Currents and normal cycles models for curve or surface registration. Applications to brain image analysis.

Joan Glaunès

Workshop on Image processing and applications - Marseille.

November 24, 2011

Brain has a complex and variable geometry

Comparison and matching of geometrical structures

- Let s_{1}, \ldots, s_{m} and t_{1}, \ldots, t_{m} be two lists of geometric features living in the ambient space $\Omega \subset \mathbf{R}^{d}$. We aim at comparing these objects by detecting "similar" features located at "similar" positions in both objects.

- One way is to estimate a deformation map $\phi: \Omega \rightarrow \Omega$ which will try to find spatially coherent matchings between parts of the objects. This can be formulated as a variational problem:

$$
J(\phi)=\gamma E(\phi)+A_{1}\left(\phi \cdot \mathrm{~s}_{1}, \mathrm{t}_{1}\right)+\cdots+A_{m}\left(\phi \cdot \mathrm{~s}_{m}, \mathrm{t}_{m}\right)
$$

where $E(\phi)$ is the deformation cost (which typically evaluates the regularity of the deformation map),

Comparison and matching of geometrical structures

$\phi . s_{i}$ is the object s_{i} transported via the deformation, and $A\left(\phi . s_{i}, \mathrm{t}_{i}\right)$ is a measure of dissimilarity between the matched objects.

Groups of elastic deformations

- Deformations are obtained by integrating a family $\left(v_{t}\right), t \in[0,1]$ of vector fields:

$$
\phi_{t}^{v}(x)=\int_{0}^{t} v_{s} \circ \phi_{s}^{v}(x) d s
$$

- $\left(v_{t}\right)_{t \in[0,1]} \in L^{2}([0,1], V)$, where V is a Hilbert space of vector fields continuously embedded in the space of C^{1} vector fields.
- $\mathcal{A}_{V}=\left\{\phi_{1}^{v}, v \in L^{2}([0,1], V)\right\}$ group of diffeomorphisms, with the metric $d_{V}(\mathrm{id}, \phi)=\inf _{v}\left\{\sqrt{\int_{0}^{1}\left\|v_{t}\right\|_{V}^{2} d t}, \phi_{1}^{v}=\phi\right\}$, with the right-invariance rule : $d_{V}(\phi, \psi)=d_{V}\left(\mathrm{id}, \psi \circ \phi^{-1}\right)$.

Reproducing kernel and reduction theorem

- When evaluation functionals $\delta_{x}^{\alpha}: v \mapsto \alpha \cdot v(x)$ are continuous in V, V has a reproducing kernel $k_{V}:\left(\mathbf{R}^{d}\right)^{2} \rightarrow \mathcal{L}\left(\mathbf{R}^{d}\right)$ defined by

$$
\left\langle v, k_{v}(x, \cdot) \alpha\right\rangle v=\delta_{x}^{\alpha}(v)=\alpha \cdot v(x)
$$

- Reduction theorem For a given matching problem, if the data attachment term A depends only on the images of a finite number of points x^{i}, then the optimal solution will take the form

$$
v_{t}=\sum_{i=1}^{n} k_{V}\left(x_{t}^{i}, \cdot\right) \alpha_{t}^{i}
$$

where $x_{t}^{i}=\phi_{t}^{v}\left(x^{i}\right)$ (points trajectories).
The momentum vecteurs α_{t}^{i} become the minimization variables.

- Then we have

$$
\left\|v_{t}\right\|_{V}^{2}=\sum_{i, j=1}^{n} \alpha_{t}^{j} \cdot k_{V}\left(x_{t}^{i}, x_{t}^{j}\right) \alpha_{t}^{i}
$$

Labeled points (landmark matching)

$$
\mathrm{s}=\left(x_{i}\right)_{1 \leq i \leq n}, \quad \mathrm{t}=\left(y_{i}\right)_{1 \leq i \leq n}, \quad A(\phi . \mathrm{s}, \mathrm{t})=\sum_{i=1}^{n}\left|y_{i}-\phi\left(x_{i}\right)\right|^{2} .
$$

Not suitable as soon as points are unlabeled and/or are sampled from curves or surfaces.

Unlabelled point sets

- Model a point set $\left\{x_{i}\right\}_{i=1}^{n}$ as the measure

$$
\mu=\sum_{i=1}^{n} \delta_{x_{i}} .
$$

- Define a metric between measures by choosing a functional space H such that $\forall x, \delta_{x} \in H^{*}$ and taking the dual norm:

$$
\|\mu\|_{H^{*}}=\operatorname{Sup}\left\{\mu(f),\|f\|_{H} \leq 1\right\} \quad \text { with } \mu(f)=\sum_{i=1}^{n} f\left(x_{i}\right)
$$

Then define $A(\phi . \mathrm{s}, \mathrm{t}):=\left\|\mu_{\mathrm{s}}-\mu_{\mathrm{t}}\right\|_{\boldsymbol{H}^{*}}^{2}$.

- When H is a Hilbert space, the metric writes in terms of the reproducing kernel of H :

$$
\|\mu\|_{H^{*}}^{2}=\left\|\sum_{i=1}^{n} \delta_{x_{i}}\right\|_{H^{*}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} k_{H}\left(x_{i}, x_{j}\right)
$$

Unlabelled weighted point sets

- Model a weighted point set $\left\{\left(a_{i}, x_{i}\right)\right\}_{i=1}^{n} \subset(\mathbf{R} \times \Omega)^{n}$ as the measure

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

- Define a metric between measures by choosing a functional space H such that $\forall x, \delta_{x} \in H^{*}$ and taking the dual norm:

$$
\|\mu\|_{H^{*}}=\operatorname{Sup}\left\{\mu(f),\|f\|_{H} \leq 1\right\} \quad \text { with } \mu(f)=\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)
$$

Then define $A(\phi . \mathrm{s}, \mathrm{t}):=\left\|\mu_{\mathrm{s}}-\mu_{\mathrm{t}}\right\|_{\mathcal{H}^{*}}^{2}$.

- When H is a Hilbert space, the metric writes in terms of the reproducing kernel of H :

$$
\|\mu\|_{H^{*}}^{2}=\left\|\sum_{i=1}^{n} a_{i} \delta_{x_{i}}\right\|_{H^{*}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k_{H}\left(x_{i}, x_{j}\right)
$$

Unlabelled vector-weighted point sets

- For any finite-dimensional vector space E, model a vector-weighted point set $\left\{\left(\eta_{i}, x_{i}\right)\right\}_{i=1}^{n} \subset(E \times \Omega)^{n}$ as the vector-valued measure

$$
\vec{\mu}=\sum_{i=1}^{n} \eta_{i} \delta_{x_{i}}
$$

- Choose a functional space W of E^{*}-valued vector fields such that $\forall x, \forall \eta, \quad \eta \delta_{x} \in W^{*}$ and take the dual norm:

$$
\|\vec{\mu}\|_{w^{*}}=\operatorname{Sup}\left\{\vec{\mu}(f),\|f\|_{w} \leq 1\right\} \quad \text { with } \vec{\mu}(w)=\sum_{i=1}^{n}\left\langle f\left(x_{i}\right) \mid \eta_{i}\right\rangle
$$

Then define $A(\phi . \mathrm{s}, \mathrm{t}):=\left\|\overrightarrow{\mu_{\mathrm{s}}}-\overrightarrow{\mu_{\mathrm{t}}}\right\|_{W^{*}}^{2}$.

- When W is a Hilbert space, the metric writes in terms of the reproducing kernel of W :

$$
\|\vec{\mu}\|_{W^{*}}^{2}=\left\|\sum_{i=1}^{n} \eta_{i} \delta_{x_{i}}\right\|_{W^{*}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle k_{W}\left(x_{i}, x_{j}\right) \eta_{j} \mid \eta_{i}\right\rangle
$$

Curves as measure or currents

- Let C be a curve in $\Omega \subset \mathbf{R}^{d}$, parametrized by $\gamma_{C}:[0,1] \rightarrow \Omega$. The uniform measure associated to C is the following linear form, defined by its action on test functions $f: \Omega \rightarrow \mathbf{R}$:

$$
\mu_{C}(f)=\int_{0}^{1} f\left(\gamma_{C}(s)\right)\left\|\gamma_{C}^{\prime}(s)\right\| d s
$$

- The current associated to C is the following linear form, defined by its action on test $\mathbf{1}$-forms $\omega: \Omega \rightarrow\left(\mathbf{R}^{d}\right)^{*}$:

$$
\vec{\mu}_{C}(\omega)=\int_{0}^{1}\left\langle\omega\left(\gamma_{C}(s)\right) \mid \gamma_{C}^{\prime}(s)\right\rangle d s
$$

Submanifolds as currents

Let S be an oriented and bounded m-submanifold in Ω, and (U, ψ) a local map of S.

- The uniform measure μ_{S} is defined for every function f which support is included in $\psi(U)$ by:

$$
\mu_{S}(f)=\int_{U} f(\psi(x))\left\|\frac{\partial \psi}{\partial x^{1}} \wedge \cdots \wedge \frac{\partial \psi}{\partial x^{m}}\right\| d x
$$

- The current $\vec{\mu}_{S}$ is defined for every m-form ω which support is included in $\psi(U)$ by:

$$
\vec{\mu}_{S}(\omega)=\int_{U}\left\langle\omega(\psi(x)) \left\lvert\, \frac{\partial \psi}{\partial x^{1}} \wedge \cdots \wedge \frac{\partial \psi}{\partial x^{m}}\right.\right\rangle d x
$$

- We extend these definitions to global test functions or m-forms with the use of a partition of unity.

Submanifolds as currents

Curves as measure or currents - Properties

- Both models can handle changes in topology between shapes (e.g. one can compare and match a closed curve to an open one)
- The currents model is a priori more complete since it encodes both location and tangential information of the curves. One may think about it as a first-order model, while the measure model is zero-order.
- As a counterpart currents require to define an orientation on each curve, and on each subpart of the curve when one has to deal with disconnected or branching curves.
- Due to this orientation sensitivity, specific parts like spikes in curves are filtered out in the currents model. Depending on the application this can be seen as a good or bad property.

Curves as measure or currents - Properties

Tube formula and curvature measures

- For a set $V \in \mathbf{R}^{d}$ such that $M=\partial V$ is smooth, the volume of the ε-offset V_{ε} is a polynomial in ε which coefficients give integrals of curvatures of $M=\partial V$ when ∂V is smooth.
- ex: in \mathbf{R}^{3},

$$
\operatorname{Vol}\left(V_{\varepsilon}\right)=\operatorname{Vol}(V)+\operatorname{Area}(M) \varepsilon+H(M) \frac{\varepsilon^{2}}{2}+G(M) \frac{\varepsilon^{3}}{3}
$$

where $H(M)$ and $G(M)$ are the integrals of mean and Gauss curvatures.

Tube formula and curvature measures

- This formula can be localized so that we get integrals of curvatures restricted to any Borel subset.
- If V is only assumed to be of positive reach, $\operatorname{Vol}\left(V_{\varepsilon}\right)$ (and its localized version) is still a polynomial in ε; hence its coefficients define curvature measures in this general setting.

Definitions

- ε-offset around a compact set $C \subset \mathbf{R}^{d}: C_{\varepsilon}=\left\{x \in \mathbf{R}^{d}, d(x, C) \leq \varepsilon\right\}$.

- Normal cone at $x \in C$:

$$
\hat{\mathcal{N}}(C, x)=\left\{u \in \mathbf{R}^{d}, \exists \varepsilon>0, \forall y \in C \cap B(x, \varepsilon),\langle x-y, u\rangle \leq 0\right\} .
$$

- Unit normal vectors at $x \in C: \mathcal{N}(C, x)=\hat{\mathcal{N}}(C, x) \cap S^{d-1}$.

Definitions

- Unit Normal bundle associated to a set:

$$
\mathcal{N}(C)=\left\{(x, \xi) \in C \times S^{d-1}, \xi \in \mathcal{N}(C, x)\right\}
$$

- Formally, we can see $\mathcal{N}(C)$ as the "derivative" of C_{ε} at $\varepsilon=0$.
- $\mathcal{N}(C)$ is a closed sub-manifold of dimension $d-1$ in $\mathbf{R}^{d} \times S^{d-1}$.
- The normal cycle associated to C is the current $\vec{\mu}_{\mathcal{N}(C)}$ associated to $\mathcal{N}(C)$ (which is canonically oriented).

The addition formula

- For any subsets C_{1}, C_{2}, whenever it has sense,

$$
\vec{\mu}_{\mathcal{N}\left(C_{1} \cup C_{2}\right)}=\vec{\mu}_{\mathcal{N}\left(C_{1}\right)}+\vec{\mu}_{\mathcal{N}\left(C_{2}\right)}-\vec{\mu}_{\mathcal{N}\left(C_{1} \cap C_{2}\right)} .
$$

- This allows to extend the definition of normal cycles to any finite union of smooth curves (in fact to any finite union of sets of "positive reach")
- We can even define the normal cycle of a curve deprived of its end-points by simply substracting the normal cycles associated to them - which correspond to circles.

Properties

- The normal cycle is a second-order model; it encodes curvature information of the set. By computing specific integrals of the normal cycle over a small area, one gets the exact integrated values of the curvature of C on this area.
- The normal cycle does not depend on any choice of orientation on the curve, and there is no need to specify any,
- Since "spikes" are parts of high curvature; they get highly weighted in the model.
- Normal cycles are in fact a model for subsets of \mathbf{R}^{d} and not for submanifolds of a specific dimension. Hence one can think about comparing a curve with a surface, or to model "hybrid" objects.

Designing Hilbert norms for normal cycles

- Since $\vec{\mu}_{\mathcal{N}(C)}$ is a current in the product space $\mathbf{R}^{d} \times S^{d-1}$, we need to define a kernel in $\mathbf{R}^{d} \times S^{d-1}$. This can be done by considering a product of two kernels:

$$
k(\mathbf{x}, \mathbf{y})=k((x, u),(y, v))=k_{p}(x, y) k_{n}(u, v),
$$

where $k_{p}(x, y)$ is a reproducing kernel in \mathbf{R}^{d} (e.g. $k_{p}(x, y)=\frac{1}{1+\|x-y\|^{2} / \sigma^{2}}$, and $k_{n}(u, v)$ is a reproducing kernel in S^{d-1} (e.g. the kernel given by a Sobolev metric on S^{d-1})

- Let $T(\mathbf{x})=\tau_{1}(\mathbf{x}) \wedge \cdots \wedge \tau_{d-1}(\mathbf{x})$, where $\left(\tau_{i}(\mathbf{x})\right)_{1 \leq i \leq d-1}$ is an orthonormal basis of the tangent space $T_{\mathbf{x}} \mathcal{N}(C)$ for any $\mathbf{x} \in \mathcal{N}(C)$. Then we have

$$
\left\|\vec{\mu}_{\mathcal{N}(C)}\right\|_{W^{*}}^{2}=\int_{\mathcal{N}(C)} \int_{\mathcal{N}(C)} k(\mathbf{x}, \mathbf{y})\langle T(\mathbf{x}), T(\mathbf{y})\rangle d \sigma_{\mathcal{N}(C)}(\mathbf{x}) d \sigma_{\mathcal{N}(C)}(\mathbf{y}),
$$

where $d \sigma_{\mathcal{N}(C)}(\mathbf{x})$ is the volume element on the submanifold $\mathcal{N}(C)(\mathbf{x})$

Implementation for piecewise linear curves

- Let C be a piecewise linear curve, which we look at as a collection of segments which may be connected at their end-points.
- We can further decompose C as the disjoint union of open segments S_{i} and points P_{j}. The additive property for normal cycles then writes

$$
\vec{\mu}_{\mathcal{N}(C)}=\sum_{i} \vec{\mu}_{\mathcal{N}\left(S_{i}\right)}+\sum_{j} \vec{\mu}_{\mathcal{N}\left(P_{j}\right)} .
$$

- We decompose further again into space and angular components by writing each $\vec{\mu}_{\mathcal{N}\left(S_{i}\right)}$ as a sum of three terms. The tangent spaces of these space and angular components are orthogonal.

Implementation for piecewise linear curves

- Hence the whole squared dual norm of $\vec{\mu}_{\mathcal{N}(C)}$ can be computed as a sum of two parts, one involving only scalar products between "space" elements (located on edges) and the other involving only scalar products between "angular" elements (located on vertices).
- The "space" part of the metric is very similar to the usual metric on currents, except that it is an orientation-free representation of curves. To compute the scalar product between two such elements we use the same approximation by vector-valued Dirac located at the center of each edge.
- For the angular part computations comes down to computing double integrals of k_{n} over half-spheres in S^{d-1}; which can be computed either analytically (for $d=2$) or via precomputing look-up tables.

Experiments

Experiments

Experiments

4ロ〉4岛〉4 引〉

Experiments

Experiments

Experiments

Experiments

Template estimation

For the analysis of a population of N individuals, we aim at computing a mean shape. How can we define such a template ?

- Forward model:

$$
\vec{\mu} s_{k}=\left(\phi_{k}\right)_{\sharp} \vec{\mu}+\vec{\varepsilon}_{k}
$$

where S_{1}, \ldots, S_{N} are the observed curves/surfaces, ϕ_{k} are unknown deformations and $\vec{\mu}$ the unknown template in W^{*}.

- Backward model:

$$
\vec{\mu}=\left(\phi_{k}\right)_{\sharp} \vec{\mu} s_{k}+\vec{\varepsilon}_{k}
$$

- Metamorphoses (in the framework of large deformations): distribute the noise along the time-dependant diffeomorphism:

$$
\vec{\mu}_{S_{k}}=\vec{\mu}_{k}(t),
$$

where $\vec{\mu}_{k}:[0,1] \rightarrow W^{*}$ is a path such that $\vec{\mu}_{k}(0)=\vec{\mu}$, and

$$
\frac{\partial \vec{\mu}_{k}(t)}{\partial t}=\left(v_{k}(t)\right)_{\sharp} \vec{\mu}_{k}(t)+\vec{\varepsilon}_{k}(t) .
$$

Template estimation (with Sarang Joshi)

From a dataset of N shapes, we want to define a mean shape which will be used as template for any group analysis. How can we define such a template ?

- for images: one can define a co-registration model to estimate a template image and the n deformations of this individual to the template [Lorenzen, Davis, Joshi, MICCAI 2005]:

$$
J\left\{\left(\phi_{i}\right), I\right\}=\gamma \sum_{k=1}^{n} E\left(\phi_{k}\right)+\left\|I_{k} \circ \phi_{k}^{-1}-I\right\|_{2}^{2} .
$$

- for curves or surfaces, one can write a co-registration model by averaging in the space of measures or currents:

$$
\begin{gathered}
J\left\{\left(\phi_{i}\right), \hat{\vec{\mu}}\right\}=\gamma \sum_{k=1}^{n} E\left(\phi_{k}\right)+\left\|\phi_{k, \sharp} \vec{\mu}_{k}-\vec{\mu}\right\|_{W^{*}}^{2} . \\
J\left\{\left(\phi_{i}\right)\right\}=\gamma \sum_{k=1}^{n} E\left(\phi_{k}\right)+\left\|\phi_{k, \sharp} \vec{\mu}_{k}-\frac{1}{n} \sum_{k=1}^{n} \phi_{k, \sharp} \vec{\mu}_{k}\right\|_{W^{*}}^{2} .
\end{gathered}
$$

Template estimation (with Sarang Joshi)

- The estimated template $\frac{1}{n} \sum_{k=1}^{n} \hat{\phi}_{k} \mu_{k}$ is not a curve nor a surface but it can be used as is to perform registrations of new individuals to the template.

- if needed, one can further approximate the template via matching pursuit (Stanley Durrlemann):

DIffeomorphic Sulcus-based COrtical registration

DISCO: automatic sulcal extraction and labelling

DISCO: Preliminary extraction of sulcal features

DISCO: individual sulcal imprint

DISCO : diffeomorphic group averaging

