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Main question

We consider a family of problems :

semidefinite problems, with a low-rank solution,
in Burer-Monteiro factorized form.

(All terms will be subsequently defined.)

These problems and non-convex and ill-conditioned.

Question : which algorithms best solve these problems ?
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Scientific contribution

▶ We review and numerically compare several algorithms,
on problems with various difficulties.

▶ We numerically find that the best-performing algorithm is
a second-order method.
→ Interest : except in very small dimension, second-order

methods are oftentimes criticized for being slow.
We exhibit medium-dimensional problems where they
actually perform very well.

▶ In a simplified setting, we establish convergence rates to
justify the good numerical behavior.
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Roadmap

1. Definition of the considered problems.

2. Description of the main algorithms :
▶ first-order methods ;
▶ second-order methods (Trust Region).

3. Numerical results.

4. Theoretical convergence rates.
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Semidefinite problems, with a low-rank solution,
in Burer-Monteiro factorized form.

Let f : Rn×n → R be convex.
A general is

minimize f (X ),

over X ∈ Rn×n,

X ⪰ 0,

(SDP)

“with a low-rank solution” : assume there exists a minimizer
X∗, with rank r∗ ≪ n.
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One motivation : phase retrieval

.

Reconstruct x ∈ Cn

from y = (|⟨x , vi⟩|)i≤m

Here,

▶ v1, . . . , vm are known
measurement vectors ;

▶ |.| is the complex modulus.

Incoming
waves

Object
Screen

Diffracted
waves

Figure – X-ray imaging

[Schechtman, Eldar, Cohen, Chapman, Miao, and Segev, 2015]
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One motivation : phase retrieval

Phase retrieval problems are non-convex.

They are difficult (variants of them are NP-hard).

Several families of algorithms exist.
→ I am especially interested in convex relaxations.

Principle of convex relaxations :
approximate the non-convex problem with a convex one,
which is a semidefinite problem with a low-rank solution.

▶ Advantage : avoid local minima due to non-convexity.

▶ Drawback : high-dimensional ; computationally costly.
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Phase retrieval : convex relaxation

Find x ∈ Cn

s.t. ∀i , yi = |⟨x , vi⟩|.

⇐⇒
Find xx∗ ∈ Cn×n

s.t. ∀i , y 2
i = |⟨x , vi⟩|2

= Tr(xx∗viv
∗
i ).

.

⇕

Remove the rank constraint.

→ We obtain a convex
→ approximate problem.

⇐⇒

Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i ),

X ⪰ 0,

rank(X ) = 1.

[Candès, Strohmer, and Voroninski, 2013; Chai, Moscoso, and
Papanicolaou, 2011]
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Find X ∈ Cn×n

s.t. ∀i , y 2
i = Tr(Xviv

∗
i ),

X ⪰ 0.

min
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i )
)2

over X ∈ Cn×n

equivalent to

Phase retrieval : convex relaxation

Minimize
m∑
i=1

(
y 2
i − Tr(Xviv

∗
i )
)2

over X ∈ Cn×n

such that X ⪰ 0.

This is a (convex) semidefinite problem.

Approximation of the non-convex problem, not equivalent,
but often has the same solution :

X∗ = xx∗.

Consequence : the minimizer has low-rank.
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Back to SDP with low-rank solution

minimize f (X ),

over X ∈ Rn×n,

X ⪰ 0,

We have described one specific motivation (phase retrieval).

▶ Advantage : avoid local minima due to non-convexity.

▶ Drawback : high-dimensional ; computationally costly.

Now, how do we numerically solve these problems ?
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SDP with low-rank solution : algorithms

1. Generic SDP solvers, which do not exploit low-rank.
→ High per-iteration complexity.

2. Solvers tailored to low-rank settings

2.1 Generic SDP solvers, where some parts are made much
more efficient by the low-rank assumption ;
[Ding, Yurtsever, Cevher, Tropp, and Udell, 2019]
[Yurtsever, Tropp, Fercoq, Udell, and Cevher, 2021]

2.2 Burer-Monteiro factorization.
[Burer and Monteiro, 2003]
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Burer-Monteiro factorization : principle

Minimize f (X ),

over X ∈ Rn×n,

X ⪰ 0.

(SDP)

The solution X∗ has low-rank r∗. For arbitrary p ≥ r∗, write

X∗ = V∗V T
∗ for some V∗ ∈ Rn×p.

−→ Minimize f (VV T ),

over V ∈ Rn×p.
(BM)
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Burer-Monteiro factorization : principle

Minimize f (VV T ),

over V ∈ Rn×p.
(BM)

This factorized problem is equivalent to the SDP
(i.e. the solution is the same, up to change of variable),
but the dimension is much lower.

This is a semidefinite problem, with a low-rank solution, in
Burer-Monteiro factorized form.

Question : which algorithm to solve it ?



The problem 15 / 39

What is difficult in Problem (BM) ?

Minimize f (VV T ),

over V ∈ Rn×p.
(BM)

First obstacle : (BM) is non-convex (again).
In particular, it can have local minima.

Luckily, oftentimes, it does not : non-convexity is benign.
In our experiments, we do not seem to encounter this issue.

Second obstacle : (BM) is ill-conditioned.
→ For our problems, this is the main issue.
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Problem (BM) is ill-conditioned.

Minimize f (VV T ),

over V ∈ Rn×p.
(BM)

Ill-conditioning = in the neighborhood of the minimizer,

smallest Hessian eigenvalue ≪ largest eigenvalue.
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First source of ill-conditioning : f

Minimize g(V )
def
= f (VV T ),

over V ∈ Rn×p.
(BM)

At a minimizer V∗,

∇2gV∗(S , S) = ⟨∇2fV∗VT
∗
(V∗ST + SV T

∗ ), V∗ST + SV T
∗ ⟩.

If f is ill-conditioned, g is likely to be ill-conditioned.
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Second source of ill-conditioning : p > r∗

Minimize g(V )
def
= f (VV T ),

over V ∈ Rn×p.
(BM)

At a minimizer V∗,

∇2gV∗(S , S) = ⟨∇2fV∗VT
∗
(V∗ST + SV T

∗ ), V∗ST + SV T
∗ ⟩.

Assume p > r∗ = rank(V∗) (overparametrized case).

There are S ̸= 0 such that

V∗ST + SV T
∗ = 0.

⇒ The Hessian is singular.
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Algorithms for Problem (BM)

1. Methods tailored to particular f ,
e.g. the Mixing Method [Wang, Chang, and Kolter, 2017].
(Do not apply in phase retrieval.)

2. First-order methods :

2.1 standard,
2.2 with preconditioning.

3. Second-order methods.
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First-order methods : standard

Minimize g(V )
def
= f (VV T ),

over V ∈ Rn×p.

These methods produce a sequence of iterates, computed
using ∇f .

Simplest example : gradient descent.

Vk+1 = Vk − τ∇g(Vk) = Vk − 2τ∇f (VkV T
k )Vk

Many other possibilities : Nesterov, Augmented Lagrangian ...
[Chen and Goulart, 2023]
[Monteiro, Sujanani, and Cifuentes, 2024]
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First-order methods : standard

Minimize g(V )
def
= f (VV T ),

over V ∈ Rn×p.

These methods are known to be very sensitive to
ill-conditioning.
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First-order methods : preconditioned

[Tong, Ma, and Chi, 2021]
[Zhang, Fattahi, and Zhang, 2021]

Assume ill-conditioning is due to overparametrization only.

Principle : there is a simple explicit description of the near-zero
Hessian eigenvectors.
→ correct for these eigenvalues with a suitable preconditioner
→ ≈ change of metric.

Basic version :

Vk+1 = Vk − 2τ∇f (VkV T
k )Vk(V

T
k Vk)

−1.

preconditioner
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Second-order methods : general picture

These methods produce a sequence of iterates, computed
using ∇f and ∇2f .

▶ Advantage : explicitely using the Hessian allows to detect
and correct ill-conditioning.

▶ Drawback : the Hessian is typically a big matrix.
→ high computational cost ?

In our case, we use the Hessian through a few
matrix-vector computations only, and these can be
efficiently computed.
→ not slower than first-order methods.
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Second-order methods : Trust-Region

Minimize g(V )
def
= f (VV T ),

over V ∈ Rn×p.

Close to Vk , g can be approximated as

g(Vk + S) ≈ g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.



Algorithms 23 / 39

Second-order methods : Trust-Region

Minimize g(V )
def
= f (VV T ),

over V ∈ Rn×p.

Close to Vk , g can be approximated as

g(Vk + S) ≈ g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

Principle of Trust-Region : minimize this second-order
approximation .

Set Vk+1 = Vk + S ,

with S ∈ argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.



Algorithms 23 / 39

Second-order methods : Trust-Region

Minimize g(V )
def
= f (VV T ),

over V ∈ Rn×p.

Close to Vk , g can be approximated as

g(Vk + S) ≈ g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

Principle of Trust-Region : minimize this second-order
approximation over a small ball.

Set Vk+1 = Vk + S ,

with S ∈ argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.



Algorithms 24 / 39

Second-order methods : Trust-Region

At each iteration, we must solve

argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

▶ Exact solvers exist, but are costly.

▶ Inexact solvers are much faster.
→ We use Truncated Conjugate Gradient.

Typical complexity : O(np log(n) × nb its)

cost of a gradient computation adapts to problem
difficulty
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Algorithm 1 Trust-Region
1: for k = 1, 2, ... do
2: Using Truncated Conjugate Gradient, approximate

S ∈ argmin
||S ||F≤∆k

g(Vk) + ⟨∇g(Vk), S⟩ + 1

2
⟨∇2gVk

(S), S⟩.

3: if g(Vk + S) is small enough then
4: Set Vk+1 = Vk + S .
5: else
6: Set Vk+1 = Vk .
7: end if
8: Increase or decrease ∆k .
9: end for
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Overview of numerical results

We compare the algorithms on SDP coming from phase
retrieval.
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Standard 1st order fast slow slow
Precond. 1st order fast fast slow

Trust-Region fast fast faster
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Graph 1 : well-conditioned problem
n = 128, m = 768, random measurements, PhaseLift, p = 1
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Graph 2 : ill-conditioned (overparametrization)
n = 128, m = 768, random measurements, PhaseLift, p = 2
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Graph 3 : ill-conditioned (overparametrized and f )
n = 128, m = 768, wavelet measurements, PhaseLift, p = 2
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Summary of the numerical experiments

▶ First-order methods struggle with ill-conditioning.

▶ Preconditionned first-order methods are immune to
ill-conditioning from overparametrization.

▶ Second-order methods perform best when ill-conditioning
comes from both overparametrization and f .
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What’s left to do on the numerical side

▶ Increase the dimension.

▶ Implement and test other available first-order methods.

▶ Investigate possible improvements for Trust-Region :
▶ rank-adaptive strategies ;
▶ mix with a more basic algorithm.
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Theoretical guarantees ?

Minimize f (VV T ),

over V ∈ Rn×p.
(BM)

Justify the good numerical behavior of Trust-Region through
rigorous convergence rates ?

We focus on the case where ill-conditioning comes from
overparametrization only.
→ Show that Trust-Region performs at least as well as

preconditioned first-order methods ?
(i.e. local linear convergence rate, same iteration cost)
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Prior work
Convergence rates for Trust-Region when minimizing a
non-convex function g ?

Minimize g(x) for x ∈ Rn.

First result : Trust-Region converges locally superlinearly if

∇2g(xmin) ≻ 0.

This holds for an exact subproblem solver,
and for the inexact Truncated Conjugate Gradient.

[Absil, Baker, and Gallivan, 2007]
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Prior work
Convergence rates for Trust-Region when minimizing a
non-convex function g ?

Minimize g(x) for x ∈ Rn.

Second result : Trust-Region converges locally superlinearly if

g satisfies a Polyak– Lojasiewicz condition close to xmin.

This holds for the Truncated Conjugate Gradient solver.

[Rebjock and Boumal, 2023] Does not apply for us
when p > r∗.
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Our result

Minimize f (VV T ),

over V ∈ Rn×p.
(BM)

For the moment, we consider the simplest possible function f
which is well-conditioned and has a low-rank minimizer :

f : X ∈ Rn×n → 1

4

∣∣∣∣∣
∣∣∣∣∣X −

(
1 0 ... 0
0
...

...
...

0 0

)∣∣∣∣∣
∣∣∣∣∣
2

F

.

We hope that the result generalizes to other well-conditioned
functions.



Theoretical results 35 / 39

Our result

Theorem : (with ongoing proof)

Close to the solution, Trust-Region converges linearly :
for some C0 > 0, ρ ∈]0; 1[ and all k ∈ N,

f (VkV T
k ) ≤ C0ρ

k f (V0V T
0 ),

This holds for an exact subproblem solver,
and for the inexact Truncated Conjugate Gradient,

capped at 3 iterations.
(→ same cost as first-order methods.)
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Proof idea

We consider a specific function f , and the Trust-Region
iterates are deterministic.

⇒ We should be able to explicitely compute Vk+1 as a
function of Vk .

Actually, the direct computation is horrible, and the expression
we get for Vk+1 is difficult to study.
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Actually, the direct computation is horrible, and the expression
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Proof idea

In the exact solver case :

We introduce a suitable Lyapunov function.

We divide the space of Vk in different regions.

In each region, we exploit the optimality conditions of the
subproblem to show that the Lyapunov function decays.
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Proof idea

Using Truncated Conjugate Gradient :

We divide the space of Vk in different regions.

In each region, we either exploit the optimality conditions of
the subproblem to show linear decay of f ,

or we estimate the result of the first three iterations of
Conjugate Gradient.
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Thank you very much for your attention !
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