Hyperspectral Image Segmentation by
 Spatialized Gaussian Mixtures and
 Model Selection

E. Le Pennec
(SELECT - Inria Saclay / Université Paris Sud) and
S. Cohen (IPANEMA - CNRS / Soleil)

Marseille
25 November 2011

A. Stradivari (1644-1737)
 Provigny (I716)

sčaiell
$4 / 8 \mathrm{~cm}^{-1}$ resolution
$64 / 128$ scans
typ. 1 min/sp, 400sp
very simple process no protein (amide I, amide II)
no gums, nor waxes @SOLEIL: SMIS

J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich. Angew. Chem. Int. Ed., 49(I), I97-20I, 2010.

Hyperspectral Image Segmentation

- Data :
- image of size N between ~ 1000 and ~ 100000 pixels,
- spectrums \mathcal{S} of ~ 1024 points,
- very good spatial resolution,
- ability to measure a lot of spectrums per minute,
- Immediate goal :
- automatic image segmentation,
- without human intervention,
- help to data analysis.
- Advanced goal :
- automatic classification,
- interpretation...

A"Toy" Problem

A "Toy" Problem

A"Toy" Problem

- Representation : mapping between spectrums and points in a large dimension space.
- Spectral method.

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

"Stochastic" Modelization

- Model : Gaussian Mixture with K classes.
- Mixture density :

$$
\begin{aligned}
s_{K, \pi, \mu, \Sigma}(\mathcal{S}) & =\sum_{k=1}^{K} \pi_{k} \frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(\mathcal{S}-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(\mathcal{S}-\mu_{k}\right)} \\
& =\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
\end{aligned}
$$

"Stochastic" Modelization

- Model : Gaussian Mixture with K classes.
- Mixture density :

$$
\begin{aligned}
s_{K, \pi, \mu, \Sigma}(\mathcal{S}) & =\sum_{k=1}^{K} \pi_{k} \frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(\mathcal{S}-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(\mathcal{S}-\mu_{k}\right)} \\
& =\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
\end{aligned}
$$

"Stochastic" Modelization

- Model : Gaussian Mixture with K classes.
- Mixture density :

$$
\begin{aligned}
s_{K, \pi, \mu, \Sigma}(\mathcal{S}) & =\sum_{k=1}^{K} \pi_{k} \frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(\mathcal{S}-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(\mathcal{S}-\mu_{k}\right)} \\
& =\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
\end{aligned}
$$

"Stochastic" Modelization

- Model : Gaussian Mixture with K classes.
- Mixture density :

$$
\begin{aligned}
s_{K, \pi, \mu, \Sigma}(\mathcal{S}) & =\sum_{k=1}^{K} \pi_{k} \frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(\mathcal{S}-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(\mathcal{S}-\mu_{k}\right)} \\
& =\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
\end{aligned}
$$

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

"Statistical" Estimation

- Estimation of $\pi_{k}, \widehat{\mu_{k}}$ and $\widehat{\Sigma_{k}}$ by maximum likelihood:

$$
\left(\widehat{\pi_{k}}, \widehat{\mu_{k}}, \widehat{\Sigma_{k}}\right)=\operatorname{argmax} \sum_{i=1}^{N} \log s_{K,\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)}\left(\mathcal{S}_{i}\right)
$$

"Statistical" Estimation

- Estimation of $\pi_{k}, \widehat{\mu_{k}}$ and $\widehat{\Sigma_{k}}$ by maximum likelihood:

$$
\left(\widehat{\pi_{k}}, \widehat{\mu_{k}}, \widehat{\Sigma_{k}}\right)=\operatorname{argmax} \sum_{i=1}^{N} \log s_{K,\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)}\left(\mathcal{S}_{i}\right)
$$

- Estimation of $\hat{k}(\mathcal{S})$ by maximum a posteriori (MAP) :

$$
\widehat{k}(\mathcal{S})=\operatorname{argmax} \widehat{\pi_{k}} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
$$

Gaussian Mixture Modelization

- Stochastic modelization of the spectrums \mathcal{S} :
- existence of K classes of spectrums,
- proportion π_{k} for each class $\left(\sum_{k=1}^{K} \pi_{k}=1\right)$,
- Gaussian law $\mathcal{N}_{\mu_{k}, \Sigma_{k}}$ on each class (strong assumption!)
- Density s_{0} of \mathcal{S} close to

$$
s(\mathcal{S})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
$$

- Goal : estimate all parameters $K, \pi_{k}, \mu_{k}, \Sigma_{k}$ from the data.
- Why? : give possibility to assign a class to each observation by MAP

$$
\widehat{k}(\mathcal{S})=\operatorname{argmax} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
$$

- Result in term of density estimation...

Gaussian Mixture Model

- Density s_{0} of \mathcal{S} close to $s_{m}(\mathcal{S})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})$.
- Model $S_{m}=\left\{s_{m}\right\}$:
- choice of a number of K,
- choice of a structure for the means μ_{k} and the covariance matrices

$$
\Sigma_{k}=L_{k} D_{k} A_{k} D_{k}^{\prime}
$$

- Model $[\mu L D A]^{K}$: constraints (known, common or free values...) on the means μ_{k}, the volumes L_{k}, the diagonalization bases D_{k} and the eigenvalues A_{k}.
- Model S_{m} : parametric model of dimension $(K-1)+\operatorname{dim}\left([\mu L D A]^{K}\right)$ in a space of dimension p.
- Estimation by maximum likelihood of the parameters :
- for each class, the mean μ_{k} and the covariance matrix $\Sigma_{k}=L_{k} D_{k} A_{k} D_{k}^{\prime}$
- the mixing proportions π_{k}.
- Classical technique available : EM Algorithm.

Maximum Likelihood and MM

- "Maximum" likelihood for a given K :

$$
\begin{aligned}
\left(\widehat{\pi_{k}}, \widehat{\mu_{k}}, \widehat{\Sigma_{k}}\right) & =\operatorname{argmin} \sum_{i=1}^{N}-\ln \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right) \\
& =\operatorname{argmin} L(\pi, \mu, \Sigma)
\end{aligned}
$$

- Function L rather complex!
- Iterative algorithm (MM) :
- Current estimate : $\left(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n}\right)$,
- Construction of a Majorization $L^{(n)}$ of L such that

$$
L^{(n)}\left(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)}\right)=L\left(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)}\right) .
$$

and $L^{(n)}$ easy to minimize.

- Computation of a Minimizer

$$
\left(\pi^{(n+1)}, \mu^{(n+1)}, \Sigma^{(n+1}\right)=\operatorname{argmin} L^{(n)}(\pi, \mu, \Sigma)
$$

- Very generic methodology...
- Minimization can be replaced by a diminution...

Maximum Likelihood and EM

- Back to L:

$$
L(\pi, \mu, \Sigma)=\sum_{i=1}^{N}-\ln \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right)=\sum_{i=1}^{n} L^{i}(\pi, \mu, \Sigma)
$$

- EM : specific case of MM for this type of mixture,
- (Conditional) Expectancy : at step n, we let

$$
\begin{aligned}
& P_{k}^{i,(n)}= P\left(k_{i}=k \mid \mathcal{S}_{i}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n}\right)=\frac{\pi_{k}^{(n)} \mathcal{N}_{\mu_{k}^{(n)}, \Sigma_{k}^{(n)}}\left(\mathcal{S}_{i}\right)}{\sum_{k^{\prime}=1}^{K} \pi_{k^{\prime}}^{(n)} \mathcal{N}_{\mu_{k^{\prime}}^{(n)}, \Sigma_{k^{\prime}}^{(n)}\left(\mathcal{S}_{i}\right)}} \\
& \quad \text { and } \quad L^{i,(n)}(\pi, \mu, \Sigma)=-\sum_{k=1}^{n} P_{k}^{i,(n)} \ln \left(\pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right)
\end{aligned}
$$

- Kullback: $L^{i} \leq L^{i,(n)}+\operatorname{Cst}^{i,(n)}$ with equality at $\left(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n}\right)$.
- Bonus:
- Separability of $L^{i,(n)}$ in π and (μ, Σ) :

$$
L^{i,(n)}(\pi, \mu, \Sigma)=-\sum_{k=1}^{K} P_{k}^{i,(n)} \ln \left(\mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right)-\sum_{k=1}^{n} P_{k}^{i,(n)} \ln \left(\pi_{k}\right)
$$

- Close formulas for the Minimization of $L^{(n)}$ in π and (μ, Σ) !

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

How many classes?

- Tough question for which the likelihood (the fidelity) is not sufficient!

How many classes?

- Tough question for which the likelihood (the fidelity) is not sufficient!

How many classes?

- Tough question for which the likelihood (the fidelity) is not sufficient!
- How to take into account the model complexity?

Ockham's Razor

Ockham's Razor

entities must not be multiplied beyond necessity William of Ockham ($\sim 1285-1347$)

Ockham's Razor

entities must not be multiplied beyond necessity William of Ockham (\sim 1285-1347)

- Ockham's Razor (simplicity principle) : one should not add hypotheses, if the current ones are already sufficient!
- Balance between observation explanation power and simplicity.

Selection by Penalization

Selection by Penalization

Selection by Penalization

Selection by Penalization

Selection by Penalization

- Simplicity : $-\lambda \operatorname{Dim}\left(S_{K}\right)$ (a lot of theory behind that).
- Penalized estimator:

$$
\operatorname{argmin}-\underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}\left(X_{i}\right)}_{\text {Likelihood }}+\underbrace{\lambda \operatorname{Dim}\left(S_{K}\right)}_{\text {Penalty }}
$$

Selection by Penalization

- Likelihood : $\sum_{i=1}^{N} \log \hat{s}_{K}\left(X_{i}\right)$.
- Simplicity : $-\lambda \operatorname{Dim}\left(S_{K}\right)$ (a lot of theory behind that).
- Penalized estimator:

$$
\operatorname{argmin}-\underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}\left(X_{i}\right)}_{\text {Likelihood }}+\underbrace{\lambda \operatorname{Dim}\left(S_{K}\right)}_{\text {Penalty }}
$$

Selection by Penalization

- Likelihood: $\sum_{i=1}^{N} \log \hat{s}_{K}\left(X_{i}\right)$.
- Simplicity : $-\lambda \operatorname{Dim}\left(S_{K}\right)$ (a lot of theory behind that).
- Penalized estimator:

$$
\operatorname{argmin}-\underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}\left(X_{i}\right)}_{\text {Likelihood }}+\underbrace{\lambda \operatorname{Dim}\left(S_{K}\right)}_{\text {Penalty }}
$$

- Optimization in K by exhaustive exploration!

Methodology

Methodology

Methodology

Methodology

Methodology

Model Selection

- How to select the model S_{m} :
- the number of classes K,
- the model $[\mu L D A]^{K}$?
- Penalized selection principle:
- choice of model collection $S_{m}=\left\{s_{m}\right\}$ with $m \in \mathcal{S}$,
- estimation by maximum likelihood of a density s_{m} for each model S_{m},
- selection of a model \widehat{m} by

$$
\widehat{m}=\operatorname{argmin}-\ln \left(\widehat{s}_{m}\right)+\operatorname{pen}(m) .
$$

with pen $(m)=\kappa(\ln (n)) \operatorname{dim}\left(S_{m}\right)$ (intrinsic dimension of $\left.S_{m}\right)$,

- Results (Birgé, Massart, Celeux, Maugis, Michel...) :
- theoretical for the density estimation : for κ large enough,

$$
\mathbb{E}\left[d^{2}\left(s_{0}, \widehat{s}_{\widehat{m}}\right)\right] \leq C \inf _{m \in \mathcal{S}}\left(\inf _{s_{m} \in S_{m}} K L\left(s_{0}, s_{m}\right)+\frac{\operatorname{pen}(m)}{n}\right)+\frac{C^{\prime}}{n}
$$

- numerical for unsupervised classification (\neq segmentation),
- classification consistency if $\ln \ln (n)$ in the penalties...

Back to our violins

Segmentation and Gaussian Mixture

- Initial goal : unsupervised segmentation \neq unsupervised classification.
- Take into account the spatial position x of the spectrums through the mixing proportions (Kolaczyk et al) : conditional density model

$$
s(\mathcal{S} \mid x)=\sum_{k=1}^{K} \pi_{k}(x) \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S})
$$

- Model mixing parametric and non-parametric setting...
- Estimation from the data :
- for each class, the mean μ_{k} and the covariance matrix $\Sigma_{k}=L_{k} D_{k} A_{k} D_{k}^{\prime}$,
- the mixing proportions $\pi_{k}(x)$.
- $\pi_{k}(x)$ function : regularization required.
- Model selection principle...

Gaussian Mixture and Hierarchical Partition

- How to select the model S_{m} ?:
- the number of classes K,
- the model $[\mu L D A]^{K}$,
- the mixing proportions structure of $\pi_{k}(x)$.
- Simple structure : $\pi_{k}(x)=\sum_{\mathcal{R} \in \mathcal{P}} \pi_{k}[\mathcal{R}] \chi_{\{x \in \mathcal{R}\}}=\pi_{k}[\mathcal{R}(x)]$
- piecewise constant on a hierarchical partition,
- efficient optimization possible,
- decent
 approximation property.
- $\operatorname{dim}\left(S_{m}\right)=|\mathcal{P}|(K-1)+\operatorname{dim}\left([\mu L D A]^{K}\right)$.
- Penalty pen $(m)=\kappa \ln (n) \operatorname{dim}\left(S_{m}\right)$ sufficient for
- a theoretical control in term of conditional density estimation,
- numerical optimization (EM + dynamic programming).

Conditional Densities

- More general framework: observation of $\left(X_{i}, Y_{i}\right)$ with X_{i} independent and Y_{i} independents with law of density $s_{0}\left(y \mid X_{i}\right)$.
- Goal : estimation of $s_{0}(y \mid x)$.
- Penalized model selection principle :
- choice of a model collection $S_{m}=\left\{s_{m}(y \mid x)\right\}$ with $m \in \mathcal{S}$,
- estimation by max. likelihood of a cond. dens. \hat{s}_{m} for each model S_{m} :

$$
\hat{s}_{m}=\underset{s_{m} \in S_{m}}{\operatorname{argmin}}-\sum_{i=1}^{N} \ln s_{m}\left(Y_{i} \mid X_{i}\right)
$$

- With pen (m) suitably design, selection of a model \widehat{m} by

$$
\widehat{m}=\underset{m \in \mathcal{S}}{\operatorname{argmin}}-\sum_{i=1}^{N} \ln \widehat{s}_{m}\left(Y_{i} \mid X_{i}\right)+\operatorname{pen}(m) .
$$

- Conditional density estimation type result :

$$
\mathbb{E}\left[d^{2}\left(s_{0}, \widehat{s}_{\hat{m}}\right)\right] \leq C \inf _{m \in \mathcal{S}}\left(\inf _{s_{m} \in S_{m}} K L\left(s_{0}, s_{m}\right)+\frac{\operatorname{pen}(m)}{n}\right)+\frac{C^{\prime}}{n} .
$$

Numerical optimization

- Penalized Model Selection :

$$
\begin{aligned}
\underset{K,[\mu L D A]^{K}, \mu, \Sigma, \mathcal{P}, \pi}{\operatorname{argmin}}- & \sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k}\left[\mathcal{R}\left(x_{i}\right)\right] \mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right) \\
& +\lambda_{0, N}|\mathcal{P}|(K-1)+\lambda_{1, N} \operatorname{dim}\left([\mu L D A]^{K}\right)
\end{aligned}
$$

- Optimization on the number of classes K and the mean and covariance structure by exhaustive exploration.
- Model selection for a given number of classes K and a given structure $[\mu L D A]^{K}$:

$$
\underset{\mu, \Sigma, \mathcal{P}, \pi}{\operatorname{argmin}}-\sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k}\left[\mathcal{R}\left(x_{i}\right)\right] \mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right)+\lambda_{0, n}|\mathcal{P}|(K-1)
$$

- Two tricks :
- EM Algorithm
- CART (dynamic programming)

EM Algorithm

- E Step : with $P_{k}^{i,(n)}=P\left(k_{i}=k \mid x_{i}, \mathcal{S}_{i}, \mathcal{P}^{(n)}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n)}\right.$

$$
\begin{aligned}
& -\sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k}\left[\mathcal{R}\left(x_{i}\right)\right] \mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right)+\lambda_{0, n}|\mathcal{P}|(K-1) \\
& \leq-\sum_{i=1}^{N} \sum_{k=1}^{K} P_{k}^{i,(n)} \ln \left(\pi_{k}\left[\mathcal{R}\left(x_{i}\right)\right]\right)+\lambda_{0, N}|\mathcal{P}|(K-1) \\
& \quad+\left(-\sum_{i=1}^{N} \sum_{k=1}^{K} P_{k}^{i,(n)} \ln \left(\mathcal{N}_{\mu_{k}, \Sigma_{k}}\left(\mathcal{S}_{i}\right)\right)\right)+\mathrm{Cst}^{(n)}
\end{aligned}
$$

with equality at $\left(\mathcal{P}^{(n)}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n}\right)$.

- M Step : Split optimization in (\mathcal{P}, π) and (μ, Σ) possible,
- Optimization in (μ, Σ) : close formulas (classical...).
- Optimization in (\mathcal{P}, π) more interesting !

M Step and CART

- Optimization in (\mathcal{P}, π) of
$-\sum_{i=1}^{N} \sum_{k=1}^{K} P_{k}^{i,(n)} \ln \left(\pi_{k}\left[\mathcal{R}\left(x_{i}\right)\right]\right)+\lambda_{0, n}|\mathcal{P}|(K-1)$

$$
=-\sum_{\mathcal{R} \in \mathcal{P}}\left(\sum_{i \mid x_{i} \in \mathcal{R}} \sum_{k=1}^{K} P_{k}^{i,(n)} \ln \left(\pi_{k}\left[\mathcal{R}\left(x_{i}\right)\right]\right)+\lambda_{0, N}(K-1)\right)
$$

- Two key properties :
- For each \mathcal{R}, simple (classical) optimization of $\pi_{k}[\mathcal{R}]$.
- Additivity in \mathcal{R} of the cost structure.
- \Rightarrow Fast optimization algorithm of CART type (Dynamic programming on tree structure).

CART Optimization

- Aim : compute efficiently $\underset{\mathcal{P}}{\operatorname{argmin}} \sum_{\mathcal{R} \in \mathcal{P}} C[\mathcal{R}]$ where \mathcal{P} belongs to the set of recursive dyadic partitions (associated to quadtree) of limited depth.
- Key observation : the optimal partition $\widehat{\mathcal{P}}[\mathcal{R}]$ of a dyadic square is
- either this square, $\widehat{\mathcal{P}}[\mathcal{R}]=\{\mathcal{R}\}$
- or the union of the opt. part. of its children, $\widehat{\mathcal{P}}[\mathcal{R}]=\cup_{\mathcal{R}^{\prime} \in \operatorname{Child}[\mathcal{R})} \widehat{\mathcal{P}}\left[\mathcal{R}^{\prime}\right]$ with a decision based on

$$
C[\mathcal{R}] \leq \sum_{\mathcal{R}^{\prime} \in \operatorname{Child}(\mathcal{R})} \sum_{\mathcal{R}^{\prime \prime} \in \widehat{\mathcal{P}}\left[\mathcal{R}^{\prime}\right]} C\left[\mathcal{R}^{\prime \prime}\right]
$$

- Algorithm : Precomputation of all $C[\mathcal{R}]$ then recursive determination of $\widehat{\mathcal{P}}[\mathcal{R}]$ and $\widehat{C}[\mathcal{R}]=\sum_{\mathcal{R}^{\prime \prime} \in \widehat{\mathcal{P}}} C\left[\mathcal{R}^{\prime \prime}\right]$ (either $C[\mathcal{R}]$ or the sum of the \widehat{C} of its children) with stopping as soon as the square has no child.
- Non recursive version possible.

Unsupervised Segmentation

- Numerical result taking into account the spatial modeling :

Without

- $K=8,\left[L_{k} D A\right]^{K}$ and optimal partition.
- Penalty calibration by slope heuristic.
- Dimension reduction by (not so naive) ACP...

Unsupervised Segmentation

- Numerical result taking into account the spatial modeling :

Without

- $K=8,\left[L_{k} D A\right]^{K}$ and optimal partition.
- Penalty calibration by slope heuristic.
- Dimension reduction by (not so naive) ACP...

Segmentations

Stradivari's Secret

- Two fine layers of varnish :
- a first simple oil layer, similar to the painter's one, penetrating mildly the wood,
- a second layer made from a mixture of oil, pine resin and red pigments.
- Classical technique up to the specific color choice.
- Stradivari's secret was not his varnish !

Conclusion

Framework- Insupanisea segmentation problem
- Spatialized Gaussian Mixture Model
- Penalized maximum likelihood conditional density estimation.

Results

- Theoretical guaranty for the conditional density estimation problem.
- Direct application to the unsupervised segmentation problem.
- Efficient minimization algorithm.
- Unsupervised segmentation algorithm in between spectral methods and spatial ones.
Persnectives
- Formal link between conditional density estimation and unsupervised segmentation
- Penalty calibration by slope heuristic
- Dimension reduction adapted to unsupervised segmentation/classification.
- Enhanced Spatialized Gaussiar Mixture Model with piecewise Iogistic weights (L. Montuelle).

Conclusion

- Framework:
- Unsupervised segmentation problem.
- Spatialized Gaussian Mixture Model
- Penalized maximum likelihood conditional density estimation.
- Results :
- Theoretical guaranty for the conditional density estimation problem.
- Direct application to the unsupervised segmentation problem.
- Efficient minimization algorithm.
- Unsupervised segmentation algorithm in between spectral methods and spatial ones.
- Perspectives:
- Formal link between conditional density estimation and unsupervised segmentation.
- Penalty calibration by slope heuristic.
- Dimension reduction adapted to unsupervised segmentation/classification.
- Enhanced Spatialized Gaussian Mixture Model with piecewise logistic weights (L. Montuelle).

Theorem

Assumption (H): For every model S_{m} in the collection \mathcal{S}, there is a non-decreasing function $\phi_{m}(\delta)$ such that $\delta \mapsto \frac{1}{\delta} \phi_{m}(\delta)$ is non-increasing on ($0,+\infty$) and for every $\sigma \in \mathbb{R}^{+}$and every $s_{m} \in S_{m}$

$$
\int_{0}^{\sigma} \sqrt{H_{[\cdot], d \otimes_{n}}\left(\epsilon, S_{m}\left(s_{m}, \sigma\right)\right)} d \epsilon \leq \phi_{m}(\sigma)
$$

Assumption (K): There is a family $\left(x_{m}\right)_{m \in \mathcal{M}}$ of non-negative number such that

$$
\sum_{m \in \mathcal{M}} e^{-x_{m}} \leq \Sigma<+\infty
$$

Theorem

Assume we observe $\left(X_{i}, Y_{i}\right)$ with unknown conditional s_{0}. Let $\mathcal{S}=\left(S_{m}\right)_{m \in \mathcal{M}}$ a at most countable model collection. Assume Assumptions (H), (K) and (S) hold.
Let \widehat{s}_{m} be a δ-log-likelihood minimizer in S_{m} :

$$
\sum_{i=1}^{N}-\ln \left(\widehat{s}_{m}\left(Y_{i} \mid X_{i}\right)\right) \leq \inf _{s_{m} \in S_{m}}\left(\sum_{i=1}^{N}-\ln \left(s_{m}\left(Y_{i} \mid X_{i}\right)\right)\right)+\delta
$$

Then for any $\rho \in(0,1)$ and any $C_{1}>1$, there are two constants κ_{0} and C_{2} depending only on ρ and C_{1} such that,
as soon as for every index $m \in \mathcal{M} \operatorname{pen}(m) \geq \kappa\left(n \sigma_{m}^{2}+x_{m}\right)$ with $\kappa>\kappa_{0}$
where σ_{m} is the unique root of $\frac{1}{\sigma} \phi_{m}(\sigma)=\sqrt{n} \sigma$,
the penalized likelihood estimate $\widehat{s}_{\widehat{m}}$ with \widehat{m} defined by

$$
\widehat{m}=\underset{m \in \mathcal{M}}{\operatorname{argmin}} \sum_{i=1}^{N}-\ln \left(\widehat{s}_{m}\left(Y_{i} \mid X_{i}\right)\right)+\operatorname{pen}(m)
$$

satisfies

$$
\mathbb{E}\left[J K L_{\rho}^{\otimes_{n}}\left(s_{0}, \widehat{s}_{\widehat{m}}\right)\right] \leq C_{1} \inf _{s_{m} \in \mathcal{S}}\left(\inf _{s_{m} \in S_{m}} K L^{\otimes_{n}}\left(s_{0}, s_{m}\right)+\frac{\operatorname{pen}(m)}{n}\right)+C_{2} \frac{\Sigma}{N}+\frac{\delta}{N}
$$

Theorem

- Oracle type inequality
$\mathbb{E}\left[J K L_{\rho}^{\otimes_{n}}\left(s_{0}, \hat{s}_{\widehat{m}}\right)\right] \leq C_{1} \inf _{S_{m} \in \mathcal{S}}\left(\inf _{s_{m} \in S_{m}} K L^{\otimes_{n}}\left(s_{0}, s_{m}\right)+\frac{\operatorname{pen}(m)}{N}\right)+C_{2} \frac{\Sigma}{N}+\frac{\delta}{N}$
as soon as

$$
\operatorname{pen}(m) \geq \kappa\left(N \sigma_{m}^{2}+x_{m}\right) \quad \text { with } \kappa>\kappa_{0}
$$

where $N \sigma_{m}^{2}$ measures the complexity of S_{m} (entropy) and x_{m} a coding cost within the collection (Kraft).

- «Distances» used $K L^{\otimes_{n}}$ and $J K L_{\rho}^{\otimes_{n}}$: «tensorized» Kullback divergence and Jensen-Kullback divergence.
- $N \sigma_{m}^{2}$ linked to the bracketing entropy of S_{m} measured with respect to the tensorized Hellinger distance $d^{2 \otimes_{n}}$.

Kullback, Hellinger and extensions

- Typical model selection oracle inequality :

$$
\mathbb{E}\left[d^{2}\left(s_{0}, \widehat{s}_{\widehat{m}}\right)\right] \leq C\left(\inf _{m \in \mathcal{S}} \inf _{s_{m} \in S_{m}} K L\left(s_{0}, s_{m}\right)+\frac{\operatorname{pen}(m)}{N}\right)+\frac{C^{\prime}}{N} .
$$

- Density : Hellinger $d^{2}\left(s, s^{\prime}\right)$ (or affinity) (Kolaczyk, Barron, Bigot).
- Better result with $\operatorname{JKL}\left(s, s^{\prime}\right)=2 K L\left(s,\left(s^{\prime}+s\right) / 2\right.$) (Massart, van de Geer).
- Jensen-Kullback-Leibler : generalization to $J K L_{\rho}\left(s, s^{\prime}\right)=\frac{1}{\rho} K L\left(s, \rho s^{\prime}+(1-\rho) s\right)$.
- Prop. : For all probability measure $s d \lambda$ and $t d \lambda$ and all $\rho \in(0,1)$

$$
C_{\rho} d_{\lambda}^{2}(s, t) \leq J K L_{\rho, \lambda}(s, t) \leq K L_{\lambda}(s, t)
$$

- $C_{\rho} \simeq 1 / 5$ if $\rho \simeq 1 / 2$.

Conditional densities

- Previous divergences should be adapted to the conditional density framework:
- Divergence on the product density conditioned by the design (Kolaczyk, Bigot).
- Tensorization principle and expectancy on a similar phantom design :

$$
\begin{aligned}
& K L \rightarrow K L^{\otimes_{n}}\left(s, s^{\prime}\right)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} K L\left(s\left(\cdot \mid X_{i}^{\prime}\right), s^{\prime}\left(\cdot \mid X_{i}^{\prime}\right)\right)\right], \\
& J K L_{\rho} \rightarrow J K L_{\rho}^{\otimes_{n}} \quad \text { and } \quad d^{2} \rightarrow d^{2 \otimes_{n}} .
\end{aligned}
$$

- Similar approaches but for Hellinger and JKL + Possibility to have result with expectancy on the design.
- Oracle inequality :

$$
\mathbb{E}\left[J K L^{\otimes_{n}}\left(s_{0}, \widehat{s}_{\widehat{m}}\right)\right] \leq C \inf _{m \in \mathcal{S}}\left(\inf _{s_{m} \in S_{m}} K L^{\otimes_{n}}\left(s_{0}, s_{m}\right)+\frac{\operatorname{pen}(m)}{N}\right)+\frac{C^{\prime}}{N}
$$

- Yield the classical density estimation theorem if $s\left(\cdot \mid X_{i}\right)=s(\cdot)$.

Penalization and complexity

- Penalty linked to the complexity of the model and of the collection.
- Complexity of the model S_{m} (entropy) :
- $H_{[\cdot], d \otimes_{n}}\left(\epsilon, S_{m}\right)$ bracketing entropy with respect to the tensorized Hellinger distance $\left(d^{\otimes_{n}}=\sqrt{d^{2} \otimes_{n}}=\sqrt{\mathbb{E}\left[\frac{1}{N} \sum d^{2}\left(s\left(\cdot \mid X_{i}\right), s^{\prime}\left(\cdot \mid X_{i}\right)\right)\right]}\right)$.
- Assumption (H) : for every model S_{m}, there is a non decreasing function $\phi_{m}(\delta)$ such that $\delta \mapsto \frac{1}{\delta} \phi_{m}(\delta)$ is non increasing on $(0,+\infty)$ and such that for all $\sigma \in \mathbb{R}^{+}$and all $s_{m} \in S_{m}$

$$
\int_{0}^{\sigma} \sqrt{H_{[\cdot], d \otimes n}\left(\epsilon, S_{m}\left(s_{m}, \sigma\right)\right)} d \epsilon \leq \phi_{m}(\sigma)
$$

- Complexity measured by $N \sigma_{m}^{2}$ where σ_{m} is the unique root of

$$
\frac{1}{\sigma} \phi_{m}(\sigma)=\sqrt{N} \sigma .
$$

- Often $N \sigma_{m}^{2} \propto \operatorname{dim}\left(S_{m}\right)$
- Complexity of the collection (coding) :
- measured by x_{m} satisfying a Kraft inequality $\sum_{m \in \mathcal{S}} e^{-x_{m}} \leq \Sigma<+\infty$
- Classical constraint on the penalty

$$
\operatorname{pen}(m) \geq \kappa\left(N \sigma_{m}^{2}+x_{m}\right) \quad \text { with } \kappa>\kappa_{0} .
$$

Spatialized Gaussian Mixture Case

- Computation of an upper bound of the bracketing entropy possible (cf Maugis et Michel) implying :

$$
N \sigma_{m}^{2} \leq \kappa^{\prime}\left(C^{\prime}+\frac{1}{2}\left(\ln \left(\frac{N}{C^{\prime} \operatorname{dim}\left(S_{m}\right)}\right)\right)_{+}\right) \operatorname{dim}\left(S_{m}\right)
$$

- Collection coding with $x_{m} \leq \kappa^{\prime \prime}|\mathcal{P}| \leq \frac{\kappa^{\prime \prime}}{K-1} \operatorname{dim}\left(S_{m}\right)$.
- Constraint on the penalty :

$$
\begin{aligned}
\operatorname{pen}(m) & \geq\left(\kappa^{\prime}\left(C^{\prime}+\frac{1}{2}\left(\ln \left(\frac{N}{C^{\prime} \operatorname{dim}\left(S_{m}\right)}\right)\right)_{+}\right)+\frac{\kappa^{\prime \prime}}{K-1}\right) \operatorname{dim}\left(S_{m}\right) \\
& \geq \lambda_{0, N}|\mathcal{P}|(K-1)+\lambda_{1, N} \operatorname{dim}\left([\mu L D A]^{K}\right)
\end{aligned}
$$

