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@ CBCT and PET modeling
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Reminder on CBCT

CBCT= Cone Beam Computerized Tomography

@ CT : a medical imaging modality which provides anatomical
information on contrast images.

o CBCT scan : X-ray source+Xray camera, the imaged object in
between, in Cone beam geometry.

Ring of Fescldlectors Fotaling Xray bos snd
% 1 o b of -y
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Reminder on CBCT

I;(E)at
Pixel j

Planar detector

The Beer-Lambert law claims /; = zj exp [— frj ,uE(/)dl] with

@ 1 [+~ pg(l) the unknown absorption coefficient at point /
on rj.

@ z; a parameter proportional to the number of photons emitted
by the source.
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Reminder on CBCT, in 3D
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Reminder on CBCT, in 3D
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Reminder on PET

PET= Positron Emission Tomography

@ PET : medical imaging modality that provides a measurement
of the metabolic activity of an organ

@ injection to the patient of a radiotracer attached to a
molecule that will be absorbed by some organs, depending of
their function

— radioactive decay emits a positron, which annihilates with an
electron after a very short time, and this yields... two gamma
rays radiation of 511 keV and opposite direction.

Rings of detectors are supposed to detect them.
parallel-beam geometry

@ Possible absorption of photons when crossing the body
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simultaneous PET- CBCT

@ Thus along a line L modeling the measurements :
wL = fL x(I) exp (—ps11(1))
o | — us11(/) is supposed to be known.
e x is the unknown concentration of radioactive desintegration.

e Prototype developped by the CPPM : ClearPET /XPAD

(ClearPET developped by EPFL-+XPAD developped by
CPPM)

— allows simultaneous PET/CT imaging based on hybrid pixels

e Hybrid pixels : a new generation of detectors which is in
photons counting mode
— very low counting rate
e no charge integration : no "dark noise” with these detectors
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CBCT framework

no additional gaussian noise in this setting!
o Let y € R” the measurements
@ 1 € R™ the unknown to recover

o Aec M(R™ R") the system matrix with n << m in general,
and ill conditionned.

@ pure Poisson noise : y; ~ P (zj exp (—[Apu];)) with P()) the
Poisson distribution of parameter .

@ — log likelihood yields the objective function with constraint
pn =0

Lcper(p) = ZYJ[AML + zjexp (—[Aul;)

e We consider the problem ji = arg m>ir(1) Leper(p) + AJ(w)
>
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PET framework

again no additional gaussian noise in this setting !
o Let y € R” the measurements
@ x € R™ the unknown to recover

e B e M(R™ R") the system matrix with n << m in general,
and ill conditionned.

pure Poisson noise : y; ~ P ([Bx];) with P()) the Poisson
distribution of parameter .

— log likelihood yields the objective function with constraint
x>0

Lper(x) = Z —Yj |og([BX]_,') + [Bx]j
J

@ We consider the problem % = arg m>ig Lper(x) + AJ(1)
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Optimization strategy : remarks

@ The CBCT data fidelity term is differentiable with our
assumption.

— Several optimization schemes and penalization can be tested
under the constraint that the result > 0.
o the CBCT optimization problem should be less challenging
than the PET one!
@ Choice of a regularization term
o Total-variation Jrv(u) = > [(Vu)ijl

1<ij<N
o Regularized Total-Variation J75 = >~ (/a2 + |Vu); ;|2

1<ij<N
e /'-norm inducing sparsity

Jpo(u) = 22 [ <u o0 > [ = Ry(v) [l
AEA
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@ State of the art
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Quick non exhaustive review

@ some algorithms to recover CBCT and PET images viewed as
Poisson noisy data

o Filtered backprojection for Cone Beam geometry : FDK
algorithm (Feldkamp and all 1984...)

o EM algorithm and variants (Shepp and Vardi 1982, Lange and
Carson 1984, Hudson and Larkin 1994...)

e Regularization of EM type algorithms : quadratic surrogate
functions (De Pierro 1994, Fessler and all 1998...), Huber
(Chlewicki and all 2004...), TV (Harmany and all 2011...)

— technics closed to the ones used in convex optimization
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Quick non exhaustive review
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e Forward backward splitting (Combettes-Wajs 2005) after
using an Anscombe transform to go back to Gaussian noise
applied in the setting of Deconvolution problems with Poisson
noisy data (Dupé et al 2009)

@ Alternative Direction Method of Multipliers in the context of
poissonian image reconstruction (Figueiredo 2010)

@ PPXA algorithm applied in the context of dynamical PET
(Pustelnik et al 2010)

@ Primal dual algorithm using TV regularization in the context
of blurred Poisson noisy data (Bonettini and Ruggiero 2010)

@ Remember Gabriel Peyré's talk this morning

o ...
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© Recalls in convex analysis
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Proximal operator

Let F be a convex proper function. We recall that the subgradient
of F, which is denoted by OF, is defined by

OF(x) ={p € X such that F(y)> F(x)+ (p,y — x) ¥y}

For any h > 0 the following problem always has a unique solution :

: 1
min AF(y) + 5l — I J
y

This solution is given by :

y = (I + hdF)"1(x) = prox} (x) J

The mapping (/ + hdF)~1 is called the proximity operator.
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i 1
min AF(y) + 5 lx = I J
y

@ When F is the indicator function of some closed convex set C,

ie.:
F(X):{ 0ifxeC .
+o00 otherwise

then prox} (x) is the orthogonal projection of x onto C.
@ When F(x) = ||x||,-311’1, then prox/ (x) is the soft wavelet
shrinkage of x with parameter h.
o When F(x) = Jrv(x) then prox| (x) = x — hPpk(x),
with Ppk orthogonal projection onto hK, and
K ={divg / lgij| <1Vij}.
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Forward-backward splitting
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mXin F(x)+ G(x) ’

where F is a convex C1! function, with VF L Lipschitz, and G a
simple convex function (simple means that the proximity operator
of G is easy to compute).

The Forward-Backward algorithm reads in this case :

xg € X
k1= (I + h(?G)*l(xk — hVF(x¢)) = proxf(xk — hVF(xx))

This algorithm is known to converge provided h < 1/L. In terms of
objective functions, the convergence speed is of order 1/k.
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Acceleration

It has been shown by Nesterov (2005) and by Beck-Teboule (2009)
that the previous algorithm could be modified so that a
convergence speed of order 1/k? is obtained.

The FISTA algorithm proposed by Beck and Teboule is the

following :
xo € X s =X b =1
Xj = (I + h(‘?G)‘l(yk — hVF(yk))
1+4/144t7
tky1 = — 5
Y+l = Xk + 4 (k= xe-1)

This algorithm converges provided h < 1/L.

19/55 Jean-Francois Aujol Tomography CBCT and PET



FISTA and constrained total variation

Beck and Teboule have shown that FISTA could be used to solve
the constrained total variation problem.

. 1
min Jry (u) + 5|17 — ol |

with C a closed non empty convex set.
Proposition : Let us set :

h(v) = —||Hc(f — Mdivv)||? + || f — Adiv v

where Hc(u) = u — Pc(u) and Pc(u) is the orthogonal projection
of uonto C. Let us define :

v = argmin h(v)
Ivii<1

Then the solution of problem (1) is given by :
u= Pc(f — Adivv)

20/55 Jean-Francois Aujol Tomography CBCT and PET



FISTA and constrained regularization

The previous result can be adapted to some general L!
regularization :

1
min Ky + 517 — u? |

with C a closed non empty convex set. K is a continuous linear
operator from X to Y (two finite-dimensional real vector spaces).
Proposition : Let us set :

hi(v) = —||He(f + AK*V)|? + |If + AK*v||?

where He(u) = u — Pc(u) and Pc(u) is the orthogonal projection
of uonto C. Let us define :

v = argmin hk(v)
Ivii<1

Then the solution of problem (1) is given by :
u= Pc(f + \K*7)
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Chambolle-Pock algorithm
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X and Y are two finite-dimensional real vector spaces. K : X — Y
continuous linear operator. F and G convex functions.

min (F(Kx) + G(x)) l

xeX

We remind the definition of the Legendre-Fenchel conjugate of F :

F'(y) = max ({x,y) — F(x)) M)

The associated saddle point problem is :

min max ((Kx, y) + G(x) = F*(y)) J

= Arrow-Urwicz method (ascent in y, descent inx).

Jean-Francois Aujol Tomography CBCT and PET



Chambolle-Pock algorithm

min max ((Kx, y) + G(x) = F*(y)) |

e Initialization : Choose 7,0 > 0, (x0,¥0) € X X Y), and set
)_(0 = X0-
e [terations (n > 0) : Update xp, yn, X, as follows :

Yo+1 = (I + U@F*)’l(yn + oKXp)
Xnp1 = (I +70G) Y (xy — TK*ypi1) (2)

Xnt1 = 2Xp41 — Xn

Let L = ||K]||, and assume problem (1) has a saddle point. Choose
Tol? < 1, and let (x,, Xn, yn) be defined by (2). Then there exists
a saddle point (x*, y*) such that x” — x* and y" — y*.

Notice that both F and G can be non smooth.
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@ CBCT problem : solvers and results on synthetic data
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Solving the CBCT problem
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S Al + 21 exp (~[AL}) + Xguzo) + A1) ’

belongs to the class of problems arg min F(x) + G(x)

xeX

with F and G proper, convex, lower semi-continuous
functions, and F L Lipschitz differentiable

recall the definition proxg(x) = arg mi)rg Fly)+ 3 [ x—y |
ye
Forward-backward splitting iterations (Combettes-Wajs

2005, Daubechies-De Mol 2004)
Xk+1 = proxpc(xxk — hV F(xx)). Converge if h < %

with G = AJ7v + x¢ (C = {x > 0}) can be solved with the
algorithm FISTA (Beck and Teboulle 2009)

with G = AJn , + X, can be solved using again FISTA
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Algorithms for CBCT

o [TVreg] using J7¥, accelerated projected gradient descent.

e [FB-TV] using J7y, Forward-Backward algorithm combined
with FISTA.

o [FB-wav] using Ju 4, Forward-Backward algorithm combined
with FISTA.

— tested against three algorithms implemented in the IRT
toolbox

o [FBP] Filtered backprojection
e [MLEM] MLEM algorithm
e [MLEM-H] MLEM algorithm penalized by a Huber function.
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Results on simulated data

— Simulated phantoms to recover :

Zubal Contrast Resolution

— Criteria, T being the true object and / the reconstructed image
SNR(I, T) = 10logyq (M)

mean(|/—T|?)

2mean(/y )mean( Ty )+a)(2cov(ly, Tw)+b
SSIM(Ia T) = meany <méan(lw)2(+r31ean(7('§,+)a)(a\23(w(3:,)g—var( 72W)—izb)>
CNR(I) _ |mean(/j,) —mean(lout )|

\/var( Iin)+var(loyt)
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TVreg FB-Wav FE-TV

Snr = 14.95 ssim = 0.810 Snr = 13.87 ssim = 0848 Snr = 14.98 ssim = 0.852

MLEM MLEM-Huber

Enr = 11.84 ssim = 0.458 Snr = 14.38 ==im = 0.676
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FE-TV

Snr = 11.42 ssim = 0,659 Snr = 10.683 ssim = 0.741 Snr = 1140 ssim = 0.737

FEP MLEM MLEM-Huber

Snr = 10.88 ==im = 0.507
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Photon Algorithm SNR SSIM A nb. iter. time (s)
count
TVreg 15.06 0.808 200 300 36
FB-Wav 14.06 0.826 25 300 110
1le3 FB-TV 15.10 0.845 200 300 85
FBP 9.08 0.201 - - 0.09
MLEM 11.86 0.462 - 43 14
MLEM-H 14.52 0.680 7e5 752
TVreg 11.34 0.625 80 300 32
FB-Wav 10.62 0.695 10 300 110
1e2 FB-TV 11.35 0.690 80 300 78
FBP 0.44 0.076 - - 0.07
MLEM 7.90 0.200 - 17 5.67
MLEM-H 10.78 0.489 3.5e4 605
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CBCT Contrast for 60 projections

MLEM MLEM-Huber
g
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£
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anr - 14.71,23im - 0.383 anr - 17.50, == 0521 anr -21.57, 22im - 0,914
enr = 260 n enr =533
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a8
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&
snr = 1136, ssim = =nr = 1333, szim= snr = 1742, ssim = 0.817
enr - 177 enr - 211 enr - 350
8
i
H
]
3
8
H
£

snr =8.13,55im =0.170
enr - 106

=nr = 10.28, ssim=

snr =130, ssim = 0.779
onr - 146 onr - 234
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CBCT Contrast for 60 projections

photon count || Algorithm | CNR SSIM  SNR
led FB-Wav | 4.18 0.911 20.09
FB-TV | 533 0.914 2157
MLEM-H | 3.23 0.521 17.50
le3 FB-Wav | 296 0.839 17.01
FB-TV | 350 0.817 17.42
MLEM-H | 2.11 0.351 13.33
le2 FB-Wav | 2.08 0.779 12.93
FB-TV | 234 0.779 13.90
MLEM-H | 1.46 0.294 10.28
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Influence of the number of projections

| Nb. angles | 90 60
Photon || Algorithm | CNR  SSIM SNR | CNR  SSIM SNR
count
TVreg 317 0793 17.15 | 3.00 0.743 16.95
FB-Wav | 3.18 0.851 17.68 | 296 0.839 17.01
le3 FB-TV 3.93 0831 1765 |3.50 0.817 17.42
FBP 0.82 0.046 357 | 0.65 0.033 2.09
MLEM 195 0.274 1187 | 1.77 0.253 11.36
MLEM-H | 2.27 0.337 13.49 | 2.11 0.351 13.33
Nb. angles 30
TVreg 2.78 0.728 15.46
FB-Wav | 2.61 0.802 15.39
1e3 FB-TV 3.36 0.756 15.25
FBP 0.44 0.017 -0.79
MLEM 1.53 0.218 10.33
MLEM-H | 2.04 0.393 13.47
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CBCT Resolution for 60 projections
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Phaten count = 10000

201 = 14.60, 32im - 0.526
enr =327

Photon count = 1000

=nr = 11.88, z2im = 0,322
enr - za7

Phaton count = 100

MLEM-Huber

=469

enr - 2.50

snr = 1071, ssim= 0.418
enr - 130

Jean-Francois Aujol

cnr = 566

enr - 238

snr =11.52, ssim = 0.508
onr - 148
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© PET problem : solvers and results on synthetic data
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Solving the PET problem

D —yjlog(Bx) + [Bx; + xgxsy + M () J

J

belongs to the class of problems arg mi)rg F(Kx) + G(x)
x€e

@ with F and G proper, convex, lower semi-continuous
functions, F and G non differentiable, K a continuous linear

operator
@ Primal-dual algorithm : Chambolle-Pock algorithm (2010)

Yn+1l = prOXUF*(Yn + O'K)?n)
Xn+1 = prOX‘rG(Xn - TK*Yn—l-l)
Xnt1 = 2Xpy1 — Xn
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Application of CP scheme

C={x>0}
@ 1rst version : min F(Bx) + G(x)
o F(x) =2 x — wjlog(xj) + xc(x)
o G(x) = AJ(x)+ xc(x).
@ 2nd version : min F(Bx) + G(Kx) 4+ xc(x)
o F(x)=22x — wjlog(x) + xc(x)

J
o G(p)=| pll1and K=V or K= Ry.
e Associated saddle point problem :

min max ((Kx,y) + (Bx, z) — F*(y) — G*(2) + xc(x))

X Y,z

37/55 Jean-Francois Aujol Tomography CBCT and PET



Algorithms for PET

@ Regularized version of the data fidelity term
Lper(x) =22 —yjlog([Bx]j +¢) + [Bx];
J

— Forward Backward type algorithms can used.

e [CP-TV-BT] using Jrv, first approach of Chambolle-Pock
combined with FISTA

e [CP-TV] using J7v, second approach of Chambolle-Pock
o [CP-wav] J ,, Chambolle-Pock algorithm

— tested against the same three algorithms implemented in the
IRT toolbox

o [FBP] Filtered backprojection, [MLEM] MLEM algorithm,
[MLEM-H] MLEM algorithm penalized by a Huber function.

e and [SPIRAL] an algorithm very closed to Forward Backward
algorithm
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Results on simulated data
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— Simulated phantoms to recover :

Zubal Contrast Resolution

— Recall the criteria, with T the original image
SNR(I, T) = 10logyg (M)

mean(|/—T|?)

2mean(/y )mean( Ty )+a)(2cov(ly, Tw)+b
SSIM(Ia T) = meany <méan(lw)2(+r31ean(7('§,+)a)(axza(br(‘;z)g—var( 72W)—izb)>
CNR(I) _ |mean(/j,) —mean(lout )|

\/var(l,'n)+var(/out)
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PET ,

Threg FB-Wav FE-TV

Snr = 15.33, ssim =0.803 Snr =14.74, ssim = 0.885 Snr = 15.38, ssim = 0.907
CP-Wav CP-TV-BT CP-TV

Snr = 1483, ssim =0,

FBEP MLEM MLEM-Huber

Snr =15.23, ssim = 0.908 Snr =14 .82, ssim = 0 853

Snr = 11.68, ssim = 0.432 Snr = 1342, ssim = 0.821 Snr =15.18, s5im = 0.2G68
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PET , fcount = 500 000

Algorithm | SNR  SSIM A nb. iter. time (s)

TVreg 15.33  0.902 0.70 200 10
FB-Wav | 14.77 0.889 0.10 150 89
FB-TV 15.37  0.905 0.70 100 62
CP-Wav | 14.68 0.885 0.10 80 63
CP-TV-BT | 15.32 0.905 0.70 80 63

CP-TV | 14.84 0.860 0.70 400 266
SPIRAL 15.17 0.905 0.70 100 76

FBP 11.59 0.429 - - 0.04
MLEM 13.38 0.819 - 17 2
MLEM-H | 15.22 0.866 0.9/0.25 267 46
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PET ,

Threg FB-Wav FE-TV

Snr = 12.26, ssim = 0.842 Snr =11.84, ssim = 0.827 Snr = 12.29, s5im = 0,849
CP-Wav CP-TV-BT CP-TV

Snr = 12,84, ssim =0,

FBEP MLEM MLEM-Huber

Snr =12.30, ssim = 0.884 Snr = 1298, ssim = 0.823

Snr = 6.72, ssim = 0.258 Snr =11.20, ssim = 0.722 Snr =13.15, s5sim = 0.837
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PET , count = 100 000

Algorithm | snr  ssim A nb. iterations time (s)
TVreg 12,12 0.841 0.40 200 13
FBwav 11.55 0.834 0.0625 150 89
FB-TV 12.14 0.847 0.40 100 68
CPwav 11.65 0.835 0.0625 50 40

CP-TV-BT | 13.13 0.862 0.40 50 46
CP-TV 12.86 0.823 0.40 100 78

SPIRAL 11.77 0.841 0.40 100 86
FBP 6.66 0.254 - - 0.08

MLEM 11.06 0.731 - 10 2

MLEM-H | 12.92 0.837 0.8/0.25 278 58
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PET Contrast for fcount = 2e5

MLEM MLEM-Huber CPITV

90 angles

anr - 15,60, 22im - 0.835 anr - 15.92, 22im - 0.595

anr - 1259, 22im - 0.321
enr =129 enr =212 enr =260

50 angles

=nr = 15.80, =zim = 0.897

=nr = 15.48, =zim = 0.832
enr = 131 cnr =218 enr =253

=nr = 12.53,22im=0.318

30 angles.

snr = 1259, z5im=0.323 =nr = 15.55, ssim = 0.628 =nr = 16.33, ssim = 0.906
enr - 120 enr - 212 enr - 287

and PET
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PET Contrast

for fcount = 2eb5

N. angles [ 30 60 90

AlgO CNR SSIM SNR CNR SSIM SNR CNR SSIM SNR
CP-TV-BT 2.60 0.898 15.92 2.53 0.897 15.80 2.97 0.906 16.33
MLEM 1.29 0.321 12.59 1.31 0.318 12.53 1.29 0.323 12.59
MLEM-H 2.12 0.835 15.60 2.18 0.832 15.46 2.12 0.828 15.55

for fcount = 1eb

N. angles [ 30 60 90

AlgO CNR SSIM SNR CNR SSIM SNR CNR SSIM SNR
CP-TV-BT 2.64 0.900 16.11 2.55 0.897 15.84 2.72 0.901 15.92
MLEM 1.62 0.405 14.00 1.59 0.418 13.91 1.67 0.428 14.14
MLEM-H 2.67 0.842 17.50 2.42 0.837 17.24 2.59 0.842 17.39
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PE

T Resolution for fcount
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WMLEM MLEM-Huber

90 angles

anr - 7,59, 20im - 0.124 anr - 965, 2sim - 0.395
cnr =130

cnr = 0.88 cnr =128

60 angles

30 angles

enr =7.90,esim =0.197 enr = 940, esim = 0.346

enr = 968, csim = 0.388
enr - 0.87 enr =130 onr - 134
Jean-Francois Aujol omography CBC PET




@ CBCT problem : results on real data
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15000 photons per pixel, 60 projections (A = 15; 25; 40)
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10000 photons per pixel, 60 projections (A = 15; 25; 40)
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1000 photons per pixel, 60 projections (A = 15; 25; 40)
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600 photons per pixel, 60 projections (A = 15; 25; 40)
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From 2nd to 4th column : nb angles = 90; 60; 36; from
top to bottom photon count = 15000; 10000; 1000 ; 600
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@ Conclusion
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Conclusion

54/55

CT-Scanner based on hybrid pixels.
Simultaneous PET /CT scanner for bimodality images

Adapted algorithms : for low photon counts : Poisson noise
taken into account, exact physical model.

For small number of projections : sparse regularizations
enhance robustness, and help to have flat by parts images.

Reconstructions of real acquisitions in the CBCT case confirm
the study.

Real data for the TEP case : wait for the authorization . ..

3D case : work under progress.
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Acceleration in 3D

Non accelerated

Accelerated
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