Parametric probabilistic modeling and information theory tools in textured images analysis

Yannick Berthoumieu

Laboratoire IMS UMR 5218 Université de Bordeaux

November 25, 2011

Contents

Introduction

- Motivation
- Previous works

Information theory

- Density versus parametric space
- Bregman divergence
- Connexions with the bayesian framework

On some IT tools and the texture

- Context
- Marginal case
- Joint case

Motivation Previous works

Introduction

• *Topic*: Characterizing texture contents for segmentation, classification and indexing.

- *Framework*: Scale space decomposition with wavelet, curvelet etc.
- *Tools*: information theory. (with Lionel Bombrun, Nour-eddine Lasmar, Aurélien Schutz)

Motivation Previous works

Parametric random field

- Statistics (mean, variance, Kurtosis ...) 1980
- Parametric field modeling (Markovian, 2-D Autoregressive model, WOLD ...) 1990
- Scale space and *marginal* probabilistic modeling 2000
- Scale space and *joint* probabilistic modeling 2010

A (1) < A (1) < A (1) < A (1) </p>

Motivation Previous works

Homogeneous random Field

Definition

A random field F(s), defined on $\mathbf{S} = \mathbb{R}^2$, is a function whose intensities $f(s) \in \mathbb{R}^p$ (color image p=3) are random, for any value of s.

Definition

The homogeneous parametric field is associated to a specific density characterized by a finit set of parameters $\theta \in \mathbb{R}^n$ independent of the pixel position in the field.

Examples

Gaussian, Gamma, Weibull, Uniform, Pareto ...

• □ ▶ • • □ ▶ • • □ ▶ •

Motivation Previous works

MGRF (1/2)

🔋 Besag , Cross&Jain ...

Definition

Markov-Gibbs random Field (MGRF) - Define a neighborhood $\Delta_i \subset S^i$ as the set of all neighboring sites of a site $i \in \mathbf{S}$. A random field is an MRF if for each site $i \in \mathbf{S}$, $p(f_i|f^i) = p(f_i|f_j: j \in \Delta_i)$ and a Gibbs distribution if $p(f) = \frac{1}{Z}e^{\left\{-\sum_{C \in \mathbf{C}} V_C(f_i: i \in C)\right\}}$ with $V(f_i: i \in C)$ is the interaction function in a clique C for the pixel iover the cliques **C** for the image lattice.

イロト イポト イヨト イヨト

Motivation Previous works

MGRF - Pair-wise parametric modeling (2/2)

Definition

The conditional density is the discret pair-potential corresponding to $V_C(f_i : i \in C)$, i.e. $p(f_i|f^i) = p(f_i|f_j : j \in \Delta_i; \theta)$ where θ is the parameter set defining the pixel dependance within the clique.

Example

The Gaussian model, or auto-normal model, is

$$p(f_i|f_j: j \in \Delta_i, \boldsymbol{\theta} = [\beta_{ij}, \sigma]) \sim \mathcal{N}\left(f_i - \sum_{j \in \mathcal{I}_i} \beta_{ij}f_j, \sigma\right).$$

Main drawback (and also the strength): the exponential pair-wise separable component (undirect Graph).

• □ ▶ • • □ ▶ • • □ ▶ •

Motivation Previous works

Maximum entropy principle (Maxent) 1/2

Definition

The MaxEnt principle suggests to select the density which maximizes the Entropy, i.e.

$$p^* = \arg \max_{p \in F} H(p)$$

s.t.
$$\boldsymbol{E}_{p}(L_{j}) = \boldsymbol{E}_{p^{*}}(L_{j})$$
: $L_{j} \in \boldsymbol{L} = \{L_{j} : j = 1..K\}$

where

- **E**p(.) is the expectation operator,
- $H(p) = \int p(f) \log (p(f)) df$ is the shannon entropy function,
- L_j a set of observed features (mean, correlation, kurtosis ...).

イロト イポト イヨト イヨト

Motivation Previous works

Maximum entropy principle (Maxent) 2/2

Definition

The solution of MaxEnt is a Gibbs distribution (Lagrangian minimizer) as follow

$$p = \frac{1}{Z} \exp\left(\sum_{j} \lambda_j L_j\right)$$
 with $Z = \sum_{f} \exp\left(\sum_{j} \lambda_j L_j\right)$.

See. FRAME modeling [Zhu 1998]

▲□► < □► </p>

Motivation Previous works

Characterizing texture

- Problems: Segmentation, classification and indexing
 - Local modelling for tractable amount of parameters and for developping iterative process
 ⇒ p(f_i|f_j : j ∈ Δ_i; θ) = p_Δ(f_i, θ)
- Main issue: Non-Gaussian famillies for random field
 - Wavelet coefficients
- How? Baysian decision based on the parametric form

•
$$c^{*}(f) = \underset{c \in K}{\operatorname{arg max}} [p(c|f)]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Density versus parametric space Bregman divergence Connexions with the bayesian framework

Parametric family

Definition

Let \mathcal{F} denote a parametric family of probability density functions $\mathcal{F} = \{p(f; \theta) | \theta \in \mathbb{R}^n\}$ where the set θ is assumed not to be redundant, i.e. if $p(f; \theta_1) = p(f; \theta_2)$ then $\theta_1 = \theta_2$.

Examples

Gaussian law $\theta = (\mu, \sigma)$ with $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometric point of view

Definition

Due the definition of a homeomorphism $\varphi : \mathcal{F} \to \mathbb{R}^n$ taking each $p(f; \theta)$ to its coordinates θ , i.e. $\varphi(p(f; \theta)) = \theta$, the family is called a *statistical manifold*.

Let $\frac{\partial}{\partial \theta_k} p(f; \theta)$, for k = 0, ..., n, be the tangent vector to the manifold, the inner product between two basis vectors is defined by the metric tensor $g_{kl}(\theta) = E\left(\frac{\partial}{\partial \theta_k} p(f; \theta) \frac{\partial}{\partial \theta_l} p(f; \theta)\right)$. The matrix $[g_{kl}]$ is the well known *Fisher information matrix*.

Yannick Berthoumieu

Parametric probabilistic modeling and information theory t

Similarity measure and Divergence (Riemannian manifold)

🔋 Bregman 1967, Csiszar 1974, Amari 1984, Tsallis 1998 ...

Definition

The Bregman divergence is defined as follow $D_{\phi}(p \parallel q) = \phi(p) - \phi(q) + \langle p - q, \nabla \phi(q) \rangle$ for any strictly convex function ϕ .

Density versus parametric space Bregman divergence Connexions with the bayesian framework

Bregman divergences

Domain	$\phi(\mathbf{x})$	$d_{\phi}(\mathbf{x}, \mathbf{y})$	Divergence
R	x^2	$(x - y)^2$	Square loss
\mathbb{R}_+	$x \log x$	$x\log(\frac{x}{y}) - (x - y)$	
[0, 1]	$x\log x + (1-x)\log(1-x)$	$x\log(\frac{x}{y}) + (1-x)\log(\frac{1-x}{1-y})$	Logistic loss ³
\mathbb{R}_{++}	$-\log x$	$\frac{x}{y} - \log(\frac{x}{y}) - 1$	Itakura-Saito distance
R	e^x	$e^x - e^y - (x - y)e^y$	
\mathbb{R}^{d}	$\ x\ ^{2}$	$\ x - y\ ^2$	Squared Euclidean distance
\mathbb{R}^{d}	$\mathbf{x}^T A \mathbf{x}$	$(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})$	Mahalanobis distance ⁴
d-Simplex	$\sum_{j=1}^{d} x_j \log_2 x_j$	$\sum_{j=1}^{d} x_j \log_2(\frac{x_j}{y_j})$	KL-divergence
\mathbb{R}^d_+	$\sum_{j=1}^{d} x_j \log x_j$	$\sum_{j=1}^{d} x_j \log(\frac{x_j}{y_j}) - \sum_{j=1}^{d} (x_j - y_j)$	Generalized I-divergence

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Properties of the Bregman divergence

If close-form for the divergence for
$$\theta$$
,
 $D_{\phi}(\theta_1 \parallel \theta_1) \ge 0$
 $D_{\phi}(\theta_1 \parallel \theta_2) = 0$ iff $\theta_1 \sim \theta_2$
 $D_{\phi}(\theta + d\theta \parallel \theta) \approx \frac{1}{2} \sum g_{kl}(\theta) d\theta_k d\theta_l$

Warning Right-Left divergence: $D_{\phi}\left(\theta_{1} \parallel \theta_{2}\right) \neq D_{\phi}\left(\theta_{2} \parallel \theta_{1}\right)$

In general (not the case for exponential familly with natural parameters), Pythagorean theorem is

$$D_{\phi}\left(p\parallel q
ight) \leq D_{\phi}\left(p\parallel r
ight) + D_{\phi}\left(r\parallel q
ight)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Density versus parametric space Bregman divergence Connexions with the bayesian framework

Specific geometry (Fisher Matrix)

Gaussian Distribution

Exponential Distribution

(日) (同) (三) (三)

Geodesic ditance

Remark: The Taylor expansion of the Kullback-Leibler divergence is the geodesic distance.

$$GD(\theta_1,\theta_2) = \int_{\theta_1}^{\theta_1} \mathrm{d}s = \int_0^1 \sqrt{\sum_{\mu,\nu} g_{\mu\nu} \dot{\theta^{\mu}} \dot{\theta^{\nu}}} \mathrm{d}t$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Maximum Likelihood and KL right side

If p is an empirical distribution (i.e., a set of samples f_i), choosing q that minimizes $KL_R(p||q)$ with q constrained to be a distribution in a parametric model θ is equivalent to maximum likelihood estimation.

MaxEnt versus KLL left side

If L_j is a set of emperical features (moments), choosing p that minimizes $KL_L(p||q)$ with q a specific distribution leads to a close form to the maximum entropie estimate (if q is the uniform is exactly the MaxEnt).

 $\frac{1}{\max (H(p)) \text{ st}} \sum_{j=1}^{j=1} p(f) = 1$ p(f) > 0 $\int r_j(f) p(f) df = L_j$

 $p(f) \sim \exp\left(\sum \lambda_i r_i(f)\right)$

 $\frac{\min \overline{D}(p \parallel q) \text{ st}}{\sum p(f) = 1}$ p(f) > 0 $\int r_j(f) p(f) df = L_j$

$$p(f) \sim \exp\left(\sum \lambda_j r_j(f)\right) q(f)$$

イロト イポト イヨト イヨト 二日

Context Marginal case Joint case

Scale and orientation decompositon

Context Marginal case Joint case

Texture modeling

 \implies $d\left(p_{\Delta}\left(\mathsf{f}_{1}, \theta_{1}\right) \parallel p_{\Delta}\left(\mathsf{f}_{2}, \theta_{2}\right)\right)$

< 一型

▶ ∢ ≣ ▶

Context Marginal case Joint case

Classification or indexing texture bases

Commun databases for evalution of proposed modeling (Vistex, Brodatz, Outex ...)

Yannick Berthoumieu Parametric probabilistic modeling and information theory t

< ロ > < 同 > < 回 > < 回 >

Context Marginal case Joint case

Segmentation issue

Example of test image for evaluating texture segmentation.

< A > <

Previous works

Proposed parametric models

- Gaussian [Unser 1995, Manjunath 1996]
- Generalized Gaussian density (GG) [Do 2002]
- Bessel K forms (BKF) [Srivastava 2002]
- Gamma [Mathiassen 2002]
- Weibull [Kwitt 2008, 2010]
- Generalized Gamma [Drissi 2010]

Remark: all of them are not within the exponential family (Natural parameters)

マロト イヨト イヨト

Context Marginal case Joint case

Indexation issue

A query = L best samples in the database $\implies [f_1^*, ..., f_L^*] = \min_{Database} [D(p_\Delta(\theta_q), p_\Delta(\theta_{Database}))]$

$$D(.) = \sum_{ij} KL \left(\theta_f^{ij} \parallel \theta_{DataBase}^{ij} \right)$$
for
 $i = 1..Nscale, \quad j = 1..Norientation$

(日) (同) (三) (

Context Marginal case Joint case

Barycentric law for clustering

The barycenter, i.e. $\overline{\theta}$, must to be conformed to the geometry of the manifold induced by (α, β) .

$$\mathsf{Barycenter:} \ \overline{\theta} = \mathop{arg \ min}_{\theta \in F} \left[\sum_{j=1..4} D\left(\theta_j, \overline{\theta}\right) \right]$$

Context Marginal case Joint case

Left, Right and symmetrized

Yannick Berthoumieu Parametric probabilistic modeling and information theory t

Context Marginal case Joint case

Generalized Gaussian density

Mallat, Do&Vetterli, Portilla, Simoncelli ...

$$p(f) \longrightarrow \frac{\beta}{2\alpha\Gamma(1/\beta)} \exp\left(-\left(\frac{|f|}{\alpha}\right)^{\beta}\right)$$
 with $\theta = (\alpha, \beta)^{t} \in \mathcal{M} = (\mathbb{R}^{*}_{+})^{2}$

- Kullback-Leibler $\mathsf{KL}(p_1 \| p_2) = \log \left(\frac{\beta_1 \alpha_2 \Gamma(1/\beta_2)}{\beta_2 \alpha_1 \Gamma(1/\beta_1)} \right) - \frac{1}{\beta_1} + \left(\frac{\alpha_1}{\alpha_2} \right)^{\beta_2} \frac{\Gamma((\beta_2 + 1)/\beta_1)}{\Gamma(1/\beta_1)}$
- Estimate based on Maximum Likelihood (Do 2001)

Context Marginal case Joint case

Convex form and Newton approach

Let $\theta = \{\theta_1, ..., \theta_K\}$ be the set of K observed models for a given subband, the barycentric model is given by:

$$\begin{split} \overline{\theta} &= \operatorname*{argmin}_{\theta \in F} \left(\sum_{j} D\left(\theta_{j}, \overline{\theta}\right) \right) \text{ with } \\ D\left(\theta, \overline{\theta}\right) &= \frac{1}{2} \left(\mathsf{KL}\left(\theta \parallel \overline{\theta}\right) + \mathsf{KL}\left(\overline{\theta} \parallel \theta\right) \right) \end{split}$$

 $\text{Iterative approach: } \overline{\theta}_{k+1} = \overline{\theta}_k + \varepsilon \left[g_{ij} \right]^{-1} \nabla_{\theta} \left(D \left(\theta_j, \overline{\theta_k} \right) \right)$

・吊り ・ヨト ・ヨト

Context Marginal case Joint case

Example

Yannick Berthoumieu Parametric probabilistic modeling and information theory t

< 一型

Context Marginal case Joint case

Invariance of rotation

Consider a database with non-rotated and rotated textures

Comparing subband by subband is not invariante.

3

Context Marginal case Joint case

Barycenter by scale

э

Context Marginal case Joint case

Résultats

Mean percentage of well-classified images

	Brodatz
Indiv. Subband	68%
Right Barycenter	85%
Symmetrized Baryc.	89%

イロト イポト イヨト イヨト

Context Marginal case Joint case

Spatial dependance

Modeling the spatial correlation

Context Marginal case Joint case

Non-Gaussian densities

- Copulas
 - $p(\mathbf{f}, \theta) = c(P_1(f_1), ..., P_{pq}(f_{pq}), \mathbf{M}) \prod_{i=1..pq} p(f_i, \lambda)$
 - ullet Covariance matrix $oldsymbol{M}$ and $oldsymbol{\lambda}$ the marginal parameters
- Elliptical density
 - $\rho(\mathbf{f}, \boldsymbol{\theta}) = \frac{1}{C} h_{\lambda} \left[(\mathbf{f})^T \boldsymbol{M}^{-1} \mathbf{f} \right]$
 - Covariance matrix \pmb{M} and $ar{\pmb{\lambda}}$ the parameters of the elliptical generator

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Context Marginal case Joint case

Gaussian copula

Definition

Sklar's Theorem 1959 -Let $P(f_i)$ be the continuous marginal (cumulative) distributions, there exists a unique pq-copula such that: $p(\mathbf{f}, \boldsymbol{\theta}) = c(P_1(f_1), ..., P_{pq}(f_{pq}), \boldsymbol{M}) \prod_{i=1..pq} p(f_i, \boldsymbol{\lambda}).$ A Gaussian copula is defined by: $c(\mathbf{u}) = \frac{1}{|\mathbf{M}|^{\frac{1}{2}}} \exp\left(-\frac{\mathbf{g}^T(\mathbf{M}^{-1}-\mathbf{I}_{pq})\mathbf{g}}{2}\right)$ with $g_i = \Phi^{-1}(u_i)$ where $\Phi(.)$ is the cumulative function of the Gaussian density.

・ 同 ト ・ ヨ ト ・ ヨ ト

Probabilistic discrepancy (Kullback-Leibler)

Context Marginal case Joint case

Elliptical profiles

• Joint Generalized Gaussian density

•
$$p(\mathbf{f}|\mathbf{M}, m, \beta) = \frac{1}{|\mathbf{M}|^{\frac{1}{2}}} h_{m,\beta} \left(\mathbf{f}^T \mathbf{M}^{-1} \mathbf{f} \right)$$
 with the density
generator $h_{m,\beta} \left(x \right) = \frac{\beta \Gamma \left(\frac{p}{2} \right)}{\pi^{\frac{p}{2}} \Gamma \left(\frac{p}{2\beta} \right) 2^{\frac{p}{2\beta}}} \frac{1}{m^{\frac{p}{2}}} \exp \left(-\frac{|x|^{\beta}}{2m^{\beta}} \right)$

Joint student-t density

•
$$p(\mathbf{f}|\mathbf{M}, m, \beta) = \frac{1}{|\mathbf{M}|^{\frac{1}{2}}} h_{m,\beta} \left(\mathbf{f}^T \mathbf{M}^{-1} \mathbf{f}\right)$$
 with the density generator
 $h_{m,\beta}(x) = \frac{1}{(2\pi)^{\frac{pq}{2}}} \frac{(\beta m)^{\beta}}{\Gamma(\beta)} \Gamma\left(\frac{pq}{2} + \beta\right) \times \left(\frac{x}{2} + \beta m\right)^{-(\beta + \frac{pq}{2})}$

・ 同 ト ・ 三 ト ・

ヨート

Context Marginal case Joint case

Parameter estimation

By differentiating the log-likelihood of vectors (f_1, \ldots, f_{pq}) with respect to **M**, the maximum likelihood estimator (MLE) of the matrix **M** denoted as $\hat{\mathbf{M}}$ satisfies the following fixed point (FP) equation

$$\hat{\mathsf{M}} = \frac{2}{N} \sum_{i=1}^{N} \frac{-g_{m,\beta}(\mathbf{x}_{i}^{T} \hat{\mathsf{M}}^{-1} \mathbf{x}_{i})}{h_{m,\beta}(\mathbf{x}_{i}^{T} \hat{\mathsf{M}}^{-1} \mathbf{x}_{i})} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \text{ with } g_{m,\beta}(y) = \partial h_{m,\beta}(y) / \partial y^{1}$$

No-closed form for this kind of model, we propose Geodesic distance with linear approximation.

¹Joint work with Frédéric Pascal (Supelec/Orsay) and Jean-Yves Tourneret (IRIT/Toulouse)

Context Marginal case Joint case

Classification results

TABLE I AVERAGE RETRIEVAL RATES (%) IN THE TOP 16 MATCHES USING ORTHOGONAL WAVELET TRANSFORM WITH DAUBECHIES FILTER DB4 AND DUAL TREE COMPLEX WAVELET TRANSFORM WITH EB1 (VISTEX)

Town of Townships	Models			
Type of Transform	GG	Wbl	GC-MGG	GC-MWbl
1 scale				
OWT, db4	70.5176	69.3652	79.7754	75.8105
DT-CWT	72.8906	73.1738	81.6602	77.5879
2 scales				
OWT, db4	76.4160	75.9180	81.9434	79.6094
DT-CWT	78.7402	79.6289	83.7012	82.3633

TABLE III AVERAGE RETREVAL RATES (%) FOR MULTIVARIATE MODELS IN THE TOP 16 MATCHES USING ORTHOGONAL WAVELET TRANSFORM WITH DAUBECHIES FILTER DB5 AND DIAL TERE COMPLEX WAVELET TRANSFORM WITH FR/

Type of Transform	MG	MGmix	GC-MGG	GC-MWbl
1 scale				
OWT, db5	62.3828	72.1387	79.5703	75.1758
DT-CWT	65.7129	78.0371	81.6602	77.5879
2 scales				
OWT, db5	70.1660	78.7402	82.0508	80.0781
DT-CWT	71.2695	81.8262	83.7012	82.3633

Context Marginal case Joint case

The segmentation issue

Main ingredients (suppose models associated to the class)

• Label field (Pott's model with K components)

•
$$p(x_i = k) = \frac{\exp\left(-\sum\limits_{j \in \Delta_i} \beta\delta(x_i \neq x_j)\right)}{\sum\limits_{k=1..\kappa} \exp\left(-\sum\limits_{j \in \Delta_i} \beta\delta(k_i \neq x_j)\right)}$$

• Using the SoftMax principle (Sernov's theorem):

•
$$p(f_i|x_i = k) = \frac{\exp\left(-\sum\limits_{j=1..K} KLS(\theta_j, \theta_k^{Ref})\right)}{\sum\limits_{l=1..K} \exp\left(-\sum\limits_{j=1..N} KLS(\theta_j, \theta_l^{Ref})\right)}$$

Optimization: Iterative Conditional Mode (ICM)

• $\hat{x}_i \leftarrow \underset{k}{\operatorname{argmax}} \left[log\left(p\left(f_i | x_i = k \right) \right) + \lambda log\left(p\left(x_i = k \right) \right) \right]$

Context Marginal case Joint case

Results

Textured ima	age S	Segmentation		
	GG model	GC-MGG		
% Pixel miss- classified	4%	0.97%		

< ロ > < 同 > < 回 > < 回 >