mathbb{C}^2 \to \mathbb{R}_+$ be an error function and $g: \mathbb{R}_+ \to \mathbb{R}_+$ satisfy g(c) < g(d) for c < d. Then, any $u \in \mathcal{H}_k$ minimizing $\sum_{i=1}^n h(x_i, a_i, u(x_i)) + g(\|u\|_k)$ admits a representation of the form $\sum_{i=1}^n \phi(x_i) c_i$ for some $c_1, \ldots, c_n \in \mathbb{C}$.

The result can be applied to supervised problems.

²Schölkopf et al., COLT 2001.

Kernel mean embedding in RKHSs

The kernel mean embedding enables us to generalize the framework of RKHSs to analyzing measures.

 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$: positive definite kernel, \mathcal{H}_k : RKHS

 $\mathcal{D}(\mathcal{X})$: set of all complex-valued finite regular Borel measures Kernel mean embedding in \mathcal{H}_k ³:

$$\Phi: \mathcal{D}(\mathcal{X}) \to \mathcal{H}_k$$
, $\langle \Phi(\mu), v \rangle_k = \int_{x \in \mathcal{X}} v(x) d\mu(x)$

³Muandet et al., Kernel Mean Embedding of Distributions: A Review and Beyond, 2017.

Goal: Generalization of data analysis in RKHS to RKHM

Advantages of RKHM:

ullet C^* -algebra-valued inner products extract information of structures.

We constructed a framework of data analysis with RKHM.

- We can reconstruct existing RKHSs by using RKHMs.
- We have shown fundamental properties for data analysis in RKHMs (e.g. representer theorem, kernel mean embedding).

C^{st} -algebra and von Neumann-algebra

 C^* -algebra : Banach space equipped with a product & an involution * + α e.g.

- C(Z) for a compact space Z
 Norm: sup norm, Product: pointwise product,
 Involution: pointwise complex conjugate
- $\mathcal{K}(\mathcal{H}) = \{ \text{compact operators on a Hilbert space } \mathcal{H} \}$ Norm: operator norm, Product: composition, Involution: adjoint

Von Neumann-algebra : C^* -algebra that is closed in the strong operator topology

e.g.

- ullet $L^\infty(\mathcal{Z})$ for a measure space \mathcal{Z}
- $\mathcal{B}(\mathcal{H}) = \{ \text{bounded linear operators on a Hilbert space } \mathcal{H} \}$

Advantages of RKHM

• Enlarge representation spaces using C^* -algebras (e.g. use the C^* -algebra of continuous functions for functional data).

• Construct positive definite kernels from the perspective of C^* -algebra. (Make use of the product structure.) e.g. polynomial kernel $k(x,y) = x^*y + x^*x^*yy$ $(x,y \in \mathcal{A}_1 \text{ or } \mathcal{A}_2)$

Hilbert C^* -module

\mathcal{A} : C^* -algebra

 \mathcal{M} : right \mathcal{A} -module $(u \in \mathcal{M}, c \in \mathcal{A} \to uc \in \mathcal{M})$

Definition 1 A-valued inner product

A map $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ is called an \mathcal{A} -valued inner product if it satisfies the following properties for $u, v, w \in \mathcal{M}$ and $c, d \in \mathcal{A}$:

- 1. $\langle u, vc + wd \rangle = \langle u, v \rangle c + \langle u, w \rangle d$,
- 2. $\langle v, u \rangle = \langle u, v \rangle^*$,
- 3. $\langle u, u \rangle \geq 0$ and if $\langle u, u \rangle = 0$ then u = 0.
- $o \mathcal{A} ext{-valued absolute value} \ |u| := \langle u,u
 angle^{1/2} \ \ \ o \ \mathsf{Norm} \ \|u\| := \| \, \langle u,u
 angle \, \|_{\mathcal{A}}^{1/2}$

Hilbert C^* -module \mathcal{M}^4 : complete \mathcal{A} -module equipped with an \mathcal{A} -valued inner-product

⁴Lance, Cambridge University Press, 1995.

Review of reproducing kernel Hilbert C^* -module

 \mathcal{A} : C^* -algebra

RKHS (\mathcal{H}_k) :

- C-valued positive definite kernel k
- C-valued functions
- C-valued inner product

RKHM over $\mathcal{A}(\mathcal{M}_k)$:

- \mathcal{A} -valued positive definite kernel k
- A-valued functions
- A-valued inner product

Reproducing kernel Hilbert C^* -module (RKHM)

Let \mathcal{X} be a set. A map $k: \mathcal{X} \times \mathcal{X} \to \mathcal{A}$ is called an \mathcal{A} -valued positive definite kernel if it satisfies:

- 1. $k(x,y) = k(y,x)^*$ for $x,y \in \mathcal{X}$ and
- 2. $\sum_{t,s=1}^{n} c_t^* k(x_t, x_s) c_s \ge 0$ for $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathcal{A}$, $x_1, \ldots, x_n \in \mathcal{X}$.

$$\phi(x) := k(\cdot, x) \ (\phi : \mathcal{X} \to \mathcal{A}^{\mathcal{X}})$$
: feature map associated with k),

$$\mathcal{M}_{k,0} := \left\{ \left. \sum_{t=1}^{n} \phi(x_t) c_t \right| \ n \in \mathbb{N}, \ c_t \in \mathcal{A}, \ x_t \in \mathcal{X} \right\}. \tag{3}$$

We can define an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle_k : \mathcal{M}_{k,0} \times \mathcal{M}_{k,0} \to \mathcal{A}$ as

$$\left\langle \sum_{s=1}^{n} \phi(x_s) c_s, \sum_{t=1}^{l} \phi(y_t) d_t \right\rangle_k := \sum_{s=1}^{n} \sum_{t=1}^{l} c_s^* k(x_s, y_t) d_t.$$
 (4)

RKHM \mathcal{M}_k : completion of $\mathcal{M}_{k,0}$

Representer theorem in RKHMs

To generalize complex-valued supervised problems to $\mathcal{A}\text{-}\text{valued}$ ones, we show a representer theorem.

 \mathcal{M}_k : RKHM over \mathcal{A} , $|\cdot|_k$: absolute value in \mathcal{M}_k $\mathcal{A}_+ := \{a \in \mathcal{A} \mid \exists b \in \mathcal{A} \text{ such that } a = b^*b\}$

Theorem 2 Representer theorem in RKHMs

Let \mathcal{A} be a unital C^* -algebra, $x_1,\ldots,x_n\in\mathcal{X}$ and $a_1,\ldots,a_n\in\mathcal{A}$. Let $h:\mathcal{X}\times\mathcal{A}^2\to\mathcal{A}_+$ be an error function and $g:\mathcal{A}_+\to\mathcal{A}_+$ satisfy g(c)< g(d) for c< d. If $\underset{i=1}{\operatorname{Span}}_{\mathcal{A}}\{\phi(x_i)\}_{i=1}^n$ is closed, any $u\in\mathcal{M}_k$ minimizing $\sum_{i=1}^n h(x_i,a_i,u(x_i))+g(|u|_k)$ admits a representation of the form $\underset{i=1}{\sum}_{i=1}^n \phi(x_i)c_i$ for some $c_1,\ldots,c_n\in\mathcal{A}$.

Key point of the proof:

For a Hilbert C^* -module $\mathcal M$ over a unital C^* -algebra $\mathcal A$ and any finitely generated closed submodule $\mathcal V$ of $\mathcal M$, $u\in\mathcal M$ is decomposed into $u=u_1+u_2$ where $u_1\in\mathcal V$ and $u_2\in\mathcal V^\perp$.

Approximate representer theorem in RKHMs

If A is a von Neumann algebra, we can show an approximate representer theorem under mild conditions.

Theorem 3 Approximate representer theorem in RKHMs

Let \mathcal{A} be a von Neumann-algebra, $x_1,\ldots,x_n\in\mathcal{X}$ and $a_1,\ldots,a_n\in\mathcal{A}$. Let $h:\mathcal{X}\times\mathcal{A}^2\to\mathcal{A}_+$ be a Lipschitz continuous error function with Lipschitz constant L and $g:\mathcal{A}_+\to\mathcal{A}_+$ satisfy g(c)< g(d) for c< d. Assume $f(u):=\sum_{i=1}^n h(x_i,a_i,u(x_i))+g(|u|_k)$ has a minimizer u. Then, for any $\epsilon>0$, there exists $v\in\mathcal{M}_k$ of the form $\sum_{i=1}^n\phi(x_i)c_i$ such that $\|f(v)-f(u)\|\leq Ln\epsilon\|u\|$.

Key point of the proof:

If $\mathcal A$ is a von Neumann-algebra, we can apply the spectral decomposition and construct an "orthonormalization" to the module generated by $\{\phi(x_i)\}_{i=1}^n$.

Kernel mean embedding in RKHMs

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$, \mathcal{M} : Hilbert \mathcal{A} -module.

Definition 2 Internal tensor

The completion of $\mathcal{M}\otimes\mathcal{H}$ w.r.t.

 $\langle w_1 \otimes u_1, w_2 \otimes u_2 \rangle = \langle u_1, \langle w_2, w_2 \rangle_{\mathcal{M}} u_2 \rangle_{\mathcal{H}}$ is denoted as $\mathcal{M} \otimes_{\mathcal{A}} \mathcal{H}$.

Definition 3 Von Neumann module

 $\mathcal{W} = \mathcal{M} \otimes_{\mathcal{A}} \mathcal{H}$. Identify $w \in \mathcal{M}$ with the map $u \mapsto w \otimes_{\mathcal{A}} u$ and regard $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H}, \mathcal{W})$. If $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H}, \mathcal{W})$ is strongly closed, \mathcal{M} is called a von Neumann \mathcal{A} -module.

Assume k is bounded and $\phi(x) = k(\cdot, x) \in C_0(\mathcal{X}, \mathcal{A})$ for any $x \in \mathcal{X}$. Assume \mathcal{M}_k is a von Neumann-module (Riesz representation theorem is available). Kernel mean embedding $\Phi : \mathcal{D}(\mathcal{X}, \mathcal{A}) \to \mathcal{M}_k$ is defined as

$$\Phi(\mu) = \int_{x \in \mathcal{X}} \phi(x) d\mu(x). \tag{5}$$

Supervised learning in RKHM

$$x_1, \ldots, x_n \in \mathcal{X}$$
: input training samples (e.g. $Circ(p)$) $a_1, \ldots, a_n \in \mathcal{A}$: output training samples (e.g. $\mathbb{C}^{p \times p}$)

Circulant matrix

Minimization problem $(\lambda \ge 0 : regularization parameter)$

$$\min_{f \in \mathcal{M}_k} \left(\sum_{i=1}^n |f(x_i) - a_i|_{\mathcal{A}}^2 + \lambda |f|_k^2 \right). \tag{6}$$

- \rightarrow Apply representer theorem in RKHM.
- ightarrow Solve the minimization problem using the Gram matrix.

Supervised learning in RKHM

Example of kernels (q-th degree polynomial kernel)

$$\begin{array}{l} {\cal A}_1:=Circ(p)\subset \mathbb{C}^{p\times p}=:{\cal A}_2,\ {\cal X}\subseteq {\cal A}_1^d\ \hbox{(e.g. images)},\\ a_{i,j}\in {\cal A}_2\ (i=1,\ldots d,j=1,\ldots q+1),\ x_1=[x_{1,1},\ldots,x_{1,n}] \end{array}$$

$$k(x_1, x_2) = \sum_{i=1}^{d} \left(\prod_{j=1}^{q} a_{i,j}^* x_{1,i}^* \right) a_{i,q+1}^* a_{i,q+1} \left(\prod_{j=1}^{q} x_{2,i} a_{i,q+1-j} \right) \in \mathcal{A}_2.$$
 (7)

Product in A_1 (convolution):

Pointwise product of each Fourier component (FC)

$$\mathcal{A}_1 = \mathit{Circ}(p) \quad \begin{array}{l} \mathsf{Product in} \ \mathcal{A}_2 \\ \mathsf{Interaction of different FCs} \\ \mathcal{A}_2 = \mathbb{C}^{p \times p} \end{array}$$

By setting $a_{i,j} \in \mathcal{A}_2$, we beyond the convolution in existing methods.

Connection with CNN

$$\mathcal{A}_{1} := Circ(p), \ a_{1}, \dots, a_{L}, b_{1}, \dots, b_{L} \in \mathcal{A}_{1}, \ \sigma_{1}, \dots, \sigma_{L} : \mathcal{A}_{1} \to \mathcal{A}_{1}$$

$$\hat{k}(x, y) := \sigma_{L}(b_{L}^{*}b_{L} + \sigma_{L-1}(b_{L-1}^{*}b_{L-1} + \dots + \sigma_{2}(b_{2}^{*}b_{2} + \sigma_{1}(b_{1}^{*}b_{1} + x^{*}a_{1}^{*}a_{1}y)a_{2}^{*}a_{2}) \cdots a_{L-1}^{*}a_{L-1})a_{L}^{*}a_{L}).$$
(8)

Then, \hat{k} is an \mathcal{A}_1 -valued positive definite kernel.

The solution f of the supervised problem is

$$f(x) = \sum_{i=1}^{n} \sigma_{L}(b_{L}^{*}b_{L} + \sigma_{L-1}(b_{L-1}^{*}b_{L-1} + \cdots) \\ + \sigma_{2}(b_{2}^{*}b_{2} + \sigma_{1}(b_{1}^{*}b_{1} + x^{*}a_{1}^{*}a_{1}x_{i})a_{2}^{*}a_{2}) \cdots a_{L-1}^{*}a_{L-1})a_{L}^{*}a_{L})c_{i},$$
Activation Convolution (9)

By setting $a_1 \ldots, a_L, b_1, \ldots, b_L \in \mathcal{A}_2 \supset \mathcal{A}_1$, we beyond CNNs.

Numerical results

Noise reduction for MNIST (number of samples: 20)

Mean test error versus the number of epochs

A CNN with an RKHM outperformed a CNN without an RKHM.

Conclusion

- RKHM is a natural generalization of RKHS.
- We showed a representer theorem and an approximate representer theorem in RKHMs and defined a kernel mean embedding in RKHMs.
- RKHMs are useful for analyzing image data.