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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Matrix rank: factorization view

Rank of X ∈ Rm×n (or Cm×n)

▶ def
= number of linearly independent columns/ rows in X

▶ def
= minimal r such that X can be factorized as

Xm

n

= m A

r

“tall” “fat”

n

r B

⇒ rank is bounded by dimensions:

rankX ≤ min(m,n)
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

How do low-rank matrices look like?

Ranks of flags (as X ∈ Rm×n):

▶

(Austria) rank = 1

▶

(Denmark) rank = 2

▶

(Greece) rank = 3

Inspired by talks of Alex Townsend
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

How do low-rank matrices look like?

Ranks of flags (as X ∈ Rm×n), cont’d:

▶

(Scotland) rank ≈ m
2 (symmetry)

▶

(Wales) rank ≈ 5
6m (finite support)

▶ random matrix (with a.c. probability distribution):
rank = min(m,n) a.s. (with probability 1)

▶ many interesting matrices are [well approximated by] low-rank
[Townsend, Udell, 2017]
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Singular value decomposition (SVD)

a/the (“economy size”) SVD (m ≤ n):

m

n

X = U

σ1

σm

. . . V T =

m∑

k=1

σkukv
T
k

where

▶ UTU = V TV = I — semi-orthogonal matrices of singular vectors

U =
[
u1 · · · um

]
, V =

[
v1 · · · vm

]

▶ σ1 ≥ · · · ≥ σm ≥ 0 — singular values
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

SVD and low-rank approximation

Eckart-Young(-Mirsky(-Schmidt)) theorem: best rank-r approximation

min
X̂
∥X̂−X∥ subject to rank X̂ ≤ r

in any unitarily invariant∗ norm ∥ · ∥ is given by

tSVDr(X) := U

σ1

σr

. . .

0
V T

= U1:r,:

σ1

σr

. . . V T
1:r,: =

r∑

k=1

σkukv
T
k

truncated SVD

∗ Examples: Frobenius norm ∥X∥2F :=
m,n∑
i,j=1

X2
ij , spectral norm...
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Low-rank approximations: example
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Computational aspects: full and partial SVD

m

n

X = U

σ1

σm

. . . V T =

m∑

k=1

σkukv
T
k

▶ Full SVD (m ≤ n): O(m2n) ([Golub, Reinsh, 1970])

▶ (uk, σ
2
k) — eigenvalues of C = XXT : O(m3) if m≪ n

▶ Truncated SVD (r first eigenvalues/vectors):
▶ Iterative (e.g., Lanzos/Arnoldi) algorithms (e.g., [Simon, 1984])

“generalization of power method”
▶ Randomized SVD [Halko, Martinsson, Tropp, 2011]

Both roughly O(Mr) , where M ≤ mn (see next slide):

8 / 63



Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Power iteration

Goal: find the top eigenpair u1, λ1 of C .

▶ Set u(0) ∈ Rm×m random.

▶ Iterate u(k+1) = Cu(k)

∥Cu(k)∥

Case C = XXT : cost ≈ O(Mniter) , where

▶ full matrices: M = mn

▶ sparse matrices: M = #non-zero entries

▶ structured matrices: (e.g., M = n log(n) for Hankel)

M = cost of matrix-vector product (e.g., Xv)

▶ used e.g., by Google for PageRank

▶ do not need to store the matrix X

▶ generalizes to rank-r approximation (cost O(Mr +mr2))

9 / 63
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Cross approximation

Observation. A rank-r matrix is uniquely determined by the r × r cross
if the r × r submatrix XI,J is nonsingular

X = X:,J (XI,J )−1XI,: (∗)

Example. r = 2:

unique completion (∗)−−−−−−−−−−−−→

⇒ (∗) can be used as an approximation
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Cross approximation

If the matrix is huge or expensive to compute:
CUR (cross, or pseudo-skeleton) approximation (for size-r subsets I,J ):

X̂cross(I,J ) = X:,J (XI,J )−1XI,:

[Mahoney, Drineas, 2012]
Advantages:

▶ Need a small portion (cross) of the matrix ( O(r(m+ n)))

▶ Quasi-optimality (thm. in [Goreinov, Tyrtyshnikov, 2001])

∥X̂∗
cross −X∥max ≤ (r + 1)σr(X)

for |det(XI,J )| → max

▶ iterative or randomized strategies to select I,J

11 / 63
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Extensions of the basic problem

min
X̂=AB

A∈Rm×r,B∈Rr×n

∥X− X̂∥F

▶ Other norms (e.g. ∥X∥2W =
∑
i,j

WijX
2
ij), missing data

▶ Constraint on the matrix:
structured X̂ — structured low-rank approximation

▶ Constraints on the factors A, B (e.g., nonnegative)

12 / 63



Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Weighted (unstructured) LRA

min
X̂
∥X− X̂∥2W subject to rank(X̂) ≤ r

where ∥X∥2W =
m,n∑
i,j=1

X2
ijWij , Wij ∈ (0;+∞) weighted norm

▶ Wij ≡ 1 (or rankW = 1) → solution by SVD

▶ In general case, no closed form solution:
Gillis, Glineur, Low-Rank Matrix Approximation with Weights or
Missing Data is NP-hard, SIMAX, 2011.
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Extended semi-norms and matrix completion

min
X̂
∥X− X̂∥2W subject to rank(X̂) ≤ r

∥X∥2W :=
m,n∑
i,j=1

X2
ijWij , Wij ∈ [0; +∞] weighted extended semi-norm

▶ fixed values: Wi, = +∞←→ constraint Xij = X̂ij

▶ missing values: Wij = 0←→ X̂ij is not important

Extreme case: Wij ∈ {0,+∞} — exact matrix completion

min rank(X̂)

subject to (X̂)ij = Xij , ∀(i, j) ∈ Ω

14 / 63
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Structured low-rank approximation

[Markovsky, 2008] : Problem (SLRA). Given a structured matrix X ∈ S

minimize
X̂

∥X− X̂∥2W subject to X̂ ∈ S and rank X̂ ≤ r

Data ≈ low-complexity model

structure S approximation problem

unstructured fit by r-dim. subspace

Summary: approximation criterion

data

model approx.

◮ TLS ↔ misfit ↔ errors-in-variables

min
ŵ⊂B

‖w − ŵ‖
(

projection
of w on B

)

◮ OLS ↔ latency ↔ ARMAX

min
(ê,w)∈Bext

‖ê‖

27 / 71

Hankel fitting by complex exponentials

block-Hankel linear system identification
model reduction

Sylvester approx. greatest common divisor

generalized fit set of points by
Vandermonde algebraic hypersurfaces

15 / 63
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Source separation ↔ matrix factorization
Example from spectroscopy:
▶ each observed spectrum is a linear combination of “pure spectra”

▶ different conditions — different coefficients.
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Instantaneous mixture model: X(x, λ) =
∑

k ak(x)sk(λ)

X = a1
sT1

+ · · · + ar
sTr

= A

r

r ST matrix

factorization

Can we recover A, S from X?
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Matrix factorizations are non-unique
Does not happen for matrices:

M = A
ST

= A
STQ Q-1

nonunique (change of basis)
However, constraints on factors can guarantee essential uniqueness

Q = Λ︸︷︷︸
diagonal

· Π︸︷︷︸
permutation

Examples of constraints:

nonnegativity

A ≥ 0,S ≥ 0
,

independence

(constraint on S)

17 / 63
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Other tools/link to optimization
▶ Mm×n

r = {X ∈ Rm×n| rank(X) = r} — smooth manifold

XS

M

0

r

M r S∩

X0

visualisation

of SLRA

→ optimization on manifolds [Absil, Mahoney, Sepulchre, 2008],
[Boumal, 2023]

▶ Mm×n
≤r = {X| rank(X) ≤ r} — algebraic variety (stratified set)

link to determinantal representations of algebraic varieties
▶ low rank ↔ sparsity of singular values

∥(σ1, . . . , σm)∥0︸ ︷︷ ︸
rank

↔ ∥(σ1, . . . , σm)∥1︸ ︷︷ ︸
nuclear norm

other sparsity-promoting penalties ...
▶ other norms/divergences/losses....
▶ dynamical low-rank approximation X(t) ∈Mr, varies over time

18 / 63
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Matrix factorization ↔ neural networks

Matrix factorization: X = UVT ,U =
[
u1 · · · ur

]
, V =

[
v1 · · · vr

]
Decompose linear map f : Rm → Rn, f(z) = Xz as

f(z) = u1 · (v⊤
1 z) + · · ·+ ur · (v⊤

r z),

z1

zm

input
layer

weights vk

hidden
layer

g1

gr

...
...

weights uk

output
layer

f1
...
fn

See for example:

▶ One-hidden layer model: ([Marcotte, Gribonval, Peyré, 2024])

▶ deep linear networks (products of matrices): [Malgouyres, 2020]

▶ deep NMF [Leplat et al, 2024]

19 / 63



Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Matrix factorization ↔ neural networks
Given nonlinear map f : Rm → Rn, decompose it as

f(z) = u1g1(v
⊤
1 z) + · · ·+ urgr(v

⊤
r z),

where gk(t) are univariate functions (see. e.g., [Comon,Qi,U., 2017])

z1

zm

input
layer

weights vk

hidden
layer

g1

gr

...
...

weights uk

output
layer

f1
...
fn

See for example:

▶ One-hidden layer model: ([Marcotte, Gribonval, Peyré, 2024])
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Tensors: some notation
Tensor product of vector spaces (over a field F = R or C ):

▶ T ∈ Fn1×···×nd
def
= Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd

▶ d-way array T =
[
Ti1,i2,...,id

]n1,n2,...,nd

i1,i2,...,id=1
∈ Fn1×···×nd

▶ 3-rd order tensor: T =
[
Tijk

]I,J,K
i,j,k=1

∈ FI×J×K

▶ tensor (outer) product: T = a⊗ b⊗ c: Tijk = aibjck

Examples:

▶ T = [ 11 ]⊗ [ 01 ]⊗
[

2
−3

]
T:,:,1 =

[
0 2
0 2

]
, T:,:,2 =

[
0 −3
0 −3

]
,

▶ T = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 diagonal tensor

T:,:,1 =

[
1 0
0 0

]
, T:,:,2 =

[
0 0
0 1

]
,

20 / 63
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Some history

▶ late 1800s–early 1900s: algebraic geometry (Sylvester, Terracini,
Segre, ...)

▶ 1927 (Hitchcock): introduced tensor rank

▶ Multiway models in psychometrics: Cattell (1940s), Tucker (1960s),
Harshman (1970s)

▶ Popular models in chemometrics (1980s)

▶ Theory of complexity: Strassen (1980s)

▶ Signal processing: Comon (1990s)

▶ ...

21 / 63
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Some references

Modern references (tensor decompositions):

▶ [Kolda, Bader, 2009]: generic entry reference

▶ [Comon, 2009, 2014]: focus on CPD and its properties

▶ [Landsberg, 2012]: algebraic viewpoint

▶ [Grasedyck et al, 2013]: focus on approximation, scientific
computing

▶ [Sidiropoulos et al, 2017]: more recent overview on uniqueness

▶ [Cichocki et al, 2016]: book on tensor networks

22 / 63
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Reminder: matrix rank
▶ def

= smallest r such that X can be factorized as

Xm

n

= m A

r n

r B

▶ def
= minimal r such that X can be decomposed as

X = a1
bT
1

+ · · · + ar
bT
r

Generalization to tensors leads to two different versions of rank!

1. Multilinear rank (Tucker) — factorization

2. Tensor rank (CPD) — decomposition

▶ different decompositions for different purpose

▶ most other decompositions are combinations of CP and Tucker

23 / 63
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Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

▶ Matrices: columns and rows: · · · ...

▶ Tensors: fibers:

columns rows tubes
T:,j,k Ti,:,k Ti,j,:

▶ Tensors: slices:

horizontal lateral frontal
Ti,:,: T:,j,: T:,:,k

24 / 63
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Generalizing matrix rank #1: multilinear rank

Matrix rank
def
= dimension of column or row span: · · · ...

For tensors:

tuple of (different) multilinear ranks (R1, . . . , Rd), Rk = rank(Y(k))

25 / 63
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SVDs of the unfoldings
Y ∈ R610×340×103

︸ ︷︷ ︸
hyperspectral image

, singular values of Y(1),Y(2),Y(3):
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Pavia University hyperspectral dataset

▶ singular values: not necessarily same distribution

▶ interconnected and have well-behaved geometry
[Hackbusch, Kressner, Uschmajew, 2017],[Krämer, 2019]
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Towards factorization: tensor/matrix product
k-th mode contraction :

▶ with M ∈ Fm×nk : (Y •k M)i1...id
def
=

∑nk

j=1 Yi1...ik−1jik+1...idMik,j

For Y ∈ RI×J×K

For matrices (d = 2):

Y •1 M = MY, Y •2 M = YMT

For tensors:
(Y •k M)(k) = MY(k)

multiplication of k-th unfolding on the left
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Multilinear rank and factorization
For Y ∈ RI×J×K with ML ranks (R1, R2, R3):

Tucker factorization with factors G ∈ RR1×R2×R3 (core tensor),
U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3

Y = [[G; U,V,W]]
def
= G •1 U •2 V •3 W.

▶ non-unique (as in the matrix case): Ũ = UQ
▶ in general (random Y),

(R1, R2, R3) = (min(I, JK),min(J, IK),min(K, IJ))
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Higher-order SVD

▶ take SVDs
of the unfoldings Y(1) = U(SV D)Σ1[∗]

Y(2) = V(SV D)Σ2[∗]

Y(3) = W(SV D)Σ3[∗]

▶ Compute G(SV D) = Y •1 (U(SV D))T •2 (V(SV D))T •3 (W(SV D))T

HOSVD Y = G(SV D) •1 U(SV D) •2 V(SV D) •3 W(SV D)
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Best low multilinear approximation
Compute best (R1, R2, R3)-Tucker approximation:

Y ≈

min
Ĝ,Û,V̂,Ŵ

∥Y − Ĝ •1 Û •2 V̂ •3 Ŵ∥F

▶ a good (suboptimal) solution is given by truncating HOSVD:

Û = U
(SV D)
:,1:R1

, V̂ = V
(SV D)
:,1:R2

,Ŵ = W
(SV D)
:,1:R3

, Ĝ = G(SV D)
1:R1,1:R2,1:R3

▶ HOOI: alternating minimization over Û,V̂, Ŵ
[De Lathauwer, De Moor, Vandewalle, 2000]

▶ optimization over the (R1, R2, R3)-rank manifold
[Kressner, Steinlechner, Vandereycken, 2013], [Kasai, Mishra, 2016]

Tucker approximation: very useful for compression, completion tasks
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Tensor rank and CPD
Rank-1 tensor: T = a⊗ b⊗ c: Tijk = aibjck

(Canonical) Polyadic Decomposition — sum of R rank-one tensors:

T =

R∑

k=1

ak ⊗ bk ⊗ ck, T = + · · · +
a1

b1

c1

aR
bR

cR

(CP) tensor rank: rank (T ) def
= minimal such R

Earlier names: CANDECOMP/PARAFAC

Example:

T = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1

T:,:,1 =

[
0 1
1 0

]
, T:,:,2 =

[
1 0
0 0

]
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Tensor rank: basic properties

T = + · · · +
a1

b1

c1

aR
bR

cR

▶ Relation with multilinear ranks:

max(R1, R2, R3) ≤ R ≤ min(R2R3, R1R3, R1R2)

▶ NP-hard (to compute exact rank): [Hillar, Lim, 2013]

▶ But has many nice properties and applications
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Simultaneous matrix factorization and CPD

fluorescence spectroscopy
emission/excitation matrix

rank = # components in a mixture
N experiments, different concentrations

=

M = a1

bT
1

+ · · · + aR

bT
R

...
...

= MN = a1

bT
1

+ · · · + aR

bT
R

⇕

M1

M2

MN. .
.

= + · · · +
a1

b1

c1

aR
bR

cR
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Tensor rank in applications

Application area tensor rank R
(blind source separation) # of sources

independent component analysis
multiway factor analysis # of components

(spectroscopy, chemometrics, . . .)
antenna array processing # of transmitters

...
...

= MM1 = a1

bT
1

+ · · · + aR

bT
R

c1,1· cR,1·

...
...

= MN = a1

bT
1

+ · · · + aR

bT
R

c1,N · cR,N ·
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Essential uniqueness of a CPD
T =

R∑
k=1

ak ⊗ bk ⊗ ck,

T = + · · · +
a1

b1

c1

aR
bR

cR

up to permutations and rescaling (a′k = αak,b
′
k = βbk, c

′
k = 1

αβ ck)

Examples:
▶ unique: T = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2

T:,:,1 =

[
1 0
0 0

]
, T:,:,2 =

[
0 0
0 1

]
,

▶ non-unique: T = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1

T:,:,1 =

[
0 1
1 0

]
, T:,:,2 =

[
1 0
0 0

]
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Third-order tensors: Kruskal sufficient condition

Shorthand notation: [[A,B,C]] :=
R∑

k=1

ak ⊗ bk ⊗ ck

factor matrices A = [a1 · · · aR], B = [b1 · · · bR], C = [c1 · · · cR]

Theorem [Kruskal, 1978].

The decomposition I

J

K

T = [[A,B,C]] is unique if

kr(A) + kr(B) + kr(C) ≥ 2r + 2,

kr(A)︸ ︷︷ ︸
Kruskal rank

def
= maximal k such that any k columns are linearly independent.

Example (my favourite tensor):
▶ K = 2 (2 frontal slices)
▶ A, B — full column rank, C — with non-collinear columns

2R+ 2 = 2R+ 2 ⇒ unique decomposition
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Real vs. complex rank

In general, they are different:

rankC(T ) ≤ rankR(T )

Example ( [Kruskal, 1983], but also [Sylvester, 1851]):

T:,:,1 =

[
0 1
1 0

]
, T:,:,2 =

[
1 0
0 −1

]
,

T =
i

2

([
1
−i

]
⊗
[

1
−i

]
⊗
[

1
−i

]
− [ 1i ]⊗ [ 1i ]⊗ [ 1i ]

)

⇒ rankC(T ) = rankS,C(T ) = 2, but rankR(T ) = rankS,R(T )=3
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Symmetric tensor rank vs. tensor rank

▶ Sd
n

def
= vector space of symmetric tensors, S3

2

Symmetric rank: rankS(T ) def
= minimal r such that

T =

r∑

k=1

λkak ⊗ · · · ⊗ ak, ak ∈ Fn

obviously rank(T ) ≤ rankS(T )

Comon’s conjecture: ∀T ∈ Sd
n, rank(T ) = rankS(T )

▶ true for
▶ matrices d = 2
▶ ranks smaller than order/dimension [Friedland, 2017], [Zhang,

Huang, Qi, 2017]
▶ generically for small ranks [Lim, Qi, 2020],

▶ counterexample by [Shitov, 2017]: n = 800, d = 3, rank(T ) = 903
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Maximal and generic ranks
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Maximal rank

rmax
def
= maximal possible rank

▶ different for symmetric/non-symmetric

▶ different for R and C
(Very few) known cases

tensor space dimension rmax reference
Fn×n n2 n matrices

C2×n×n 2n2 ⌊ 3n2 ⌋ [Grigoriev, 1978], [Ja’Ja’, 1978]

Fn×n×n n3 ≤ (n+1)n
2 [Atkinson, Stephens, 1979]
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What if we draw tensors randomly?

−→ rank (T ) =?

random = from absolutely continuous probability distribution

▶ important in practice (noise, numerical errors)

▶ often easier to find (than rmax)
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Complex tensors: generic rank

With probablility 1 a complex tensor has rank rgen (generic rank)

(i.e. other tensors have measure zero)

 rank(T)
 
 = r

gen
  I x J x K

▶ matrices (Cn×n): rmax = rgen = n

▶ cubic tensors (Cn×n×n , n > 3) [Lickteig, 1985]

rgen =

⌈
n3

3n− 2

⌉
≈ n2

3
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Generic ranks

▶ symmetric tensors (Sd
n, d ≥ 3) [Alexander, Hirschowitz, 1996]

rgen =

⌈(
n+d−1
n−1

)

n

⌉
,

with few exceptions: (d, n) = (3, 5) or d = 4, n ∈ {3, 4, 5}
▶ general case (CI1×...×Id , d ≥ 3):

rgen
?
=

⌈
I1 · · · Id

I1 + · · ·+ Id − d+ 1

⌉
, with few exceptions

▶ conjectured [Abo, Ottaviani, Peterson, 2009]
▶ computer proof [Chiantini, Ottaviani, Vannieuwenhoven, 2014]

▶ [Blekherman, Teitler, 2014]: rmax ≤ 2rgen

Proofs: algebraic geometry (dimensions of secant varieties)
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Real tensors: typical ranks

For real tensors, several typical ranks may appear with nonzero probability.

 rank(T)
 
 = r

typ,1

 rank(T)  = rtyp,3

 rank(T)
 
 = r

typ,2

Example [Bergqvist, 2013]: T ∈ R2×2×2 with i.i.d. Gaussian elements has:

▶ rank 2 with probability π
4

▶ rank 3 with probability 1− π
4
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Some numerical consequences

1. noise, numerical errors ⇒ rank(T ) = rgen (or a typical rank in R)
2. very difficult to find tensors with higher ranks:

If we generate

T = + · · · +
a1

b1

c1

ar
br

cr

with ak, bk, ck random, has

rank(T ) =
{
r, r ≤ rgen,

rgen, rgen < r ≤ rmax.

Example. n× n× n tensors with rank
⌈

n3

3n−2

⌉
< r ≤ (n+1)n

2 .
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Generic uniqueness (identifiability)
For a fixed rank r: whether “almost all” decompositions are unique

▶ Kruskal-type conditions give weak bounds

▶ Study the properties secant algebraic variety (σr
def
= : (Zariski)

closure of tensors of rank r)

▶ Generic uniqueness: uniqueness for all tensors in σr except a set of
Lebesgue measure 0

Most recent results:

1. [Chiantini, Ottaviani, 2012]: CPD of T ∈ CI×J×K , with I ≥ J ≥ K
is generically unique if r ≤ 2⌊log2 J⌋+⌊log2 K⌋−2.

2. [Chiantini, Ottaviani, Vannieuwenhoven, 2014] (computer proof):
complex identifiability holds for all subgeneric ranks

r < rgen =
⌈

IJK
I+J+K−2

⌉

no identifiability for r > rgen

3. [Qi, Comon, Lim, 2016], [Chiantini, Ottaviani, Vanniueuwenhoven, 2017]:
all identifiability results are valid for real-valued tensors
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CP vs. Tucker

▶ CPD: (I + J +K − 2)R

T ≈ + · · · +
a1

b1

c1

aR
bR

cR

▶ Tucker: IR1 + JR2 +KR3 +R1R2R3 −R2
1 −R2

2 −R2
3
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CP approximation is ill-posed

T ≈ + · · · +
a1

b1

c1

aR
bR

cR

Best r-rank approximation (r > 1) may not exist

T = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1

T:,:,1 =

[
0 1
1 0

]
, T:,:,2 =

[
1 0
0 0

]

rank T = 3, but approximated by rank-2 tensor to any accuracy

T =
1

2ε
(e1 + εe2)

⊗3 − 1

2ε
(e1 − εe2)

⊗3 +O(ε)

Set of rank-≤ r tensors is not closed for r > 1
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Rank-one tensor approximation

min
a,b,c
∥T − a⊗ b⊗ c∥2F

▶ well-posed (minimum exists)

▶ block-coordinate descent (ALS, non-symmetric power method)
converges globally
(to a stationary point) [Uschmajew, 2015]

▶ related to the notion of singular vectors/eigenvectors of a tensor [Qi,
Luo, 2017]

▶ number of stationary points is known [Freidland, Ottaviani, 2014]
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Successive approximation (deflation)

Subtracting rank-one approximation may increase tensor rank:

X:,:,1 =

[
0 1
1 0

]
, X:,:,2 =

[
1 0
0 2

]

rank(X ) = 2, but X − X̂1 = T , rank(T ) = 3

T = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1

T:,:,1 =

[
0 1
1 0

]
, T:,:,2 =

[
1 0
0 0

]

But when does it work then?
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Successive rank-1 approximation

▶ Orthogonally decomposable tensors [Zhang, Golub, 2001]:

T =

R∑

k=1

ak ⊗ bk ⊗ ck, ak⊥aj , bk⊥bj , ck⊥cj ,

The successive best rank-1 approximation returns the components in
the sum

▶ Cyclic (sequential) rank-one approximation [da Silva, Comon, de
Almeida, 2015]:

min ∥T − (T̂1 + . . .+ T̂R)∥ subject to rank(T̂k) = 1.
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Rank-one approximation of symmetric tensors

▶ T ∈ Sd
n — symmetric tensors, S3

2

▶ Best non-symmetric approximation can be chosen symmetric (and is
unique a.s.) [Friedland, Ottaviani, 2014]

▶ Best symmetric approximation ↔ maximization of a polynomial

min
λ,v
∥T − λv ⊗ · · · ⊗ v∥2F ↔ max

∥v∥2=1
|T •1 v · · · •d v|

▶ stationary points: eigenvectors of the tensor

T · vd−1 = µv

▶ In total, (d−1)n−1
d−2 (complex) eigenvectors [Cartwright, Sturmfels, 2013]

▶ There are cases when the power method diverges [Chen, Saad, 2009]
▶ Orthogonally decomposable tensors: power method converges,

deflation works decomposition [Anandkumar et al, 2013],
[Robeva,2016]
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Algorithms for CP approximation

min
A,B,C

∥Y − [[A,B,C]]∥2F + ...

Constraints/regularization:

▶ Orthogonality: [Comon, 1993], [Robeva, 2016]

▶ Coherence: [Lim, Comon, 2014]

▶ Nonnegativity: [Qi, Comon, Lim, 2016]

Algorithms for CP approximation

▶ Alternating minimization (ALS, AO-ADMM)
(Global) convergence properties in the regularized case [Xu, Yin, 2013]

▶ Nonlinear least squares

▶ Riemannian optimization

▶ Algebraic algorithms
▶ Generalized eigenvalue decomposition (non-symmetric tensors)
▶ Structured matrix approximation (symmetric tensors)
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Tensor diagonalization as orthogonal approximation

By duality:

max
Q∈On

∥ diagA•1 QT · · · •d QT∥22

= ∥A∥2F − min
Q∈On

Q=[u1 ··· un ]

∥A −
n∑

k=1

µk uk ⊗ · · · ⊗ uk∥2F
︸ ︷︷ ︸

best n-rank symmetric orthogonal approximation

▶ Euclidean distance to odeco [Robeva, 2016] variety
A

odeco

▶ Best non-symmetric approximation ̸= best symmetric approximation
[Li, U., Comon, 2019] (a variant of Comon’s conjecture is false)
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Optimization on orthogonal/unitary group

max
Q∈On

f(Q) or max
U∈Un

f(U), f is a low-order polynomial

Algebraic orthogonal tensor decompositions:

▶ Deflation (successive rank-one approximation)
[Delfosse, Loubaton, 1995], [Anandkumar, 2013], [Robeva, 2016]

▶ EVD of tensor slice(s) [De Lathauwer, 2006], [Kolda, 2015]

Optimization on the manifold:

▶ Riemannian optimization (CG, SD, BFGS, RTR) [Absil et al., 2008]

▶ Jacobi-type algorithms [Comon, 1993], [Li, U., Comon, 2020]
(convergence)
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What do we know about CP approximation?

Given T = [[A,B,C]] + E and

(Â∗, B̂∗, Ĉ∗) = arg min
Â,B̂,Ĉ

∥T − [[A,B,C]]∥,

▶ Approaches using random matrix theory [Goulart, Couillet, Comon,
2022] (mostly rank-1)

▶ Perturbation bounds for some algebraic algorithms [Evert, De
Lathauwer, 2022] (very small ranks)

▶ Uniqueness of best approximation in a small neighorhood [Friedland,
Stawiska, 2016] (non-constructive)
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Coupled factorizations

Factors of different tensor/matrix decompositions may be shared:

[Acar, Kolda, Dunlavy, 2011]
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Joint CPD of symmetric tensors

ICA model: x = As, A =
[
a1 · · · ar

]
∈ Rn×r,

cumulants of x up to order d:

C(1)x = c1,1a1 + · · ·+ c1,rar,

C(2)x = c2,1a1 ⊗ a1 + · · ·+ c2,rar ⊗ ar,
...

C(d)x = cd,1a1 ⊗ · · · ⊗ a1 + · · ·+ cd,rar ⊗ · · · ⊗ ar,

(1)

where cj,k is the j-th cumulant of sk.

Problem. Given C(j)x , find ak and cj,k
(diagonalize all the cumulants simultaneously)
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Sum of Tucker: block-term decomposition

[De Lathauwer, 2008]:
For fixed (R1, R2, R3):

T =

r∑

k=1

Gk •1 Uk •2 Vk •3 Wk

each term in the sum has ML-rank (R1, R2, R3):

Special case: (R1, R2, R3) = (L,L, 1): very useful in signal processing,
see e.g. [Goulart, et al. 2020]
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Additive decompositions

X-rank (join) decomposition [Zak, 2004],
[Landsberg, 2012], [Comon, Qi, U., 2017]
( sparse algebraic decomposition)

p = x1 + · · ·+ xr, xk ∈ X̂

▶ A
def
= ambient tensor space (e.g.

A = CI×J×K)

▶ X̂
def
= (variety of “simple”’ terms)

(e.g., rank-one X̂ = {a⊗ b⊗ c})
▶ study the properties of secant

varieties σr(X̂)

 rank
X
(p)

 
 = 2

p

A

X
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Approximation: higher-order tensors

▶ Tucker: O(dIR+Rd): curse of dimensionality

▶ tensor trains, hierarchical Tucker: linear-in-d storage complexity

61 / 63



Matrix LRA Tensors Factorization (CP) decomposition CP approximation Extensions

Decompositions: flexible/multilayer
[Harshman, Lundy, 1996], [Roald et al, 2022]
▶ CPD (PARAFAC)

T:,:,k =
AI

R

· D(k)
C · BT

R

J

, k = 1, . . . ,K

▶ PARAFAC-2

T:,:,k =
AI

R

· D(k)
C · BT

kR

J

, k = 1, . . . ,K

▶ ParaTuck-2

T:,:,k =
AI

R

· D(k)
G · FR

S

· D(k)
H · BT

S

J

, k = 1, . . . ,K

Share the uniqueness features of CPD!
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Conclusion

Which tensor decomposition (format) to use?

▶ factorization (Tucker, tensor trains) — compression

▶ decomposition (CPD, BTD) — identification of components

Challenges (personal choice):

▶ Guarantees (approximation bounds) on CP approximation

▶ Multi-layer/multilevel tensor decompositions (e.g., ParaTuck-2)

Advertisement (not mine ):

▶ A number of postdoc/PhD positions in the SiMul team (Nancy)
https://cran-simul.github.io

▶ Summer school on low-rank approximation (23-29.06.24) in Peyresq
Organized by N. Gillis and J. Cohen

Thank you!
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