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Hyperspectral Image
Segmentation

@ Data :

image of size N between ~ 1000 and ~ 100000 pixels,
spectrums S of ~ 1024 points,

very good spatial resolution,

ability to measure a lot of spectrums per minute,

© 6 6 ¢

@ Immediate goal :

@ automatic image segmentation,
@ without human intervention,
@ help to data analysis.

@ Advanced goal :

@ automatic classification,
@ interpretation...
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Y N




A “Toy” Problem

@ Representation : mapping between spectrums and points in a large
dimension space.

@ Spectral method.
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“Stochastic” Modelization
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“Stochastic” Modelization

@ Model : Gaussian Mixture with K classes.
@ Mixture density :
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“Stochastic” Modelization

@ Model : Gaussian Mixture with K classes.
@ Mixture density :

b A Sm)E (S m)
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“Statistical” Estimation

@ Estimation of 7y, j1x and ﬁ by maximum likelihood :
- N
(ﬂ7 [k, Zk) = argmax Z log SK,(Trk,uk,Zk)(Si)
i=1



“Statistical” Estimation

@ Estimation of 7y, j1x and ﬁ by maximum likelihood :
N

(ﬂ7 @7 Zk) = argmax Z |Og SK,(Trk,uk,Zk)(Si)
i=1

@ Estimation of k(S) by maximum a posteriori (MAP) :
k(S) = argmax 7k N, 5, (S)



Gaussian Mixture Modelization

@ Stochastic modelization of the spectrums S :

o existence of K classes of spectrums,
. K
@ proportion 7 for each class (>, _; mx = 1),
o Gaussian law NV, 5, on each class (strong assumption !)

@ Density sp of S close to p

s(S) = Z Tk Nz, (S)-

k=1

@ Goal : estimate all parameters K, 7, ik, Lk from the data.
@ Why 7 : give possibility to assign a class to each observation by MAP

~

k(S) = argmax mx N, 5, (S)

@ Result in term of density estimation...



Gaussian Mixture Model

K
@ Density sp of S close to sp,(S) = Z Tk Ny 5, (S)-
k=1
@ Model Sy, = {sm} :
@ choice of a number of K,
@ choice of a structure for the means uy and the covariance matrices
Y = Ly DAkD;,

@ Model [i L D AJX : constraints (known, common or free values...) on
the means u, the volumes Ly, the diagonalization bases Dy and the
eigenvalues Ag.

@ Model S, : parametric model of dimension
(K — 1) +dim([u L D A]¥) in a space of dimension p.

@ Estimation by maximum likelihood of the parameters :

o for each class, the mean p, and the covariance matrix X = LkaAkD,i
@ the mixing proportions 7.

@ Classical technique available : EM Algorithm.



Maximum Likelihood and MM

@ “Maximum” likelihood for a given K :

N K
(Tky Tk, k) = argminz —In <Z TNy 5, (S ))

i=1
= argmin L(m, p, X)
@ Function L rather complex!
@ lterative algorithm (MM) :

o Current estimate : (7(", u(M ¥(m),
o Construction of a Majorization L(") of L such that

L () () 5 ) — [ () () ()

and L(" easy to minimize.
o Computation of a Minimizer

(D), D) 5 () — argmin L) (i, 1, T)

@ Very generic methodology...
@ Minimization can be replaced by a diminution...



Maximum Likelihood and EM

@ Backto L:

N
L(m,pu, X) = Z In (Z T Ny 54 (S ) Z Li(m, 1, X)

i=1 k=1
@ EM : specific case of MM for this type of mixture,

o (Conditional) Expectancy : at step n, we let
71'5(") 'A[Hi"),)iin) (S,)

pi(n) _ P( - () (n),z(n) -
k : S TN 0 0 (S)
k/ ’ k’
and  LYM(7 p, ¥ ZP In (7 Ny 2. (S1))

o Kullback : L' < L7(" 4 Cst™(" with equality at (a(", u(m, £(m),
@ Bonus :
o Separability of L'"(") in 7 and (i, X) :

n

L) (7, 1, X ZP Nz (8)) = S Py in ()
k=1

o Close formulas for the Minimization of L(") in 7 and (u, ¥)!
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How many classes ?
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How many classes ?
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How many classes ?

Fidelity

@ Tough question for which the likelihood (the fidelity) is not
sufficient !
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@ Tough question for which the likelihood (the fidelity) is not
sufficient !



How many classes ?

Fidely — + SR Ft4 A+t
sy ++++ 4+ ++ + -

@ Tough question for which the likelihood (the fidelity) is not
sufficient !

@ How to take into account the model complexity ?



Ockham’s Razor
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entities must not be multiplied beyond necessity
William of Ockham (~ 1285 - 1347)



Ockham’s Razor

v
B @J.{.n&
7

entities must not be multiplied beyond necessity
William of Ockham (~ 1285 - 1347)

@ Ockham’s Razor (simplicity principle) : one should not add
hypotheses, if the current ones are already sufficient !

@ Balance between observation explanation power and simplicity.
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Selection by Penalization

Likelihood
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Selection by Penalization
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Selection by Penalization

Likelinood +++ ++ + ++++
+simplicty  + 4+ ++ +++ ++ + —
= Tradeot ++ ++++ A+ A A4+

N
@ Likelihood : ) " log 8k (X;).

i=1
@ Simplicity : —ADim(Sk) (a lot of theory behind that).
@ Penalized estimator :

argmin — Z log 5k (Xi) + ADim(Sk)
i=1

Likelihood Penalty



Selection by Penalization

Likelihood
+Simplicity 4= 4 - +++
= Tradeoff +—‘|— + —|— +—'|—
N
@ Likelihood : ) " log 8k (X;).

A+ +

i=1
@ Simplicity : —ADim(Sk) (a lot of theory behind that).
@ Penalized estimator :

argmin — Z log 5k (Xi) + ADim(Sk)
i=1

Likelihood Penalty



Selection by Penalization

Likelihood
+Simplicity 4= 4 - +++
= Tradeoff +—‘|— + —|— +—'|—
N
@ Likelihood : ) " log 8k (X;).

A+ +

i=1
@ Simplicity : —ADim(Sk) (a lot of theory behind that).
@ Penalized estimator :

argmin — Z log 5k (Xi) + ADim(Sk)
i=1

Likelihood Penalty

@ Optimization in K by exhaustive exploration !
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Model Selection

@ How to select the model S, :

o the number of classes K,
o the model [ LD AJK?

@ Penalized selection principle :

o choice of model collection S, = {s,} with m € S,
@ estimation by maximum likelihood of a density s, for each model S,,,
o selection of a model m by

m = argmin — In(5,,) 4+ pen(m).

with pen(m) = k(In(n)) dim(Sp,) (intrinsic dimension of Sy,),
@ Results (Birgé, Massart, Celeux, Maugis, Michel...) :
@ theoretical for the density estimation : for s large enough,

c’
E[d?(sh.5~)] < C i ; pen(m) .
[d (507 Sm)] - ¢ nlgf:s <5n:22m KL(SO’ Sm) + n n

o numerical for unsupervised classification (# segmentation),
o classification consistency if InIn(n) in the penalties...



Back to our violins

Representation F—

vOH VCH,/CH; vC=0
1715-1725

Spatial Info. F——




Segmentation and Gaussian
Mixture

@ Initial goal : unsupervised segmentation # unsupervised
classification.

@ Take into account the spatial position x of the spectrums through
the mixing proportions (Kolaczyk et al) : conditional density model

K
s(Slx) = D mk(x) Ny £, (S)-
k=1
@ Model mixing parametric and non-parametric setting...

@ Estimation from the data :
o for each class, the mean p and the covariance matrix Xy = LDy AiD;,
@ the mixing proportions 7 (x).

@ 7k (x) function : regularization required.

@ Model selection principle...



Gaussian Mixture and
Hierarchical Partition

@ How to select the model S, 7 :

@ the number of classes K,
o the model [u L D A]X,
@ the mixing proportions structure of mx(x).

@ Simple structure : mx(x) = Z Tk[R]X{xery = mk[R(x)]

ReP
@ piecewise constant o T
on a hierarchical partition, S R e o B e
o efficient optimization possible, o | s o Il
o decent - a1

approximation property.
@ dim(Sm) = |P|(K — 1) 4+ dim([u L D A]¥).
@ Penalty pen(m) = xIn(n) dim(S,) sufficient for

@ a theoretical control in term of conditional density estimation,
@ numerical optimization (EM + dynamic programming).



Conditional Densities

@ More general framework : observation of (X, Y;) with X;
independent and Y; independents with law of density sp(y|Xi).
@ Goal : estimation of sp(y]|x).
@ Penalized model selection principle :
o choice of a model collection S, = {sm(y|x)} with m € S,

@ estimation by max. likelihood of a cond. dens. §,, for each model S, :

N
5n = argmin — Z Insm(Yi|X:)
SmESm i—1

o With pen(m) suitably design, selection of a model m by

N
m = argmin — Y IS, (Y;|X;) + pen(m).
mes i

@ Conditional density estimation type result :

E [d2(50,§;7)} < C,:qnefs (s |21; KL(so,Sm) +

pen(m)> e

n



Numerical optimization

@ Penalized Model Selection :

argmin — Zln (Z T R(x) Ny 5 (S ))

Kv[/‘LDA]K,/J‘,z,'Pﬂ' i=1
+ Xon|PI(K — 1) + Ay dim([u L D A]F)

@ Optimization on the number of classes K and the mean and
covariance structure by exhaustive exploration.

@ Model selection for a given number of classes K and a given
structure [ L D A]X

argmin — Zln <Z T R(X)I N 5 (S )) + Xo,n|PI(K — 1)

w2, P, i=1

@ Two tricks :

o EM Algorithm
o CART (dynamic programming)



EM Algorithm
@ E Step : with P = P(k; = k|x;, S;, P, 7(M) (0 5

N
~>_In (Zm[mmzk( )>+)\0n\73\( 1)

i=1 k=1

N K
< =35 PP in (i [R(3)]) + AowlPI(K — 1)

i=1 k=1

N K
( >3 A In (N5 (S ))) + Cstl”)
i=1 k=1
with equality at (P 7(" (0 ¥ ()
@ M Step : Split optimization in (P, n) and (i, X) possible,

o Optimization in (i, X) : close formulas (classical...).
o Optimization in (P, 7) more interesting !



M Step and CART

@ Optimization in (P, 7) of

N K
- Z Z P;(’(”) In (7 [R(xi)]) + Ao,n|P|(K — 1)
i=1 k=1

K .
--> ( S S P 0 (kRG] + Aow(K — 1))

ReP \ilxieR k=1

@ Two key properties :
o For each R, simple (classical) optimization of mx[R].
o Additivity in R of the cost structure.

@ = Fast optimization algorithm of CART type (Dynamic
programming on tree structure).



CART Optimization

Aim : compute efficiently argmin Z C[R] where P belongs to the

ReP
set of recursive dyadic partitions (associated to quadtree) of limited

depth.

Key observation : the optimal partition 73[7€] of a dyadic square is
o either this square, P[R] = {R}

o or the union of the opt. part. of its children, 73[72] = Unzech“d[R)ﬁ[R’]
with a decision based on

CRI< > Y. Cr

R’/e€Child(R) R”G’i)\[R’]

Algorithm : Precomputation of all C[R] then recursive determination

of P[R] and C[R] = > znep C[R"] (either C[R] or the sum of the
C of its children) with stopping as soon as the square has no child.

Non recursive version possible.



Unsupervised Segmentation

@ Numerical result taking into account the spatial modeling :
Without With

@ K =38, [Lx DAJX and optimal partition.
@ Penalty calibration by slope heuristic.
@ Dimension reduction by (not so naive) ACP...



Unsupervised Segmentation

@ Numerical result taking into account the spatial modeling :
Without With

@ K =38, [Lx DAJX and optimal partition.
@ Penalty calibration by slope heuristic.
@ Dimension reduction by (not so naive) ACP...



Segmentations




Stradivari’s Secret

@ Two fine layers of varnish :

@ a first simple oil layer, similar to the painter’s one, penetrating mildly the
wood,
@ a second layer made from a mixture of oil, pine resin and red pigments.

@ Classical technique up to the specific color choice.

@ Stradivari's secret was not his varnish !



Conclusion



Conclusion

@ Framework :

o
*]
o

Unsupervised segmentation problem.
Spatialized Gaussian Mixture Model
Penalized maximum likelihood conditional density estimation.

@ Results :

© 6 6 ¢

Theoretical guaranty for the conditional density estimation problem.
Direct application to the unsupervised segmentation problem.

Efficient minimization algorithm.

Unsupervised segmentation algorithm in between spectral methods and
spatial ones.

@ Perspectives :

(*]

Formal link between conditional density estimation and unsupervised
segmentation.

Penalty calibration by slope heuristic.

Dimension reduction adapted to unsupervised

segmentation /classification.

Enhanced Spatialized Gaussian Mixture Model with piecewise logistic
weights (L. Montuelle).



Theorem

Assumption (H) : For every model S, in the collection S, there is a non-decreasing function ¢ (d) such that
6 — $6m(3) is non-increasing on (0, +00) and for every o € RT and every s, € Sp,

/ Hipdon (6 Sm(5m: @) de < fm(0).
0
Assumption (K) : There is a family (xm)mea of non-negative number such that

Z e M <Y < 400
meM

Theorem

Assume we observe (X;, Y;) with unknown conditional sy. Let S = (Sm)mem a at most countable model
collection. Assume Assumptions (H), (K) and (S) hold.
Let s, be a ¢ -log-likelihood minimizer in Sy, :

i —In(sn(YilX0) < inf <é - In(sm(Yf\Xz))> +6

i=1

Then for any p € (0,1) and any Cy > 1, there are two constants ko and C, depending only on p and Cy such
that,
as soon as for every index m € M pen(m) > & (nafn + xm) with k > kg

1
where o, is the unique root of ~¢m(c) = v/no,
o
the penalized likelihood estimate 5=, with m defined by

N
M = argmin Y —In(3m(Yi|X;)) + pen(m)
mem =

by
satisfies B [JKLS"(s0,55)] < G gnf (s inf KL (s0,5m) + &:m)) + G+ %




Theorem

@ Oracle type inequality

+ Qo+

E [ JKLY" (50,35)| < G inf < inf  KL®"(s0, 5m) + T

pen(m)> Y 9
SmES \SmESm N

as soon as
pen(m) > k (Na,zn + xm) with K > Ko,

where No?2, measures the complexity of S, (entropy) and x,, a
coding cost within the collection (Kraft).

@ « Distances » used KL®" and JKLS" : « tensorized » Kullback
divergence and Jensen-Kullback divergence.

@ No?2, linked to the bracketing entropy of S,, measured with respect
to the tensorized Hellinger distance d?%n.



Kullback, Hellinger and
extensions

Typical model selection oracle inequality :

E [d%(s0,5;)] < C ( inf inf KL(so,Sm) +

pen(m)) c
+ =
meS smESm N

N
Density : Hellinger d?(s,s’) (or affinity) (Kolaczyk, Barron, Bigot).

Better result with JKL(s,s’) = 2KL(s, (s’ 4+ 5)/2) (Massart, van de
Geer).

Jensen-Kullback-Leibler : generalization to
JKLy(s,5') = LKL(s, ps' + (1 = p)s).
Prop. : For all probability measure sdA and td\ and all p € (0,1)

C, d3(s, t) < JKL,A(s, t) < KLx(s, t)

C,~1/5if p~1/2.



Conditional densities

@ Previous divergences should be adapted to the conditional density
framework :

o Divergence on the product density conditioned by the design (Kolaczyk,
Bigot).
@ Tensorization principle and expectancy on a similar phantom design :

Z KL (X7, 5/ C1X0) |

JKL, — JKLE"  and d2 — d*®n.

KL — KL®"(s,s")

@ Similar approaches but for Hellinger and JKL + Possibility to have
result with expectancy on the design.

@ Oracle inequality :

+ .

E [JKL®"(s0,55)] < C inf < inf KL®"(sp, 5m) + o

pen(m)) c’
meS \smESm N

@ Yield the classical density estimation theorem if s(:|X;) = s(-).



Penalization and complexity

@ Penalty linked to the complexity of the model and of the collection.
@ Complexity of the model S, (entropy) :
o Hpj,qen (€, Sm) bracketing entropy with respect to the tensorized Hellinger
distance (0% = Va2 = \[E [£ 30 d2(s(1X;), s'(-1X)))])-
o Assumption (H) : for every model S,,, there is a non decreasing function
¢m(8) such that § — }¢(0) is non increasing on (0, 400) and such that
for all 0 € RT and all s, € Sy,

/0 0 \/H[.],dm (6, Sm(m, 7)) de < bm(0),

o Complexity measured by No?2, where o, is the unique root of
1
gd)m(a) = VNo.
o Often No2, o dim(S,,)
@ Complexity of the collection (coding) :

o measured by x,, satisfying a Kraft inequality Z e <Y < 400
meS

@ Classical constraint on the penalty

pen(m) > k No?2 + Xm with Kk > Ko.
m



Spatialized Gaussian Mixture
Case

@ Computation of an upper bound of the bracketing entropy possible
(cf Maugis et Michel) implying :

No2, < (C' E (In (C’dlrlr\1l( m)>) )dim(Sm).

@ Collection coding with xm < K"|P| < £ d|m(5 )-
@ Constraint on the penalty :

pen(m) > ( (C’ 1( (C’dlr/r\1/( m)>) >+ Ejl>dim(5m)

> Xon|PI(K — 1) + Ay dim([u L D A]F)
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