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Motivations

Comparison and matching of geometrical structures

� Let s1, . . . , sm and t1, . . . , tm be two lists of geometric features living
in the ambient space Ω ⊂ Rd . We aim at comparing these objects by
detecting ”similar” features located at ”similar” positions in both
objects.

� One way is to estimate a deformation map φ : Ω → Ω which will try
to find spatially coherent matchings between parts of the objects.
This can be formulated as a variational problem:

J(φ) = γE (φ) + A1(φ.s1, t1) + · · ·+ Am(φ.sm, tm),

where E (φ) is the deformation cost (which typically evaluates the
regularity of the deformation map),
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Motivations

Comparison and matching of geometrical structures

φ.si is the object si transported via the deformation,
and A(φ.si , ti ) is a measure of dissimilarity between the matched
objects.
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Diffeomorphisms and kernel methods

Groups of elastic deformations

� Deformations are obtained by integrating a family (vt), t ∈ [0, 1] of
vector fields:

φv

t (x) =

�
t

0
vs ◦ φv

s (x)ds.

� (vt)t∈[0,1] ∈ L
2([0, 1],V ), where V is a Hilbert space of vector fields

continuously embedded in the space of C 1 vector fields.

� AV = {φv

1 , v ∈ L
2([0, 1],V )} group of diffeomorphisms, with the

metric dV (id ,φ) = inf
v






�� 1

0
�vt�2V dt ,φ

v

1 = φ




, with the

right-invariance rule : dV (φ,ψ) = dV (id ,ψ ◦ φ−1).



Diffeomorphisms and kernel methods

Reproducing kernel and reduction theorem

� When evaluation functionals δαx : v �→ α · v(x) are continuous in V ,
V has a reproducing kernel kV : (Rd)2 → L(Rd) defined by

�v , kV (x , ·)α�V = δαx (v) = α · v(x).
� Reduction theorem For a given matching problem, if the data

attachment term A depends only on the images of
a finite number of points x i , then the optimal solution will take the form

vt =
n�

i=1

kV (x
i

t , ·)αi

t

where x
i
t = φv

t (x
i ) (points trajectories).

The momentum vecteurs αi
t become the minimization variables.

� Then we have

�vt�2V =
n�

i ,j=1

αj

t · kV (x it , x
j

t )α
i

t .
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Discrete data models

Labeled points (landmark matching)

s = (xi )1≤i≤n, t = (yi )1≤i≤n, A(φ.s, t) =
n�

i=1

|yi − φ(xi )|2.

Not suitable as soon as points are unlabeled and/or are sampled from
curves or surfaces.
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Discrete data models

Unlabelled point sets

� Model a point set {xi}ni=1 as the measure

µ =
n�

i=1

δxi .

� Define a metric between measures by choosing a functional space H

such that ∀x , δx ∈ H
∗ and taking the dual norm:

�µ�H∗ = Sup{µ(f ), �f �H ≤ 1} with µ(f ) =
n�

i=1

f (xi ).

Then define A(φ.s, t) := �µs − µt�2H∗ .
� When H is a Hilbert space, the metric writes in terms of the

reproducing kernel of H:

�µ�2
H∗ =

���
n�

i=1

δxi

���
2

H∗
=

n�

i=1

n�

j=1

kH(xi , xj)



Discrete data models

Unlabelled weighted point sets

� Model a weighted point set {(ai , xi )}ni=1 ⊂ (R× Ω)n as the measure

µ =
n�

i=1

aiδxi .

� Define a metric between measures by choosing a functional space H

such that ∀x , δx ∈ H
∗ and taking the dual norm:

�µ�H∗ = Sup{µ(f ), �f �H ≤ 1} with µ(f ) =
n�

i=1

ai f (xi ).

Then define A(φ.s, t) := �µs − µt�2H∗ .
� When H is a Hilbert space, the metric writes in terms of the

reproducing kernel of H:

�µ�2
H∗ =

���
n�

i=1

aiδxi

���
2

H∗
=

n�

i=1

n�

j=1

aiajkH(xi , xj)



Discrete data models

Unlabelled vector-weighted point sets

� For any finite-dimensional vector space E , model a vector-weighted
point set {(ηi , xi )}ni=1 ⊂ (E × Ω)n as the vector-valued measure

−→µ =
n�

i=1

ηiδxi .

� Choose a functional space W of E ∗-valued vector fields such that
∀x , ∀η, ηδx ∈ W

∗ and take the dual norm:

�−→µ �W ∗ = Sup{−→µ (f ), �f �W ≤ 1} with −→µ (w) =
n�

i=1

� f (xi ) | ηi � .

Then define A(φ.s, t) := �−→µs −−→µt�2W ∗ .
� When W is a Hilbert space, the metric writes in terms of the

reproducing kernel of W :

�−→µ �2
W ∗ =

���
n�

i=1

ηiδxi

���
2

W ∗
=

n�

i=1

n�

j=1

� kW (xi , xj)ηj | ηi �



Curves as measure or currents

Curves as measure or currents

� Let C be a curve in Ω ⊂ Rd , parametrized by γC : [0, 1] → Ω. The
uniform measure associated to C is the following linear form,
defined by its action on test functions f : Ω → R:

µC (f ) =

� 1

0
f (γC (s))�γ�C (s)�ds.

� The current associated to C is the following linear form, defined by
its action on test 1-forms ω : Ω → (Rd)∗:

�µC (ω) =

� 1

0

�
ω(γC (s))

�� γ�
C
(s)

�
ds.
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Curves as measure or currents

Submanifolds as currents

Let S be an oriented and bounded m-submanifold in Ω, and (U,ψ) a local
map of S .

� The uniform measure µS is defined for every function f which
support is included in ψ(U) by:

µS(f ) =

�

U

f (ψ(x))

����
∂ψ

∂x1
∧ · · · ∧ ∂ψ

∂xm

���� dx .

� The current �µS is defined for every m-form ω which support is
included in ψ(U) by:

�µS(ω) =

�

U

�
ω(ψ(x))

����
∂ψ

∂x1
∧ · · · ∧ ∂ψ

∂xm

�
dx .

� We extend these definitions to global test functions or m-forms with
the use of a partition of unity.



Curves as measure or currents

Submanifolds as currents

G
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Curves as measure or currents

Curves as measure or currents − Properties

� Both models can handle changes in topology between shapes (e.g.
one can compare and match a closed curve to an open one)

� The currents model is a priori more complete since it encodes both
location and tangential information of the curves. One may think
about it as a first-order model, while the measure model is zero-order.

� As a counterpart currents require to define an orientation on each
curve, and on each subpart of the curve when one has to deal with
disconnected or branching curves.

� Due to this orientation sensitivity, specific parts like spikes in curves
are filtered out in the currents model. Depending on the application
this can be seen as a good or bad property.



Curves as measure or currents

Curves as measure or currents − Properties
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Normal cycles

Tube formula and curvature measures

� For a set V ∈ Rd such that M = ∂V is smooth, the volume of the
ε-offset Vε is a polynomial in ε which coefficients give integrals of
curvatures of M = ∂V when ∂V is smooth.

� ex: in R3,

Vol(Vε) = Vol(V ) + Area(M)ε+ H(M)
ε2

2
+ G (M)

ε3

3
,

where H(M) and G (M) are the integrals of mean and Gauss curvatures.
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Normal cycles

Tube formula and curvature measures

� This formula can be localized so that we get integrals of curvatures
restricted to any Borel subset.

� If V is only assumed to be of positive reach, Vol(Vε) (and its
localized version) is still a polynomial in ε; hence its coefficients
define curvature measures in this general setting.



Normal cycles

Definitions

� ε-offset around a compact set C ⊂ Rd : Cε = {x ∈ Rd , d(x ,C ) ≤ ε}.

� Normal cone at x ∈ C :

N̂ (C , x) = {u ∈ Rd , ∃ε > 0, ∀y ∈ C ∩ B(x , ε), �x − y , u� ≤ 0}.
� Unit normal vectors at x ∈ C : N (C , x) = N̂ (C , x) ∩ S

d−1.
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Normal cycles

Definitions

� Unit Normal bundle associated to a set:

N (C ) = {(x , ξ) ∈ C × S
d−1, ξ ∈ N (C , x)}.

� Formally, we can see N (C ) as the ”derivative” of Cε at ε = 0.
� N (C ) is a closed sub-manifold of dimension d − 1 in Rd × S

d−1.
� The normal cycle associated to C is the current �µN (C) associated to

N (C ) (which is canonically oriented).
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Normal cycles

The addition formula

� For any subsets C1, C2, whenever it has sense,

�µN (C1∪C2) = �µN (C1) + �µN (C2) − �µN (C1∩C2).

� This allows to extend the definition of normal cycles to any finite
union of smooth curves (in fact to any finite union of sets of ”positive
reach”)

� We can even define the normal cycle of a curve deprived of its
end-points by simply substracting the normal cycles associated to
them - which correspond to circles.

file://localhost/Users/clothilde/Dropbox/administration/journees/exposes/../figs/SineOpen.png


Normal cycles

Properties

� The normal cycle is a second-order model; it encodes curvature
information of the set. By computing specific integrals of the normal
cycle over a small area, one gets the exact integrated values of the
curvature of C on this area.

� The normal cycle does not depend on any choice of orientation on the
curve, and there is no need to specify any,

� Since ”spikes” are parts of high curvature; they get highly weighted in
the model.

� Normal cycles are in fact a model for subsets of Rd and not for
submanifolds of a specific dimension.
Hence one can think about comparing
a curve with a surface, or to model
”hybrid” objects.
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Normal cycles

Designing Hilbert norms for normal cycles

� Since �µN (C) is a current in the product space Rd × S
d−1, we need to

define a kernel in Rd × S
d−1. This can be done by considering a

product of two kernels:

k(x, y) = k((x , u), (y , v)) = kp(x , y)kn(u, v),

where kp(x , y) is a reproducing kernel in Rd (e.g.
kp(x , y) =

1
1+�x−y�2/σ2 ), and kn(u, v) is a reproducing kernel in S

d−1

(e.g. the kernel given by a Sobolev metric on S
d−1)

� Let T (x) = τ1(x) ∧ · · · ∧ τd−1(x), where (τi (x))1≤i≤d−1 is an
orthonormal basis of the tangent space TxN (C ) for any x ∈ N (C ).
Then we have

��µN (C)�2W ∗ =

�

N (C)

�

N (C)
k(x, y) �T (x) , T (y)� dσN (C)(x) dσN (C)(y),

where dσN (C)(x) is the volume element on the submanifold N (C )(x)



Normal cycles

Implementation for piecewise linear curves

� Let C be a piecewise linear curve, which we look at as a collection of
segments which may be connected at their end-points.

� We can further decompose C as the disjoint union of open segments
Si and points Pj . The additive property for normal cycles then writes

�µN (C) =
�

i

�µN (Si ) +
�

j

�µN (Pj ).

� We decompose further again into space and angular components by
writing each �µN (Si ) as a sum of three terms. The tangent spaces of
these space and angular components are orthogonal.
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Normal cycles

Implementation for piecewise linear curves

� Hence the whole squared dual norm of �µN (C) can be computed as a
sum of two parts, one involving only scalar products between ”space”
elements (located on edges) and the other involving only scalar
products between ”angular” elements (located on vertices).

� The ”space” part of the metric is very similar to the usual metric on
currents, except that it is an orientation-free representation of curves.
To compute the scalar product between two such elements we use the
same approximation by vector-valued Dirac located at the center of
each edge.

� For the angular part computations comes down to computing double
integrals of kn over half-spheres in S

d−1; which can be computed
either analytically (for d = 2) or via precomputing look-up tables.



Normal cycles

Experiments
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Normal cycles

Experiments
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Normal cycles

Experiments
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Normal cycles

Experiments

file://localhost/Users/clothilde/Dropbox/administration/journees/exposes/../figs/circleellipse2_curr.jpg


Normal cycles

Experiments
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Normal cycles

Experiments
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Normal cycles

Experiments
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Template estimation

Template estimation

For the analysis of a population of N individuals, we aim at computing a
mean shape. How can we define such a template ?

� Forward model:
�µSk

= (φk)��µ+ �εk

where S1, . . . , SN are the observed curves/surfaces, φk are unknown
deformations and �µ the unknown template in W

∗.
� Backward model:

�µ = (φk)��µSk
+ �εk

� Metamorphoses (in the framework of large deformations): distribute
the noise along the time-dependant diffeomorphism:

�µSk
= �µk(t),

where �µk : [0, 1] → W
∗ is a path such that �µk(0) = �µ, and

∂�µk(t)

∂t
= (vk(t))��µk(t) + �εk(t).



Template estimation

Template estimation (with Sarang Joshi)

From a dataset of N shapes, we want to define a mean shape which will
be used as template for any group analysis. How can we define such a
template ?

� for images: one can define a co-registration model to estimate a
template image and the n deformations of this individual to the
template [Lorenzen, Davis, Joshi, MICCAI 2005]:

J{(φi ), I} = γ
n�

k=1

E (φk) +
��Ik ◦ φ−1

k
− I

��2
2
.

� for curves or surfaces, one can write a co-registration model by
averaging in the space of measures or currents:

J{(φi ), �̂µ} = γ
n�

k=1

E (φk) + �φk,��µk − �µ�2
W ∗ .

J{(φi )} = γ
n�

k=1

E (φk) +

�����φk,��µk −
1

n

n�

k=1

φk,��µk

�����

2

W ∗

.



Template estimation

Template estimation (with Sarang Joshi)

� The estimated template 1
n

�
n

k=1 φ̂kµk is not a curve nor a surface but
it can be used as is to perform registrations of new individuals to the
template.

� if needed, one can further approximate the template via matching
pursuit (Stanley Durrlemann):
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Template estimation
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Template estimation

����������	��	�
�	����	�������

��������	�
����	�	��������������

		
�����	�������	�����	���������	��	��������	



Template estimation
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Template estimation
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Template estimation

DISCO : diffeomorphic group averaging

• • •
⇒
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