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Reminder on CBCT

CBCT= Cone Beam Computerized Tomography

CT : a medical imaging modality which provides anatomical
information on contrast images.

CBCT scan : X-ray source+Xray camera, the imaged object in
between, in Cone beam geometry.
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Reminder on CBCT

The Beer-Lambert law claims Ij = zj exp
[
−
∫
rj
µE (l)dl

]
with

µ : l 7→ µE (l) the unknown absorption coefficient at point l
on rj .

zj a parameter proportional to the number of photons emitted
by the source.
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Reminder on CBCT, in 3D

sinogram
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Reminder on CBCT, in 3D

sinogram with more
angles
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Reminder on PET

PET= Positron Emission Tomography

PET : medical imaging modality that provides a measurement
of the metabolic activity of an organ

injection to the patient of a radiotracer attached to a
molecule that will be absorbed by some organs, depending of
their function

→ radioactive decay emits a positron, which annihilates with an
electron after a very short time, and this yields... two gamma
rays radiation of 511 keV and opposite direction.
Rings of detectors are supposed to detect them.
parallel-beam geometry

Possible absorption of photons when crossing the body
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simultaneous PET- CBCT

Thus along a line L modeling the measurements :
wL =

∫
L x(l) exp (−µ511(l))

l 7→ µ511(l) is supposed to be known.
x is the unknown concentration of radioactive desintegration.

Prototype developped by the CPPM : ClearPET/XPAD
(ClearPET developped by EPFL+XPAD developped by
CPPM)

→ allows simultaneous PET/CT imaging based on hybrid pixels

Hybrid pixels : a new generation of detectors which is in
photons counting mode

→ very low counting rate
no charge integration : no ”dark noise” with these detectors
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CBCT framework

no additional gaussian noise in this setting !

Let y ∈ Rn the measurements

µ ∈ Rm the unknown to recover

A ∈M(Rm,Rn) the system matrix with n << m in general,
and ill conditionned.

pure Poisson noise : yj ∼ P (zj exp (−[Aµ]j)) with P(λ) the
Poisson distribution of parameter λ.

− log likelihood yields the objective function with constraint
µ ≥ 0

LCBCT (µ) =
∑
j

yj [Aµ]j + zj exp (−[Aµ]j)

We consider the problem µ̂ = arg min
µ≥0
LCBCT (µ) + λJ(µ)
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PET framework

again no additional gaussian noise in this setting !

Let y ∈ Rn the measurements

x ∈ Rm the unknown to recover

B ∈M(Rm,Rn) the system matrix with n << m in general,
and ill conditionned.

pure Poisson noise : yj ∼ P ([Bx ]j) with P(λ) the Poisson
distribution of parameter λ.

− log likelihood yields the objective function with constraint
x ≥ 0

LPET (x) =
∑
j

−yj log([Bx ]j) + [Bx ]j

We consider the problem x̂ = arg min
x≥0
LPET (x) + λJ(µ)
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Optimization strategy : remarks

The CBCT data fidelity term is differentiable with our
assumption.

→ Several optimization schemes and penalization can be tested
under the constraint that the result µ ≥ 0.

the CBCT optimization problem should be less challenging
than the PET one !

Choice of a regularization term

Total-variation JTV (u) =
∑

1≤i,j≤N
|(∇u)i,j |

Regularized Total-Variation J regTV =
∑

1≤i,j≤N

√
α2 + |∇u)i,j |2

`1-norm inducing sparsity
J`1,φ(u) =

∑
λ∈Λ

| < u, φλ > | =‖ Rφ(u) ‖`1
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Quick non exhaustive review

some algorithms to recover CBCT and PET images viewed as
Poisson noisy data

Filtered backprojection for Cone Beam geometry : FDK
algorithm (Feldkamp and all 1984...)
EM algorithm and variants (Shepp and Vardi 1982, Lange and
Carson 1984, Hudson and Larkin 1994...)
Regularization of EM type algorithms : quadratic surrogate
functions (De Pierro 1994, Fessler and all 1998...), Huber
(Chlewicki and all 2004...), TV (Harmany and all 2011...)

→ technics closed to the ones used in convex optimization
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Quick non exhaustive review

Forward backward splitting (Combettes-Wajs 2005) after
using an Anscombe transform to go back to Gaussian noise
applied in the setting of Deconvolution problems with Poisson
noisy data (Dupé et al 2009)

Alternative Direction Method of Multipliers in the context of
poissonian image reconstruction (Figueiredo 2010)

PPXA algorithm applied in the context of dynamical PET
(Pustelnik et al 2010)

Primal dual algorithm using TV regularization in the context
of blurred Poisson noisy data (Bonettini and Ruggiero 2010)

Remember Gabriel Peyré’s talk this morning

. . .
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Proximal operator

Let F be a convex proper function. We recall that the subgradient
of F , which is denoted by ∂F , is defined by

∂F (x) = {p ∈ X such that F (y) ≥ F (x) + 〈p, y − x〉 ∀y}

For any h > 0 the following problem always has a unique solution :

min
y

hF (y) +
1

2
‖x − y‖2

This solution is given by :

y = (I + h∂F )−1(x) = proxFh (x)

The mapping (I + h∂F )−1 is called the proximity operator.
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Examples

min
y

hF (y) +
1

2
‖x − y‖2

When F is the indicator function of some closed convex set C ,
i.e. :

F (x) =

{
0 if x ∈ C
+∞ otherwise

then proxFh (x) is the orthogonal projection of x onto C .

When F (x) = ‖x‖Ḃ1
1,1

, then proxFh (x) is the soft wavelet

shrinkage of x with parameter h.

When F (x) = JTV (x) then proxFh (x) = x − hPhK (x),
with PhK orthogonal projection onto hK , and
K = {div g / |gi ,j | ≤ 1 ∀i , j}.
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Forward-backward splitting

min
x

F (x) + G (x)

where F is a convex C 1,1 function, with ∇F L Lipschitz, and G a
simple convex function (simple means that the proximity operator
of G is easy to compute).
The Forward-Backward algorithm reads in this case :

{
x0 ∈ X
xk+1 = (I + h∂G )−1(xk − h∇F (xk)) = proxGh (xk − h∇F (xk))

This algorithm is known to converge provided h ≤ 1/L. In terms of
objective functions, the convergence speed is of order 1/k .
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Acceleration

It has been shown by Nesterov (2005) and by Beck-Teboule (2009)
that the previous algorithm could be modified so that a
convergence speed of order 1/k2 is obtained.
The FISTA algorithm proposed by Beck and Teboule is the
following : 

x0 ∈ X ; y1 = x0; t1 = 1;
xk = (I + h∂G )−1(yk − h∇F (yk))

tk+1 =
1+
√

1+4t2
k

2

yk+1 = xk + tk−1
tk+1

(xk − xk−1)

This algorithm converges provided h ≤ 1/L.
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FISTA and constrained total variation

Beck and Teboule have shown that FISTA could be used to solve
the constrained total variation problem.

min
u∈C

JTV (u) +
1

2λ
‖f − u‖2 (1)

with C a closed non empty convex set.
Proposition : Let us set :

h(v) = −‖HC (f − λdiv v)‖2 + ‖f − λdiv v‖2

where HC (u) = u − PC (u) and PC (u) is the orthogonal projection
of u onto C . Let us define :

ṽ = argmin
‖v‖≤1

h(v)

Then the solution of problem (1) is given by :

u = PC (f − λdiv ṽ)
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FISTA and constrained regularization

The previous result can be adapted to some general L1

regularization :

min
u∈C
‖Ku‖1 +

1

2λ
‖f − u‖2 (1)

with C a closed non empty convex set. K is a continuous linear
operator from X to Y (two finite-dimensional real vector spaces).
Proposition : Let us set :

hK (v) = −‖HC (f + λK ∗v)‖2 + ‖f + λK ∗v‖2

where HC (u) = u − PC (u) and PC (u) is the orthogonal projection
of u onto C . Let us define :

ṽ = argmin
‖v‖≤1

hK (v)

Then the solution of problem (1) is given by :

u = PC (f + λK ∗ṽ)
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Chambolle-Pock algorithm

X and Y are two finite-dimensional real vector spaces. K : X → Y
continuous linear operator. F and G convex functions.

min
x∈X

(F (Kx) + G (x))

We remind the definition of the Legendre-Fenchel conjugate of F :

F ∗(y) = max
x∈X

(〈x , y〉 − F (x)) (1)

The associated saddle point problem is :

min
x∈X

max
y∈Y

(〈Kx , y〉+ G (x)− F ∗(y))

=⇒ Arrow-Urwicz method (ascent in y , descent inx).
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Chambolle-Pock algorithm

min
x∈X

max
y∈Y

(〈Kx , y〉+ G (x)− F ∗(y)) (1)

Initialization : Choose τ, σ > 0, (x0, y0) ∈ X × Y ), and set
x̄0 = x0.

Iterations (n ≥ 0) : Update xn, yn, x̄n as follows :
yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)
xn+1 = (I + τ∂G )−1(xn − τK ∗yn+1)
x̄n+1 = 2xn+1 − xn

(2)

Theorem

Let L = ‖K‖, and assume problem (1) has a saddle point. Choose
τσL2 < 1, and let (xn, x̄n, yn) be defined by (2). Then there exists
a saddle point (x∗, y∗) such that xn → x∗ and yn → y∗.

Notice that both F and G can be non smooth.
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Solving the CBCT problem

∑
j

yj [Aµ]j + zj exp (−[Aµ]j) + χ{µ≥0} + λJ(µ)

belongs to the class of problems arg min
x∈X

F (x) + G (x)

with F and G proper, convex, lower semi-continuous
functions, and F L Lipschitz differentiable

recall the definition proxF (x) = arg min
y∈X

F (y) + 1
2 ‖ x − y ‖2

Forward-backward splitting iterations (Combettes-Wajs
2005, Daubechies-De Mol 2004)
xk+1 = proxhG (xk − h∇F (xk)). Converge if h ≤ 1

L .

with G = λJTV + χC (C = {x ≥ 0}) can be solved with the
algorithm FISTA (Beck and Teboulle 2009)

with G = λJ`1,φ + χC , can be solved using again FISTA
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Algorithms for CBCT

[TVreg] using J regTV , accelerated projected gradient descent.

[FB-TV] using JTV , Forward-Backward algorithm combined
with FISTA.

[FB-wav] using J`1,φ, Forward-Backward algorithm combined
with FISTA.

→ tested against three algorithms implemented in the IRT
toolbox

[FBP] Filtered backprojection

[MLEM] MLEM algorithm

[MLEM-H] MLEM algorithm penalized by a Huber function.
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Results on simulated data

→ Simulated phantoms to recover :

Zubal Contrast Resolution

→ Criteria, T being the true object and I the reconstructed image

SNR(I ,T ) = 10 log10

(
mean(I 2)

mean(|I−T |2)

)
SSIM(I ,T ) = meanw

(
(2mean(Iw )mean(Tw )+a)(2 cov(Iw ,Tw )+b)

mean(Iw )2+mean(T 2
w+a)(var(Iw )+var(Tw )+b)

)
CNR(I ) = |mean(Iin)−mean(Iout)|√

var(Iin)+var(Iout)
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CBCT Zubal z = 1e3 photons
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CBCT Zubal z = 1e2 photons

29/55 Jean-François Aujol Tomography CBCT and PET



CBCT z = 1e3 and z = 1e2

Photon
count

Algorithm snr ssim λ nb. iter. time (s)

1e3

TVreg 15.06 0.808 200 300 36
FB-Wav 14.06 0.826 25 300 110
FB-TV 15.10 0.845 200 300 85

FBP 9.08 0.201 - - 0.09
MLEM 11.86 0.462 - 43 14

MLEM-H 14.52 0.680 7e5 752

1e2

TVreg 11.34 0.625 80 300 32
FB-Wav 10.62 0.695 10 300 110
FB-TV 11.35 0.690 80 300 78

FBP 0.44 0.076 - - 0.07
MLEM 7.90 0.200 - 17 5.67

MLEM-H 10.78 0.489 3.5e4 605
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CBCT Contrast for 60 projections
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CBCT Contrast for 60 projections

photon count Algorithm cnr ssim snr

1e4 FB-Wav 4.18 0.911 20.09
FB-TV 5.33 0.914 21.57

MLEM-H 3.23 0.521 17.50

1e3 FB-Wav 2.96 0.839 17.01
FB-TV 3.50 0.817 17.42

MLEM-H 2.11 0.351 13.33

1e2 FB-Wav 2.08 0.779 12.93
FB-TV 2.34 0.779 13.90

MLEM-H 1.46 0.294 10.28
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Influence of the number of projections

Nb. angles 90 60

Photon
count

Algorithm cnr ssim snr cnr ssim snr

1e3

TVreg 3.17 0.793 17.15 3.00 0.743 16.95
FB-Wav 3.18 0.851 17.68 2.96 0.839 17.01
FB-TV 3.93 0.831 17.65 3.50 0.817 17.42

FBP 0.82 0.046 3.57 0.65 0.033 2.09
MLEM 1.95 0.274 11.87 1.77 0.253 11.36

MLEM-H 2.27 0.337 13.49 2.11 0.351 13.33

Nb. angles 30

1e3

TVreg 2.78 0.728 15.46
FB-Wav 2.61 0.802 15.39
FB-TV 3.36 0.756 15.25

FBP 0.44 0.017 -0.79
MLEM 1.53 0.218 10.33

MLEM-H 2.04 0.393 13.47
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CBCT Resolution for 60 projections
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Solving the PET problem

∑
j

−yj log([Bx ]j) + [Bx ]j + χ{x≥0} + λJ(x)

belongs to the class of problems arg min
x∈X

F (Kx) + G (x)

with F and G proper, convex, lower semi-continuous
functions, F and G non differentiable, K a continuous linear
operator

Primal-dual algorithm : Chambolle-Pock algorithm (2010)
yn+1 = proxσF?(yn + σKx̄n)
xn+1 = proxτG (xn − τK ∗yn+1)
x̄n+1 = 2xn+1 − xn
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Application of CP scheme

C = {x ≥ 0}
1rst version : min

x
F (Bx) + G (x)

F (x) =
∑
j

xj − wj log(xj) + χC (x)

G (x) = λJ(x) + χC (x).

2nd version : min
x

F (Bx) + G (Kx) + χC (x)

F (x) =
∑
j

xj − wj log(xj) + χC (x)

G (p) =‖ p ‖1 and K = ∇ or K = Rφ.
Associated saddle point problem :

min
x

max
y ,z

(〈Kx , y〉+ 〈Bx , z〉 − F ∗(y)− G∗(z) + χC (x))
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Algorithms for PET

Regularized version of the data fidelity term
LεPET (x) =

∑
j
−yj log([Bx ]j + ε) + [Bx ]j

→ Forward Backward type algorithms can used.

[CP-TV-BT] using JTV , first approach of Chambolle-Pock
combined with FISTA

[CP-TV] using JTV , second approach of Chambolle-Pock

[CP-wav] J`1,φ, Chambolle-Pock algorithm

→ tested against the same three algorithms implemented in the
IRT toolbox

[FBP] Filtered backprojection, [MLEM] MLEM algorithm,
[MLEM-H] MLEM algorithm penalized by a Huber function.

and [SPIRAL] an algorithm very closed to Forward Backward
algorithm
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Results on simulated data

→ Simulated phantoms to recover :

Zubal Contrast Resolution

→ Recall the criteria, with T the original image

SNR(I ,T ) = 10 log10

(
mean(I 2)

mean(|I−T |2)

)
SSIM(I ,T ) = meanw

(
(2mean(Iw )mean(Tw )+a)(2 cov(Iw ,Tw )+b)

mean(Iw )2+mean(T 2
w+a)(var(Iw )+var(Tw )+b)

)
CNR(I ) = |mean(Iin)−mean(Iout)|√

var(Iin)+var(Iout)
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PET , fcount = 500 000
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PET , fcount = 500 000

Algorithm snr ssim λ nb. iter. time (s)

TVreg 15.33 0.902 0.70 200 10
FB-Wav 14.77 0.889 0.10 150 89
FB-TV 15.37 0.905 0.70 100 62

CP-Wav 14.68 0.885 0.10 80 63
CP-TV-BT 15.32 0.905 0.70 80 63

CP-TV 14.84 0.860 0.70 400 266

SPIRAL 15.17 0.905 0.70 100 76

FBP 11.59 0.429 - - 0.04
MLEM 13.38 0.819 - 17 2

MLEM-H 15.22 0.866 0.9/0.25 267 46
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PET , fcount = 100 000
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PET , count = 100 000

Algorithm snr ssim λ nb. iterations time (s)

TVreg 12.12 0.841 0.40 200 13
FBwav 11.55 0.834 0.0625 150 89
FB-TV 12.14 0.847 0.40 100 68
CPwav 11.65 0.835 0.0625 50 40

CP-TV-BT 13.13 0.862 0.40 50 46
CP-TV 12.86 0.823 0.40 100 78

SPIRAL 11.77 0.841 0.40 100 86

FBP 6.66 0.254 - - 0.08
MLEM 11.06 0.731 - 10 2

MLEM-H 12.92 0.837 0.8/0.25 278 58
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PET Contrast for fcount = 2e5
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PET Contrast

for fcount = 2e5

N. angles 30 60 90

Algo cnr ssim snr cnr ssim snr cnr ssim snr
CP-TV-BT 2.60 0.898 15.92 2.53 0.897 15.80 2.97 0.906 16.33
MLEM 1.29 0.321 12.59 1.31 0.318 12.53 1.29 0.323 12.59
MLEM-H 2.12 0.835 15.60 2.18 0.832 15.46 2.12 0.828 15.55

for fcount = 1e5

N. angles 30 60 90

Algo cnr ssim snr cnr ssim snr cnr ssim snr
CP-TV-BT 2.64 0.900 16.11 2.55 0.897 15.84 2.72 0.901 15.92
MLEM 1.62 0.405 14.00 1.59 0.418 13.91 1.67 0.428 14.14
MLEM-H 2.67 0.842 17.50 2.42 0.837 17.24 2.59 0.842 17.39
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PET Resolution for fcount = 2e5
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15000 photons per pixel, 60 projections (λ = 15; 25; 40)
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10000 photons per pixel, 60 projections (λ = 15; 25; 40)
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1000 photons per pixel, 60 projections (λ = 15; 25; 40)
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600 photons per pixel, 60 projections (λ = 15; 25; 40)
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From 2nd to 4th column : nb angles = 90 ; 60 ; 36 ; from
top to bottom photon count = 15000 ; 10000 ; 1000 ; 600
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Conclusion

CT-Scanner based on hybrid pixels.

Simultaneous PET/CT scanner for bimodality images

Adapted algorithms : for low photon counts : Poisson noise
taken into account, exact physical model.

For small number of projections : sparse regularizations
enhance robustness, and help to have flat by parts images.

Reconstructions of real acquisitions in the CBCT case confirm
the study.

Real data for the TEP case : wait for the authorization . . .

3D case : work under progress.
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Acceleration in 3D

Non accelerated

Accelerated
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