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Introduction

Topic: Characterizing texture contents for segmentation,
classi�cation and indexing.

Framework: Scale space decomposition with wavelet, curvelet
etc.

Tools: information theory. (with Lionel Bombrun, Nour-eddine
Lasmar, Aurélien Schutz)
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Parametric random �eld

Statistics (mean, variance, Kurtosis ...) 1980

Parametric �eld modeling (Markovian, 2-D Autoregressive
model, WOLD ...) 1990

Scale space and marginal probabilistic modeling 2000

Scale space and joint probabilistic modeling 2010
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Homogeneous random Field

De�nition

A random �eld F (s), de�ned on S = R2, is a function whose
intensities f (s) ∈ Rp (color image p=3) are random, for any value
of s.

De�nition

The homogeneous parametric �eld is associated to a speci�c
density characterized by a �nit set of parameters θ ∈ Rn

independant of the pixel position in the �eld.

Examples

Gaussian, Gamma, Weibull, Uniform, Pareto ...
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MGRF (1/2)

Besag , Cross&Jain ...

De�nition

Markov-Gibbs random Field (MGRF) - De�ne a neighborhood
∆i ⊂ S ias the set of all neighboring sites of a site i ∈ S. A random
�eld is an MRF if for each site i ∈ S , p

(
fi |f i

)
= p (fi |fj : j ∈ ∆i )

and a Gibbs distribution if p (f ) = 1

Z
e

{
−

∑
C∈C

VC (fi :i∈C)

}
with

V (fi : i ∈ C ) is the interaction function in a clique C for the pixel i
over the cliques C for the image lattice.
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MGRF - Pair-wise parametric modeling (2/2)

De�nition

The conditional density is the discret pair-potential corresponding
to VC (fi : i ∈ C ), i.e. p

(
fi |f i

)
= p (fi |fj : j ∈ ∆i ;θ) where θis the

parameter set de�ning the pixel dependance within the clique.

Example

The Gaussian model, or auto-normal model, is

p (fi |fj : j ∈ ∆i ,θ = [βij , σ]) ∼ N

(
fi −

∑
j∈�i

βij fj , σ

)
.

�
�

�
Main drawback (and also the strength): the exponential pair-wise

separable component (undirect Graph).
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Maximum entropy principle (Maxent) 1/2

De�nition

The MaxEnt principle suggests to select the density which
maximizes the Entropy, i.e.

p* = arg max
p∈F

H(p)

s.t. Ep (Lj) = Ep* (Lj) : Lj ∈ L = {Lj : j = 1..K}

where

Ep(.) is the expectation operator,

H(p) =
´
p (f ) log (p (f )) df is the shannon entropy function,

Lj a set of observed features (mean, correlation, kurtosis ...).
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Maximum entropy principle (Maxent) 2/2

De�nition

The solution of MaxEnt is a Gibbs distribution (Lagrangian
minimizer) as follow

p = 1

Z
exp

(∑
j

λjLj

)
with Z =

∑
f

exp

(∑
j

λjLj

)
.

See. FRAME modeling [Zhu 1998]
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Characterizing texture

Problems: Segmentation, classi�cation and indexing

Local modelling for tractable amount of parameters and for
developping iterative process
=⇒ p (fi |fj : j ∈ ∆i ;θ) = p∆ (fi,θ)

Main issue: Non-Gaussian famillies for random �eld

Wavelet coe�cients

How? Baysian decision based on the parametric form

c* (f ) = arg max
c∈K

[p (c|f )]
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Parametric family

De�nition

Let F denote a parametric family of probability density functions
F = {p (f ;θ) |θ ∈ Rn} where the set θ is assumed not to be
redundant, i.e. if p (f ; θ1) = p (f ; θ2) then θ1 = θ2.

Examples

Gaussian law θ = (µ, σ) with µ ∈ R and σ ∈ R+.
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Geometric point of view

De�nition

Due the de�nition of a homeomorphism ϕ : F → Rn taking each
p (f ;θ)to its coordinates θ, i.e. ϕ (p (f ;θ)) = θ, the family is
called a statistical manifold.

Let ∂
∂θk

p (f ;θ), for k = 0, ..., n, be the tangent vector to the
manifold, the inner product between two basis vectors is de�ned by

the metric tensor gkl (θ) = E
(

∂
∂θk

p (f ;θ) ∂
∂θl

p (f ;θ)
)
. The matrix

[gkl ] is the well known Fisher information matrix.
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Similarity measure and Divergence (Riemannian manifold)

Bregman 1967, Csiszar 1974, Amari 1984, Tsallis 1998 ...

De�nition

The Bregman divergence is de�ned as follow
Dφ (p ‖ q) = φ (p)− φ (q) + 〈p − q,∇φ (q)〉 for any strictly convex
function φ.
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Bregman divergences
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Properties of the Bregman divergence

If close-form for the divergence for θ,
Dφ (θ1 ‖ θ1) ≥ 0
Dφ (θ1 ‖ θ2) = 0 i� θ1 ∼ θ2
Dφ (θ + dθ ‖ θ) ≈ 1

2

∑
gkl (θ) dθkdθl

Warning Right-Left divergence: Dφ (θ1 ‖ θ2) 6= Dφ (θ2 ‖ θ1)

In general (not the case for exponential familly with natural
parameters), Pythagorean theorem is

Dφ (p ‖ q) ≤ Dφ (p ‖ r) + Dφ (r ‖ q)
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Speci�c geometry (Fisher Matrix)
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Geodesic ditance

Remark: The Taylor expansion of the Kullback-Leibler divergence is
the geodesic distance.

GD (θ1, θ2) =
θ1´
θ1

ds =
1́

0

√∑
µ,ν

gµν θ̇µθ̇νdt
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Maximum Likelihood and KL right side

If p is an empirical distribution (i.e., a set of samples fi ), choosing
q that minimizes KLR(p||q) with q constrained to be a distribution
in a parametric model θ is equivalent to maximum likelihood
estimation.

Consequence: in the parametric frame-
work, for classi�cation task we have
c* (f ) = arg max

c∈K
[p (f |θc)] = arg min

c∈K
[KLR (θf ‖ θc)] .
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MaxEnt versus KLL left side

If Lj is a set of emperical features (moments), choosing p that
minimizes KLL(p||q) with q a speci�c distribution leads to a close
form to the maximum entropie estimate (if q is the uniform is
exaclty the MaxEnt).
___________________________________________
max (H (p)) st∑

p(f ) = 1
p(f ) > 0´
rj (f ) p(f )df = Lj p(f ) ∼ exp (

∑
λj rj (f ))

___________________________________________
minD (p ‖ q) st∑

p(f ) = 1
p(f ) > 0´
rj (f ) p(f )df = Lj p(f ) ∼ exp (

∑
λj rj (f )) q (f )
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Scale and orientation decompositon
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Texture modeling

=⇒ d (p∆ (f1,θ1) ‖ p∆ (f2,θ2))
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Classi�cation or indexing texture bases

Commun databases for evalution of proposed modeling (Vistex,
Brodatz, Outex ...)
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Segmentation issue

Example of test image for evaluating texture segmentation.
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Previous works

Proposed parametric models

Gaussian [Unser 1995, Manjunath 1996]

Generalized Gaussian density (GG) [Do 2002]

Bessel K forms (BKF) [Srivastava 2002]

Gamma [Mathiassen 2002]

Weibull [Kwitt 2008, 2010]

Generalized Gamma [Drissi 2010]

Remark: all of them are not within the exponential family (Natural
parameters)
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Indexation issue

A query = L best samples in the database

=⇒
[
f *1 , ..., f

*
L

]
= min

Database
[D (p∆ (θq) , p∆ (θDatabase))]

D (.) =
∑
ij

KL
(
θijf ‖ θ

ij
DataBase

)
for

i = 1..Nscale, j = 1..Norientation
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Barycentric law for clustering

The barycenter, i.e. θ, must to be conformed to the geometry of
the manifold induced by (α, β).

Barycenter: θ = arg min
θ∈F

[ ∑
j=1..4

D
(
θj , θ

)]
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Left, Right and symmetrized
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Generalized Gaussian density

Mallat, Do&Vetterli, Portilla, Simoncelli ...

p (f ) −→ β
2αΓ(1/β) exp

(
−
(
|f |
α

)β)
with θ = (α, β)t ∈M = (R∗+)2

Kullback-Leibler

KL(p1‖p2) = log
(
β1α2Γ(1/β2)
β2α1Γ(1/β1)

)
− 1

β1
+
(
α1
α2

)β2 Γ((β2+1)/β1)
Γ(1/β1)

Estimate based on Maximum Likelihood (Do 2001)
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Convex form and Newton approach

Let θ̃ = {θ1, ..., θK} be the set of K observed models for a given
subband, the barycentric model is given by:

θ = argmin
θ∈F

(∑
j

D
(
θj , θ

))
with

D
(
θ, θ
)

= 1

2

(
KL
(
θ ‖ θ

)
+ KL

(
θ ‖ θ

))
Iterative approach: θk+1 = θk + ε [gij ]

−1∇θ
(
D
(
θj , θk

))

Yannick Berthoumieu Parametric probabilistic modeling and information theory tools in textured images analysis



Introduction
Information theory

On some IT tools and the texture

Context
Marginal case
Joint case

Example
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 Courbes temoin
Barycentre KLS
Barycentre Euclidien
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Invariance of rotation

Consider a database with non-rotated and rotated textures

____________________

Comparing subband by subband is not invariante.

Comparing Baycenter by scale is more invariante.Yannick Berthoumieu Parametric probabilistic modeling and information theory tools in textured images analysis
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Barycenter by scale
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Résultats

Mean percentage of well-classi�ed images
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Spatial dependance

Modeling the spatial correlation
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Non-Gaussian densities

Copulas

p (f,θ) = c (P1 (f1) , ...,Ppq (fpq) ,M)
∏

i=1..pq

p (fi ,λ)

Covariance matrix M and λ the marginal parameters

Elliptical density

p (f,θ) = 1
C
hλ

[
(f)T M−1f

]
Covariance matrix M and λ the parameters of the elliptical
generator
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Gaussian copula

De�nition

Sklar's Theorem 1959 -
Let P (fi ) be the continuous marginal (cumulative) distributions,
there exists a unique pq-copula such that:
p (f,θ) = c (P1 (f1) , ...,Ppq (fpq) ,M)

∏
i=1..pq

p (fi ,λ).

A Gaussian copula is de�ned by:

c (u) =
1

|M|
1
2

exp

(
−gT (M−1−Ipq)g

2

)
with gi = Φ−1 (ui ) where

Φ (.) is the cumulative function of the Gaussian density.

Yannick Berthoumieu Parametric probabilistic modeling and information theory tools in textured images analysis



Introduction
Information theory

On some IT tools and the texture

Context
Marginal case
Joint case

Probabilistic discrepancy (Kullback-Leibler)

For the set of orientation and scale subbands, we have:

d (p∆ (f1,θ1) ‖ p∆ (f2,θ2)) =∑
i=1..pq

KL (p1 (fi ) , p2 (fi ))︸ ︷︷ ︸
Marginal Part

+
1

2

[
trace

(
M−1

2
M1

)
+ log

∣∣∣∣M2

M1

∣∣∣∣− pq

]
︸ ︷︷ ︸

Dependance Part
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Elliptical pro�les

Joint Generalized Gaussian density

p(f|M,m, β) =
1

|M| 12
hm,β

(
fTM−1f

)
with the density

generator hm,β (x) =
βΓ
(
p
2

)
π

p
2 Γ
(

p
2β

)
2

p
2β

1

m
p
2

exp

(
− |x |

β

2mβ

)

Joint student-t density

p(f|M,m, β) =
1

|M| 12
hm,β

(
fTM−1f

)
with the density

generator

hm,β(x) =
1

(2π)
pq
2

(βm)β

Γ(β)
Γ
(
pq
2

+ β
)
×
(
x
2

+ βm
)−(β+ pq

2
)
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Parameter estimation

By di�erentiating the log-likelihood of vectors (f1, . . . , fpq) with
respect to M, the maximum likelihood estimator (MLE) of the
matrix M denoted as M̂ satis�es the following �xed point (FP)
equation

M̂ =
2

N

N∑
i=1

−gm,β(xTi M̂
−1xi )

hm,β(xTi M̂
−1xi )

xix
T
i with gm,β(y) = ∂hm,β(y)/∂y1

No-closed form for this kind of model, we propose Geodesic
distance with linear approximation.

1Joint work with Frédéric Pascal (Supelec/Orsay) and Jean-Yves Tourneret
(IRIT/Toulouse)
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Classi�cation results
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The segmentation issue

Main ingredients (suppose models associated to the class)

Label �eld (Pott's model with K components)

p (xi = k) =
exp

(
−
∑

j∈4i

βδ(xi 6=xj)

)
∑

k=1..K

exp

(
−
∑

j∈4i

βδ(ki 6=xj)

)

Using the SoftMax principle (Sernov's theorem):

p (fi |xi = k) =

exp

− ∑
j=1..NSubbands

KLS(θj ,θRefk )


∑

l=1..K

exp

− ∑
j=1..NSubbands

KLS(θj ,θRefl )


Optimization: Iterative Conditional Mode (ICM)

x̂i ← argmax
k

[log (p (fi |xi = k)) + λlog (p (xi = k))]
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Results
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