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Hyperspectral Image
Segmentation

Data :
image of size N between ∼ 1000 and ∼ 100000 pixels,
spectrums S of ∼ 1024 points,
very good spatial resolution,
ability to measure a lot of spectrums per minute,

Immediate goal :
automatic image segmentation,
without human intervention,
help to data analysis.

Advanced goal :
automatic classification,
interpretation...



A “Toy” Problem

Representation : mapping between spectrums and points in a large
dimension space.
Spectral method.
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“Stochastic” Modelization

Model : Gaussian Mixture with K classes.
Mixture density :

sK ,π,µ,Σ(S) =
K∑
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“Statistical” Estimation

Estimation of πk , µ̂k and Σ̂k by maximum likelihood :

(π̂k , µ̂k , Σ̂k) = argmax
N∑

i=1
log sK ,(πk ,µk ,Σk )(Si )

Estimation of k̂(S) by maximum a posteriori (MAP) :
k̂(S) = argmax π̂k Nµk ,Σk (S)
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Gaussian Mixture Modelization

Stochastic modelization of the spectrums S :
existence of K classes of spectrums,
proportion πk for each class (

∑K
k=1 πk = 1),

Gaussian law Nµk ,Σk on each class (strong assumption !)
Density s0 of S close to

s(S) =
K∑

k=1
πk Nµk ,Σk (S).

Goal : estimate all parameters K , πk , µk , Σk from the data.
Why ? : give possibility to assign a class to each observation by MAP

k̂(S) = argmax πk Nµk ,Σk (S)

Result in term of density estimation...



Gaussian Mixture Model

Density s0 of S close to sm(S) =
K∑

k=1
πk Nµk ,Σk (S).

Model Sm = {sm} :
choice of a number of K ,
choice of a structure for the means µk and the covariance matrices
Σk = LkDkAkD′k

Model [µ LD A]K : constraints (known, common or free values...) on
the means µk , the volumes Lk , the diagonalization bases Dk and the
eigenvalues Ak .
Model Sm : parametric model of dimension
(K − 1) + dim([µ LD A]K ) in a space of dimension p.
Estimation by maximum likelihood of the parameters :
for each class, the mean µk and the covariance matrix Σk = LkDkAkD′k
the mixing proportions πk .

Classical technique available : EM Algorithm.



Maximum Likelihood and MM
“Maximum” likelihood for a given K :

(π̂k , µ̂k , Σ̂k) = argmin
N∑

i=1
− ln

( K∑
k=1

πk Nµk ,Σk (Si )

)
= argmin L(π, µ,Σ)

Function L rather complex !
Iterative algorithm (MM) :
Current estimate : (π(n), µ(n),Σ(n),
Construction of a Majorization L(n) of L such that

L(n)(π(n), µ(n),Σ(n)) = L(π(n), µ(n),Σ(n)).

and L(n) easy to minimize.
Computation of a Minimizer

(π(n+1), µ(n+1),Σ(n+1) = argmin L(n)(π, µ,Σ)

Very generic methodology...
Minimization can be replaced by a diminution...



Maximum Likelihood and EM
Back to L :

L(π, µ,Σ) =
N∑

i=1
− ln

( K∑
k=1

πk Nµk ,Σk (Si )

)
=

n∑
i=1

Li (π, µ,Σ)

EM : specific case of MM for this type of mixture,
(Conditional) Expectancy : at step n, we let

P i,(n)
k = P

(
ki = k

∣∣∣Si , π
(n), µ(n),Σ(n

)
=

π
(n)

k Nµ(n)

k ,Σ
(n)

k
(Si )∑K

k′=1
π

(n)

k′ Nµ(n)

k′
,Σ

(n)

k′
(Si )

and Li,(n)(π, µ,Σ) = −
n∑

k=1
P i,(n)

k ln (πk Nµk ,Σk (Si ))

Kullback : Li ≤ Li,(n) + Csti,(n) with equality at (π(n), µ(n),Σ(n).
Bonus :
Separability of Li,(n) in π and (µ,Σ) :

Li,(n)(π, µ,Σ) = −
K∑

k=1
P i,(n)

k ln (Nµk ,Σk (Si ))−
n∑

k=1
P i,(n)

k ln (πk)

Close formulas for the Minimization of L(n) in π and (µ,Σ) !
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Ockham’s Razor (simplicity principle) : one should not add
hypotheses, if the current ones are already sufficient !
Balance between observation explanation power and simplicity.
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Selection by Penalization

Likelihood −− + + + + + + +· + + ++

+
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Likelihood :
N∑

i=1
log ŝK (Xi ).

Simplicity : −λDim(SK ) (a lot of theory behind that).
Penalized estimator :

argmin−
N∑

i=1
log ŝK (Xi )︸ ︷︷ ︸
Likelihood

+λDim(SK )︸ ︷︷ ︸
Penalty

Optimization in K by exhaustive exploration !
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log ŝK (Xi ).

Simplicity : −λDim(SK ) (a lot of theory behind that).
Penalized estimator :

argmin−
N∑

i=1
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Model Selection
How to select the model Sm :
the number of classes K ,
the model [µ LD A]K ?

Penalized selection principle :
choice of model collection Sm = {sm} with m ∈ S,
estimation by maximum likelihood of a density sm for each model Sm,
selection of a model m̂ by

m̂ = argmin− ln(ŝm) + pen(m).

with pen(m) = κ(ln(n)) dim(Sm) (intrinsic dimension of Sm),
Results (Birgé, Massart, Celeux, Maugis, Michel...) :
theoretical for the density estimation : for κ large enough,

E
[
d2(s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL(s0, sm) +

pen(m)

n

)
+

C ′
n .

numerical for unsupervised classification ( 6= segmentation),
classification consistency if ln ln(n) in the penalties...



Back to our violins

Segmentation

Representation

Classification

Spatial Info.



Segmentation and Gaussian
Mixture

Initial goal : unsupervised segmentation 6= unsupervised
classification.
Take into account the spatial position x of the spectrums through
the mixing proportions (Kolaczyk et al) : conditional density model

s(S|x) =
K∑

k=1
πk(x)Nµk ,Σk (S).

Model mixing parametric and non-parametric setting...
Estimation from the data :
for each class, the mean µk and the covariance matrix Σk = LkDkAkD′k ,
the mixing proportions πk(x).
πk(x) function : regularization required.
Model selection principle...



Gaussian Mixture and
Hierarchical Partition

S0

S1

S2 S3

S4
S2

S3

S11 S12

S13 S14

S41

S43 S44

S11 S12 S13 S14 S41
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S421S421

S421S421
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S2

S3

S11 S12

S13 S14

S41 S42

S43 S44

S2S1

S3 S4

Etape 1 Etape 2 Etape 3 Arbre quaternaire

How to select the model Sm ? :
the number of classes K ,
the model [µ LD A]K ,
the mixing proportions structure of πk(x).

Simple structure : πk(x) =
∑
R∈P

πk [R]χ{x∈R} = πk [R(x)]

piecewise constant
on a hierarchical partition,
efficient optimization possible,
decent
approximation property.

dim(Sm) = |P|(K − 1) + dim([µ LD A]K ).
Penalty pen(m) = κ ln(n) dim(Sm) sufficient for
a theoretical control in term of conditional density estimation,
numerical optimization (EM + dynamic programming).



Conditional Densities
More general framework : observation of (Xi ,Yi ) with Xi
independent and Yi independents with law of density s0(y |Xi ).
Goal : estimation of s0(y |x).
Penalized model selection principle :
choice of a model collection Sm = {sm(y |x)} with m ∈ S,
estimation by max. likelihood of a cond. dens. ŝm for each model Sm :

ŝm = argmin
sm∈Sm

−
N∑

i=1
ln sm(Yi |Xi )

With pen(m) suitably design, selection of a model m̂ by

m̂ = argmin
m∈S

−
N∑

i=1
ln ŝm(Yi |Xi ) + pen(m).

Conditional density estimation type result :

E
[
d2(s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL(s0, sm) +

pen(m)

n

)
+

C ′
n .



Numerical optimization
Penalized Model Selection :

argmin
K ,[µ L D A]K ,µ,Σ,P,π

−
N∑

i=1
ln
( K∑

k=1
πk [R(xi )]Nµk ,Σk (Si )

)
+ λ0,N |P|(K − 1) + λ1,N dim([µ LD A]K )

Optimization on the number of classes K and the mean and
covariance structure by exhaustive exploration.
Model selection for a given number of classes K and a given
structure [µ LD A]K :

argmin
µ,Σ,P,π

−
N∑

i=1
ln
( K∑

k=1
πk [R(xi )]Nµk ,Σk (Si )

)
+ λ0,n|P|(K − 1)

Two tricks :
EM Algorithm
CART (dynamic programming)



EM Algorithm

E Step : with P i ,(n)
k = P(ki = k|xi ,Si ,P(n), π(n), µ(n),Σ(n)

−
N∑

i=1
ln
( K∑

k=1
πk [R(xi )]Nµk ,Σk (Si )

)
+ λ0,n|P|(K − 1)

≤ −
N∑

i=1

K∑
k=1

P i ,(n)
k ln (πk [R(xi )]) + λ0,N |P|(K − 1)

+

(
−

N∑
i=1

K∑
k=1

P i ,(n)
k ln (Nµk ,Σk (Si ))

)
+ Cst(n)

with equality at (P(n), π(n), µ(n),Σ(n).
M Step : Split optimization in (P, π) and (µ,Σ) possible,
Optimization in (µ,Σ) : close formulas (classical...).
Optimization in (P, π) more interesting !



M Step and CART

Optimization in (P, π) of

−
N∑

i=1

K∑
k=1

P i ,(n)
k ln (πk [R(xi )]) + λ0,n|P|(K − 1)

= −
∑
R∈P

 ∑
i |xi∈R

K∑
k=1

P i ,(n)
k ln (πk [R(xi )]) + λ0,N(K − 1)


Two key properties :
For each R, simple (classical) optimization of πk [R].
Additivity in R of the cost structure.
⇒ Fast optimization algorithm of CART type (Dynamic
programming on tree structure).



CART Optimization

Aim : compute efficiently argmin
P

∑
R∈P

C [R] where P belongs to the

set of recursive dyadic partitions (associated to quadtree) of limited
depth.
Key observation : the optimal partition P̂[R] of a dyadic square is
either this square, P̂[R] = {R}
or the union of the opt. part. of its children, P̂[R] = ∪R′∈Child[R)P̂[R′]

with a decision based on

C [R] ≤
∑

R′∈Child(R)

∑
R′′∈P̂[R′]

C [R′′]

Algorithm : Precomputation of all C [R] then recursive determination
of P̂[R] and Ĉ [R] =

∑
R′′∈P̂ C [R′′] (either C [R] or the sum of the

Ĉ of its children) with stopping as soon as the square has no child.
Non recursive version possible.



Unsupervised Segmentation
Numerical result taking into account the spatial modeling :

Without With

K = 8, [Lk D A]K and optimal partition.
Penalty calibration by slope heuristic.
Dimension reduction by (not so naive) ACP...
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Segmentations



Stradivari’s Secret

Two fine layers of varnish :
a first simple oil layer, similar to the painter’s one, penetrating mildly the
wood,
a second layer made from a mixture of oil, pine resin and red pigments.

Classical technique up to the specific color choice.
Stradivari’s secret was not his varnish !



Conclusion
Framework :
Unsupervised segmentation problem.
Spatialized Gaussian Mixture Model
Penalized maximum likelihood conditional density estimation.

Results :
Theoretical guaranty for the conditional density estimation problem.
Direct application to the unsupervised segmentation problem.
Efficient minimization algorithm.
Unsupervised segmentation algorithm in between spectral methods and
spatial ones.

Perspectives :
Formal link between conditional density estimation and unsupervised
segmentation.
Penalty calibration by slope heuristic.
Dimension reduction adapted to unsupervised
segmentation/classification.
Enhanced Spatialized Gaussian Mixture Model with piecewise logistic
weights (L. Montuelle).
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Theorem
Assumption (H) : For every model Sm in the collection S, there is a non-decreasing function φm(δ) such that
δ 7→ 1

δφm(δ) is non-increasing on (0,+∞) and for every σ ∈ R+ and every sm ∈ Sm∫ σ

0

√
H[·],d⊗n (ε, Sm(sm, σ)) dε ≤ φm(σ).

Assumption (K) : There is a family (xm)m∈M of non-negative number such that∑
m∈M

e−xm ≤ Σ < +∞

Theorem
Assume we observe (Xi ,Yi ) with unknown conditional s0. Let S = (Sm)m∈M a at most countable model
collection. Assume Assumptions (H), (K) and (S) hold.
Let ŝm be a δ -log-likelihood minimizer in Sm :

N∑
i=1
− ln(ŝm(Yi |Xi )) ≤ inf

sm∈Sm

( N∑
i=1
− ln(sm(Yi |Xi ))

)
+ δ

Then for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only on ρ and C1 such
that,
as soon as for every index m ∈M pen(m) ≥ κ

(
nσ2m + xm

)
with κ > κ0

where σm is the unique root of 1
σ
φm(σ) =

√
nσ,

the penalized likelihood estimate ŝm̂ with m̂ defined by

m̂ = argmin
m∈M

N∑
i=1
− ln(ŝm(Yi |Xi )) + pen(m)

satisfies E
[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

Sm∈S

(
inf

sm∈Sm
KL⊗n (s0, sm) +

pen(m)

n

)
+ C2

Σ

N +
δ

N .



Theorem

Oracle type inequality

E
[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

Sm∈S

(
inf

sm∈Sm
KL⊗n (s0, sm) +

pen(m)

N

)
+ C2

Σ

N +
δ

N
as soon as

pen(m) ≥ κ
(
Nσ2m + xm

)
with κ > κ0,

where Nσ2m measures the complexity of Sm (entropy) and xm a
coding cost within the collection (Kraft).
« Distances » used KL⊗n and JKL⊗n

ρ : « tensorized » Kullback
divergence and Jensen-Kullback divergence.
Nσ2m linked to the bracketing entropy of Sm measured with respect
to the tensorized Hellinger distance d2⊗n .



Kullback, Hellinger and
extensions

Typical model selection oracle inequality :

E
[
d2(s0, ŝm̂)

]
≤ C

(
inf

m∈S
inf

sm∈Sm
KL(s0, sm) +

pen(m)

N

)
+

C ′
N .

Density : Hellinger d2(s, s ′) (or affinity) (Kolaczyk, Barron, Bigot).
Better result with JKL(s, s ′) = 2KL(s, (s ′ + s)/2) (Massart, van de
Geer).
Jensen-Kullback-Leibler : generalization to
JKLρ(s, s ′) = 1

ρKL(s, ρs ′ + (1− ρ)s).
Prop. : For all probability measure sdλ and tdλ and all ρ ∈ (0, 1)

Cρ d2λ(s, t) ≤ JKLρ,λ(s, t) ≤ KLλ(s, t)

Cρ ' 1/5 if ρ ' 1/2.



Conditional densities
Previous divergences should be adapted to the conditional density
framework :
Divergence on the product density conditioned by the design (Kolaczyk,
Bigot).
Tensorization principle and expectancy on a similar phantom design :

KL→ KL⊗n (s, s ′) = E

[
1
N

N∑
i=1

KL (s(·|X ′i ), s ′(·|X ′i ))

]
,

JKLρ → JKL⊗n
ρ and d2 → d2⊗n .

Similar approaches but for Hellinger and JKL + Possibility to have
result with expectancy on the design.
Oracle inequality :

E
[
JKL⊗n (s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL⊗n (s0, sm) +

pen(m)

N

)
+

C ′
N .

Yield the classical density estimation theorem if s(·|Xi ) = s(·).



Penalization and complexity
Penalty linked to the complexity of the model and of the collection.
Complexity of the model Sm (entropy) :
H[·],d⊗n (ε,Sm) bracketing entropy with respect to the tensorized Hellinger
distance (d⊗n =

√
d2⊗n =

√
E
[ 1

N
∑

d2(s(·|Xi ), s ′(·|Xi ))
]
).

Assumption (H) : for every model Sm, there is a non decreasing function
φm(δ) such that δ 7→ 1

δφm(δ) is non increasing on (0,+∞) and such that
for all σ ∈ R+ and all sm ∈ Sm∫ σ

0

√
H[·],d⊗n (ε,Sm(sm, σ)) dε ≤ φm(σ),

Complexity measured by Nσ2m where σm is the unique root of
1
σ
φm(σ) =

√
Nσ.

Often Nσ2m ∝ dim(Sm)
Complexity of the collection (coding) :
measured by xm satisfying a Kraft inequality

∑
m∈S

e−xm ≤ Σ < +∞

Classical constraint on the penalty

pen(m) ≥ κ
(
Nσ2m + xm

)
with κ > κ0.



Spatialized Gaussian Mixture
Case

Computation of an upper bound of the bracketing entropy possible
(cf Maugis et Michel) implying :

Nσ2m ≤ κ′
(
C ′ + 1

2

(
ln
( N
C ′ dim(Sm)

))
+

)
dim(Sm).

Collection coding with xm ≤ κ′′|P| ≤ κ′′

K−1 dim(Sm).
Constraint on the penalty :

pen(m) ≥
(
κ′
(
C ′ + 1

2

(
ln
( N
C ′ dim(Sm)

))
+

)
+

κ′′

K − 1

)
dim(Sm)

≥ λ0,N |P|(K − 1) + λ1,N dim([µ LD A]K )
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