
Trust-Region for ill-conditioned low-rank

problems

Irène Waldspurger

CNRS et CEREMADE (Université Paris Dauphine)
Équipe MOKAPLAN (INRIA)

May 31, 2024
Journée thématique

Low-rank approximation and optimization
Institut de mathématiques de Marseille

Collaborators 2 / 39

Paul Caucheteux Florentin Goyens Clément Royer

(all at Paris Dauphine)

This is an ongoing work. Results are preliminary.

Introduction 3 / 39

Main question

We consider a family of problems :

semidefinite problems, with a low-rank solution,
in Burer-Monteiro factorized form.

(All terms will be subsequently defined.)

These problems and non-convex and ill-conditioned.

Question : which algorithms best solve these problems ?

Introduction 4 / 39

Scientific contribution

▶ We review and numerically compare several algorithms,
on problems with various difficulties.

▶ We numerically find that the best-performing algorithm is
a second-order method.
→ Interest : except in very small dimension, second-order

methods are oftentimes criticized for being slow.
We exhibit medium-dimensional problems where they
actually perform very well.

▶ In a simplified setting, we establish convergence rates to
justify the good numerical behavior.

Introduction 5 / 39

Roadmap

1. Definition of the considered problems.

2. Description of the main algorithms :
▶ first-order methods ;
▶ second-order methods (Trust Region).

3. Numerical results.

4. Theoretical convergence rates.

The problem 6 / 39

Semidefinite problems, with a low-rank solution,
in Burer-Monteiro factorized form.

Let f : Rn×n → R be convex.
A general is

minimize f (X),

over X ∈ Rn×n,

X ⪰ 0,

(SDP)

“with a low-rank solution” : assume there exists a minimizer
X∗, with rank r∗ ≪ n.

The problem 6 / 39

Semidefinite problems, with a low-rank solution,
in Burer-Monteiro factorized form.

Let f : Rn×n → R be convex.
A general semidefinite problem is

minimize f (X),

over X ∈ Rn×n,

X ⪰ 0,

(SDP)

“with a low-rank solution” : assume there exists a minimizer
X∗, with rank r∗ ≪ n.

The problem 6 / 39

Semidefinite problems, with a low-rank solution,
in Burer-Monteiro factorized form.

Let f : Rn×n → R be convex.
A general semidefinite problem is

minimize f (X),

over X ∈ Rn×n,

X ⪰ 0,

(SDP)

“with a low-rank solution” : assume there exists a minimizer
X∗, with rank r∗ ≪ n.

The problem 7 / 39

One motivation : phase retrieval

.

Reconstruct x ∈ Cn

from y = (|⟨x , vi⟩|)i≤m

Here,

▶ v1, . . . , vm are known
measurement vectors ;

▶ |.| is the complex modulus.

Incoming
waves

Object
Screen

Diffracted
waves

Figure – X-ray imaging

[Schechtman, Eldar, Cohen, Chapman, Miao, and Segev, 2015]

The problem 8 / 39

One motivation : phase retrieval

Phase retrieval problems are non-convex.

They are difficult (variants of them are NP-hard).

Several families of algorithms exist.
→ I am especially interested in convex relaxations.

Principle of convex relaxations :
approximate the non-convex problem with a convex one,
which is a semidefinite problem with a low-rank solution.

▶ Advantage : avoid local minima due to non-convexity.

▶ Drawback : high-dimensional ; computationally costly.

The problem 8 / 39

One motivation : phase retrieval

Phase retrieval problems are non-convex.

They are difficult (variants of them are NP-hard).

Several families of algorithms exist.
→ I am especially interested in convex relaxations.

Principle of convex relaxations :
approximate the non-convex problem with a convex one,
which is a semidefinite problem with a low-rank solution.

▶ Advantage : avoid local minima due to non-convexity.

▶ Drawback : high-dimensional ; computationally costly.

The problem 9 / 39

Phase retrieval : convex relaxation

Find x ∈ Cn

s.t. ∀i , yi = |⟨x , vi⟩|.

⇐⇒
Find xx∗ ∈ Cn×n

s.t. ∀i , y 2
i = |⟨x , vi⟩|2

= Tr(xx∗viv
∗
i).

.

⇕

Remove the rank constraint.

→ We obtain a convex
→ approximate problem.

⇐⇒

Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0,

rank(X) = 1.

[Candès, Strohmer, and Voroninski, 2013; Chai, Moscoso, and
Papanicolaou, 2011]

The problem 9 / 39

Phase retrieval : convex relaxation

Find x ∈ Cn

s.t. ∀i , yi = |⟨x , vi⟩|.
⇐⇒

Find xx∗ ∈ Cn×n

s.t. ∀i , y 2
i = |⟨x , vi⟩|2

= Tr(xx∗viv
∗
i).

.

⇕

Remove the rank constraint.

→ We obtain a convex
→ approximate problem.

⇐⇒

Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0,

rank(X) = 1.

[Candès, Strohmer, and Voroninski, 2013; Chai, Moscoso, and
Papanicolaou, 2011]

The problem 9 / 39

Phase retrieval : convex relaxation

Find x ∈ Cn

s.t. ∀i , yi = |⟨x , vi⟩|.
⇐⇒

Find xx∗ ∈ Cn×n

s.t. ∀i , y 2
i = |⟨x , vi⟩|2

= Tr(xx∗viv
∗
i).

. ⇕

Remove the rank constraint.

→ We obtain a convex
→ approximate problem.

⇐⇒
Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0,

rank(X) = 1.

[Candès, Strohmer, and Voroninski, 2013; Chai, Moscoso, and
Papanicolaou, 2011]

The problem 9 / 39

Phase retrieval : convex relaxation

Find x ∈ Cn

s.t. ∀i , yi = |⟨x , vi⟩|.
⇐⇒

Find xx∗ ∈ Cn×n

s.t. ∀i , y 2
i = |⟨x , vi⟩|2

= Tr(xx∗viv
∗
i).

. ⇕

Remove the rank constraint.

→ We obtain a convex
→ approximate problem.

⇐⇒
Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0,

rank(X) = 1.

[Candès, Strohmer, and Voroninski, 2013; Chai, Moscoso, and
Papanicolaou, 2011]

The problem 10 / 39

Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0.

min
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

equivalent to

Phase retrieval : convex relaxation

Minimize
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

such that X ⪰ 0.

This is a (convex) semidefinite problem.

Approximation of the non-convex problem, not equivalent,
but often has the same solution :

X∗ = xx∗.

Consequence : the minimizer has low-rank.

The problem 10 / 39

Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0.

min
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

equivalent to

Phase retrieval : convex relaxation

Minimize
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

such that X ⪰ 0.

This is a (convex) semidefinite problem.

Approximation of the non-convex problem, not equivalent,
but often has the same solution :

X∗ = xx∗.

Consequence : the minimizer has low-rank.

The problem 10 / 39

Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0.

min
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

equivalent to

Phase retrieval : convex relaxation

Minimize
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

such that X ⪰ 0.

This is a (convex) semidefinite problem.

Approximation of the non-convex problem, not equivalent,
but often has the same solution :

X∗ = xx∗.

Consequence : the minimizer has low-rank.

The problem 10 / 39

Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i),

X ⪰ 0.

min
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

equivalent to

Phase retrieval : convex relaxation

Minimize
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i)
)2

over X ∈ Cn×n

such that X ⪰ 0.

This is a (convex) semidefinite problem.

Approximation of the non-convex problem, not equivalent,
but often has the same solution :

X∗ = xx∗.

Consequence : the minimizer has low-rank.

The problem 11 / 39

Back to SDP with low-rank solution

minimize f (X),

over X ∈ Rn×n,

X ⪰ 0,

We have described one specific motivation (phase retrieval).

▶ Advantage : avoid local minima due to non-convexity.

▶ Drawback : high-dimensional ; computationally costly.

Now, how do we numerically solve these problems ?

The problem 12 / 39

SDP with low-rank solution : algorithms

1. Generic SDP solvers, which do not exploit low-rank.
→ High per-iteration complexity.

2. Solvers tailored to low-rank settings

2.1 Generic SDP solvers, where some parts are made much
more efficient by the low-rank assumption ;
[Ding, Yurtsever, Cevher, Tropp, and Udell, 2019]
[Yurtsever, Tropp, Fercoq, Udell, and Cevher, 2021]

2.2 Burer-Monteiro factorization.
[Burer and Monteiro, 2003]

The problem 12 / 39

SDP with low-rank solution : algorithms

1. Generic SDP solvers, which do not exploit low-rank.
→ High per-iteration complexity.

2. Solvers tailored to low-rank settings

2.1 Generic SDP solvers, where some parts are made much
more efficient by the low-rank assumption ;
[Ding, Yurtsever, Cevher, Tropp, and Udell, 2019]
[Yurtsever, Tropp, Fercoq, Udell, and Cevher, 2021]

2.2 Burer-Monteiro factorization.
[Burer and Monteiro, 2003]

The problem 13 / 39

Burer-Monteiro factorization : principle

Minimize f (X),

over X ∈ Rn×n,

X ⪰ 0.

(SDP)

The solution X∗ has low-rank r∗. For arbitrary p ≥ r∗, write

X∗ = V∗V T
∗ for some V∗ ∈ Rn×p.

−→ Minimize f (VV T),

over V ∈ Rn×p.
(BM)

The problem 14 / 39

Burer-Monteiro factorization : principle

Minimize f (VV T),

over V ∈ Rn×p.
(BM)

This factorized problem is equivalent to the SDP
(i.e. the solution is the same, up to change of variable),
but the dimension is much lower.

This is a semidefinite problem, with a low-rank solution, in
Burer-Monteiro factorized form.

Question : which algorithm to solve it ?

The problem 15 / 39

What is difficult in Problem (BM) ?

Minimize f (VV T),

over V ∈ Rn×p.
(BM)

First obstacle : (BM) is non-convex (again).
In particular, it can have local minima.

Luckily, oftentimes, it does not : non-convexity is benign.
In our experiments, we do not seem to encounter this issue.

Second obstacle : (BM) is ill-conditioned.
→ For our problems, this is the main issue.

The problem 15 / 39

What is difficult in Problem (BM) ?

Minimize f (VV T),

over V ∈ Rn×p.
(BM)

First obstacle : (BM) is non-convex (again).
In particular, it can have local minima.
Luckily, oftentimes, it does not : non-convexity is benign.
In our experiments, we do not seem to encounter this issue.

Second obstacle : (BM) is ill-conditioned.
→ For our problems, this is the main issue.

The problem 15 / 39

What is difficult in Problem (BM) ?

Minimize f (VV T),

over V ∈ Rn×p.
(BM)

First obstacle : (BM) is non-convex (again).
In particular, it can have local minima.
Luckily, oftentimes, it does not : non-convexity is benign.
In our experiments, we do not seem to encounter this issue.

Second obstacle : (BM) is ill-conditioned.
→ For our problems, this is the main issue.

The problem 16 / 39

Problem (BM) is ill-conditioned.

Minimize f (VV T),

over V ∈ Rn×p.
(BM)

Ill-conditioning = in the neighborhood of the minimizer,

smallest Hessian eigenvalue ≪ largest eigenvalue.

−2
0

2
−3 −2 −1 0 1 2 3

0

5

10

x

y

The problem 17 / 39

First source of ill-conditioning : f

Minimize g(V)
def
= f (VV T),

over V ∈ Rn×p.
(BM)

At a minimizer V∗,

∇2gV∗(S , S) = ⟨∇2fV∗VT
∗
(V∗ST + SV T

∗), V∗ST + SV T
∗ ⟩.

If f is ill-conditioned, g is likely to be ill-conditioned.

The problem 18 / 39

Second source of ill-conditioning : p > r∗

Minimize g(V)
def
= f (VV T),

over V ∈ Rn×p.
(BM)

At a minimizer V∗,

∇2gV∗(S , S) = ⟨∇2fV∗VT
∗
(V∗ST + SV T

∗), V∗ST + SV T
∗ ⟩.

Assume p > r∗ = rank(V∗) (overparametrized case).

There are S ̸= 0 such that

V∗ST + SV T
∗ = 0.

⇒ The Hessian is singular.

Algorithms 19 / 39

Algorithms for Problem (BM)

1. Methods tailored to particular f ,
e.g. the Mixing Method [Wang, Chang, and Kolter, 2017].
(Do not apply in phase retrieval.)

2. First-order methods :

2.1 standard,
2.2 with preconditioning.

3. Second-order methods.

Algorithms 20 / 39

First-order methods : standard

Minimize g(V)
def
= f (VV T),

over V ∈ Rn×p.

These methods produce a sequence of iterates, computed
using ∇f .

Simplest example : gradient descent.

Vk+1 = Vk − τ∇g(Vk) = Vk − 2τ∇f (VkV T
k)Vk

Many other possibilities : Nesterov, Augmented Lagrangian ...
[Chen and Goulart, 2023]
[Monteiro, Sujanani, and Cifuentes, 2024]

Algorithms 20 / 39

First-order methods : standard

Minimize g(V)
def
= f (VV T),

over V ∈ Rn×p.

These methods are known to be very sensitive to
ill-conditioning.

Algorithms 21 / 39

First-order methods : preconditioned

[Tong, Ma, and Chi, 2021]
[Zhang, Fattahi, and Zhang, 2021]

Assume ill-conditioning is due to overparametrization only.

Principle : there is a simple explicit description of the near-zero
Hessian eigenvectors.
→ correct for these eigenvalues with a suitable preconditioner
→ ≈ change of metric.

Basic version :

Vk+1 = Vk − 2τ∇f (VkV T
k)Vk(V

T
k Vk)

−1.

preconditioner

Algorithms 22 / 39

Second-order methods : general picture

These methods produce a sequence of iterates, computed
using ∇f and ∇2f .

▶ Advantage : explicitely using the Hessian allows to detect
and correct ill-conditioning.

▶ Drawback : the Hessian is typically a big matrix.
→ high computational cost ?

In our case, we use the Hessian through a few
matrix-vector computations only, and these can be
efficiently computed.
→ not slower than first-order methods.

Algorithms 23 / 39

Second-order methods : Trust-Region

Minimize g(V)
def
= f (VV T),

over V ∈ Rn×p.

Close to Vk , g can be approximated as

g(Vk + S) ≈ g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

Algorithms 23 / 39

Second-order methods : Trust-Region

Minimize g(V)
def
= f (VV T),

over V ∈ Rn×p.

Close to Vk , g can be approximated as

g(Vk + S) ≈ g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

Principle of Trust-Region : minimize this second-order
approximation .

Set Vk+1 = Vk + S ,

with S ∈ argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

Algorithms 23 / 39

Second-order methods : Trust-Region

Minimize g(V)
def
= f (VV T),

over V ∈ Rn×p.

Close to Vk , g can be approximated as

g(Vk + S) ≈ g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

Principle of Trust-Region : minimize this second-order
approximation over a small ball.

Set Vk+1 = Vk + S ,

with S ∈ argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

Algorithms 24 / 39

Second-order methods : Trust-Region

At each iteration, we must solve

argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

▶ Exact solvers exist, but are costly.

▶ Inexact solvers are much faster.
→ We use Truncated Conjugate Gradient.

Typical complexity : O(np log(n) × nb its)

cost of a gradient computation adapts to problem
difficulty

Algorithms 25 / 39

Algorithm 1 Trust-Region
1: for k = 1, 2, ... do
2: Using Truncated Conjugate Gradient, approximate

S ∈ argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

3: if g(Vk + S) is small enough then
4: Set Vk+1 = Vk + S .
5: else
6: Set Vk+1 = Vk .
7: end if
8: Increase or decrease ∆k .
9: end for

Numerical results 26 / 39

Overview of numerical results

We compare the algorithms on SDP coming from phase
retrieval.

W
el
l-
co
nd

it
io
ne
d

Ill
-c
on
di
ti
on
ed

(o
ve
rp
ar
am

.)

Ill
-c
on
di
ti
on
ed

(o
ve
rp
ar
am

.
+

f
)

Standard 1st order fast slow slow
Precond. 1st order fast fast slow

Trust-Region fast fast faster

Numerical results 27 / 39

Graph 1 : well-conditioned problem
n = 128, m = 768, random measurements, PhaseLift, p = 1

0.0 0.1 0.2 0.3 0.4 0.5

10−10

100

Time (s)

O
b
je
ct
iv
e

1st order

1st order (precond.)

2nd order

Numerical results 28 / 39

Graph 2 : ill-conditioned (overparametrization)
n = 128, m = 768, random measurements, PhaseLift, p = 2

0 5 10 15 20

10−10

100

Time (s)

O
b
je
ct
iv
e

1st order

1st order (precond.)

2nd order

Numerical results 29 / 39

Graph 3 : ill-conditioned (overparametrized and f)
n = 128, m = 768, wavelet measurements, PhaseLift, p = 2

0 5 10 15 20

10−5

100

Time (s)

O
b
je
ct
iv
e

1st order

1st order (precond.)

2nd order

Numerical results 30 / 39

Summary of the numerical experiments

▶ First-order methods struggle with ill-conditioning.

▶ Preconditionned first-order methods are immune to
ill-conditioning from overparametrization.

▶ Second-order methods perform best when ill-conditioning
comes from both overparametrization and f .

Numerical results 31 / 39

What’s left to do on the numerical side

▶ Increase the dimension.

▶ Implement and test other available first-order methods.

▶ Investigate possible improvements for Trust-Region :
▶ rank-adaptive strategies ;
▶ mix with a more basic algorithm.

Theoretical results 32 / 39

Theoretical guarantees ?

Minimize f (VV T),

over V ∈ Rn×p.
(BM)

Justify the good numerical behavior of Trust-Region through
rigorous convergence rates ?

We focus on the case where ill-conditioning comes from
overparametrization only.
→ Show that Trust-Region performs at least as well as

preconditioned first-order methods ?
(i.e. local linear convergence rate, same iteration cost)

Theoretical results 33 / 39

Prior work
Convergence rates for Trust-Region when minimizing a
non-convex function g ?

Minimize g(x) for x ∈ Rn.

First result : Trust-Region converges locally superlinearly if

∇2g(xmin) ≻ 0.

This holds for an exact subproblem solver,
and for the inexact Truncated Conjugate Gradient.

[Absil, Baker, and Gallivan, 2007]

Theoretical results 33 / 39

Prior work
Convergence rates for Trust-Region when minimizing a
non-convex function g ?

Minimize g(x) for x ∈ Rn.

First result : Trust-Region converges locally superlinearly if

∇2g(xmin) ≻ 0.

This holds for an exact subproblem solver,
and for the inexact Truncated Conjugate Gradient.

[Absil, Baker, and Gallivan, 2007]

⇒ g locally convex
(and precludes
(non-isolated minima)

Does not apply for us!

Theoretical results 33 / 39

Prior work
Convergence rates for Trust-Region when minimizing a
non-convex function g ?

Minimize g(x) for x ∈ Rn.

Second result : Trust-Region converges locally superlinearly if

g satisfies a Polyak– Lojasiewicz condition close to xmin.

This holds for the Truncated Conjugate Gradient solver.

[Rebjock and Boumal, 2023]

Theoretical results 33 / 39

Prior work
Convergence rates for Trust-Region when minimizing a
non-convex function g ?

Minimize g(x) for x ∈ Rn.

Second result : Trust-Region converges locally superlinearly if

g satisfies a Polyak– Lojasiewicz condition close to xmin.

This holds for the Truncated Conjugate Gradient solver.

[Rebjock and Boumal, 2023] Does not apply for us
when p > r∗.

Theoretical results 34 / 39

Our result

Minimize f (VV T),

over V ∈ Rn×p.
(BM)

For the moment, we consider the simplest possible function f
which is well-conditioned and has a low-rank minimizer :

f : X ∈ Rn×n → 1

4

∣∣∣∣∣
∣∣∣∣∣X −

(
1 0 ... 0
0
...

...
...

0 0

)∣∣∣∣∣
∣∣∣∣∣
2

F

.

We hope that the result generalizes to other well-conditioned
functions.

Theoretical results 35 / 39

Our result

Theorem : (with ongoing proof)

Close to the solution, Trust-Region converges linearly :
for some C0 > 0, ρ ∈]0; 1[and all k ∈ N,

f (VkV T
k) ≤ C0ρ

k f (V0V T
0),

This holds for an exact subproblem solver,
and for the inexact Truncated Conjugate Gradient,

capped at 3 iterations.
(→ same cost as first-order methods.)

Theoretical results 36 / 39

Proof idea

We consider a specific function f , and the Trust-Region
iterates are deterministic.

⇒ We should be able to explicitely compute Vk+1 as a
function of Vk .

Actually, the direct computation is horrible, and the expression
we get for Vk+1 is difficult to study.

Theoretical results 36 / 39

Proof idea

We consider a specific function f , and the Trust-Region
iterates are deterministic.

⇒ We should be able to explicitely compute Vk+1 as a
function of Vk .

Actually, the direct computation is horrible, and the expression
we get for Vk+1 is difficult to study.

Theoretical results 37 / 39

Proof idea

In the exact solver case :

We introduce a suitable Lyapunov function.

We divide the space of Vk in different regions.

In each region, we exploit the optimality conditions of the
subproblem to show that the Lyapunov function decays.

Theoretical results 38 / 39

Proof idea

Using Truncated Conjugate Gradient :

We divide the space of Vk in different regions.

In each region, we either exploit the optimality conditions of
the subproblem to show linear decay of f ,

or we estimate the result of the first three iterations of
Conjugate Gradient.

Theoretical results 39 / 39

Thank you very much for your attention !

	Collaborators
	Introduction
	The problem
	Algorithms
	Numerical results
	Theoretical results

