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Motivations

® ReCOnStFUCtIOI’lS Wlth Sharp corners De Goes-Cohen-Steiner-Alliez-Desbrun (SGP '11)
and boundaries.
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Given a point sample, reconstruct the underlying object as a sub-
graph of a triangulation minimizing an energy related to OT.
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® ReconStrUCtlonS Wlth Sharp corners De Goes-Cohen-Steiner-Alliez-Desbrun (SGP '11)
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Given a point sample, reconstruct the underlying object as a sub-
graph of a triangulation minimizing an energy related to OT.

Main ingredient for a 3D version: compute the L?
optimal transport between the uniform measures v on
N points in the plane and 1 on a triangle.



Motivations

e Distance between grayscale images
representing a density.
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Motivations

e Distance between grayscale images
representing a density.
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Meaningful distances between such images can be of the form:

E(p,0) =minr [ ||z — T(2)||?p(z) d x 4+ Eregu(T) where Tiup = o.
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representing a density.
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Transport plan: a matrix (7;;) satisfiying > . T;; = o; and Zj Ti; = Bi.
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Source measure u Target measure v
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Transport plan: a matrix (7;;) satisfiying > . T;; = o; and Zj Ti; = Bi.

Cost: c(T) = Z” Tinqu: —pj”Q-

Wasserstein: W (u, v) := (ming ¢(T))/?
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Source measure u Target measure v
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[.> Optimal Transport

Source measure u Target measure v

Transport plan: a map T : Q — {p;} such that u(T(p;)) = ;.



[.> Optimal Transport

Source measure u Target measure v

Transport plan: a map T : Q — {p;} such that u(T(p;)) = ;.
Cost: ¢(T) = [, ||z —T(z)||*dx

Wasserstein: W (u, v) := (ming c(T))/?



[.> Optimal Transport

Source measure u Target measure v

Transport plan: a map 7' : 2 — Q' such that det(dT'(z)) = g(T'(x))/f(x).
Cost: ¢(T) = [, ||z —T(z)||*dx

Wasserstein: W (u, v) := (ming c(T))/?
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[.2 Optimal Transport

........................................ o General a4, §5: linear programming

.................. 0 For a?,?ﬁj p— 1 and p17QJ S Zd:

PY PY b Hungarian algorithm, Bertsekas 'auction’ algorithm

Source with density, discrete target:

Aurenhammer, Hoffmann, Aronov '98

McCann, Gangbo 98

Smooth f, g with positive lower bound:

Benamou-Brenier '00

Loeper '05

Angenent-Haker-Tannenbaum '03



1. Optimal Transport via Convex Programming



Power Diagrams and Optimal Transport

P C R4
w:P—R o Transport map:

Tg(x) == argminpep ||z — pl|* + w(p)
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Power Diagrams and Optimal Transport

P CR¢
w: P —R o Trans

Ip
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port map:

(z) := argmin,ep ||z — pl|? + w(p)

Power cell of p:
g, Vor(p) := {z € R% T%(z) = p)
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Power Diagrams and Optimal Transport

P C R
w: P —R ~© Transport map:

Tg(x) == argminpep ||z — pl|* + w(p)

Power cell of p:
o Vorp(p) := {z € R%; T (x) = p}

Lemma: Given a measure p with density and (P, w), the
map 15 is an optimal transport between 1 and

vi=>Y p(Vorp(p))s,  (ie. v="Tg,pu)

peP



Power Diagrams and Optimal Transport

P C R4
w:P—R o Transport map:

Tg(x) == argminpep ||z — pl|* + w(p)

Power cell of p:
g, Vor(p) := {z € R% T%(z) = p)

Theorem: Given a measure u with density and a discrete
measure v = ), p a0y, there exists w: P — R s.t.

Vp € P, a, = u(Vorp(p)) (ile. v=Tp,pn)

Aurenhammer, Hoffman, Aronov '94 Brenier '92



Optimal Transport via Convex Programming

Kantorovich Duality: Given two probability measure pu, v

Wassa (4, v) = max / v(z)dp(z) — / w(p) dv(p)

Rd

where v, w are such that v(z) — w(p) < ||z — pl?.
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Optimal Transport via Convex Programming

Kantorovich Duality: Given two probability measure pu, v

Wassa(n,v) = max [ min(la—pl+w(p) du(o)~ [ w(p) dv(p)

Discrete case: p with density and v =) p a0y,

() =~ pep Fyorgnlll — PP + 0] dju(z) + 3pep apw(p)

Wasss (i, ¥) = min,, ®(w)

Gradient: ®(w +eh) — ®(w) =), p h(p) (u(Vorp(p)) —ap)e + OI(IgZ)
|.e. VCI)(w) — (Oép — ,u(Vor}f-’, (p)))pEP changes in Power cells

V®(w) is actually a subgradient, i.e. the function ® is convex




Implementation of Convex Programming

1. Computation of ® and V: fsmvor;g(p) flz)dx

12
mevor;g(p) |z —plI*f(z)dx



Implementation of Convex Programmin

1. Computation of ® and V: fsmvor;g(p) flz)dx

12
mevor;g(p) |z —plI*f(z)dx

f=1: Power diagram, Fast intersection of polygons
CGAL O’'Rourke, Chien, Olson, Naddor '82
J = grayscale image: Piecewise constant on pixels

Modification of Bresenham al-
gorithm to compute exact
pixel coverage



Implementation of Convex Programming

1. Computation of ® and V: fsmvor;g(p) flz)dx

12
mevor;g(p) |z —plI*f(z)dx

2. lterative unconstrained convex programming:

e Choice of an initial weight vector, e.g. wq(p) := 0 for all p.



Implementation of Convex Programming

1. Computation of ® and V: fsmvor;g(p) flz)dx

12
mevor;g(p) |z —plI*f(z)dx

2. lterative unconstrained convex programming:

e Choice of an initial weight vector, e.g. wq(p) := 0 for all p.

e Computation of descent direction dj

steepest descent —V®(wy), Newton —[D?*®(wz)] ' (V®(x1)), quasi-Newton.

L-BFGS: low-storage version of the BFGS quasi-Newton scheme



Implementation of Convex Programming

1. Computation of ® and V: fsmvor;g(p) flz)dx

12
mevor;g(p) |z —plI*f(z)dx

2. lterative unconstrained convex programming:

e Choice of an initial weight vector, e.g. wq(p) := 0 for all p.

e Computation of descent direction dj

e Computation of time step sy

optimal s = argmins ®(wy + sdi), fixed s = cst

in practice: backtracking line-search (e.g. Wolfe condition)
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|wy — wSOIHOO at step k
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Comparison of Convex Optimization Methods

Steepest descent vs quasi-Newton

—— Steepest descent / fixed step

- Steepest descent / strong Wolfe
— L-BFGS / strong Wolfe

- L-BFGS / Moré-Thuenté
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Comparison of Convex Optimization Methods
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Comparison of Convex Optimization Methods
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2. Multiscale approach



An Approximation Theorem

Proposition: Suppose the following:

e [, probability with density f > m > 0 on a bounded
connected domain {2 with piecewise smooth boundary.

e (1,) and v, are are supported on finite sets P, C €2,
and|lim Wy(v,,, Vo) = 0.

Let w,, be weights that solve OT between i and v,,. Then,




An Approximation Theorem

Proposition: Suppose the following:

e [, probability with density f > m > 0 on a bounded
connected domain {2 with piecewise smooth boundary.

e (1,) and v, are are supported on finite sets P, C €2,
and|lim Wy(v,,, Vo) = 0.

Let w,, be weights that solve OT between i and v,,. Then,

e Weights are defined up to an additive constant.

e Open question: a quantitative version of this theorem.



An Approximation Theorem — Sketch of Proof




An Approximation Theorem — Sketch of Proof

Convex potential: ¢ (x) = ||z]|* — min,ep(||z — p||* — w(p))
= max,ep(z|p) + 3 (w(p) — [|p|*)
Vop(r) =T¢

Zero-mean: we assume w.l.0.g. that [, ¢§(z)dp(x) =0
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Zero-mean Convex potential: V¢, =T, and [, ¢, (2)f(z)dp(z) = 0.

e By stability of optimal transport plans, lim |1, — T ||1.2(,) = 0.
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Zero-mean Convex potential: V¢, =T, and [, ¢, (2)f(z)dp(z) = 0.

e By stability of optimal transport plans, lim |1, — T ||1.2(,) = 0.

e By Poincaré inequality (assumptions on §2 and f),

|®]|L2(p) < cst x || Vllrz2¢,) provided that / ¢(x)d p(x) = 0.
Q
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An Approximation Theorem — Sketch of Proof

Zero-mean Convex potential: V¢, =T, and [, ¢, (2)f(z)dp(z) = 0.

e By stability of optimal transport plans, lim |1, — T ||1.2(,) = 0.

o By Poincaré inequality: ||¢y, — ¢oollL2(n) < cst x [T, — Tio |-

e Since ¢, and ¢, are Lipschitz, lim ||¢,, — oo |10 () = 0.

With a bit more work, this result implies the conclusion of the theorem.



Two-scale Approach for Optimization

Goal: Given a measure p with density, and v supported on P, |P| = N,

minimise ® : w — ...
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Two-scale Approach for Optimization

Goal: Given a measure p with density, and v supported on P, |P| = N,

minimise ® : w — ...

Approach: e Replace v by ¥ supported on P, |P| = n < N points.
v =argmin{Ws(v,0); |spt(v)| < n}

e KL
I




Two-scale Approach for Optimization

Goal: Given a measure p with density, and v supported on P, |P| = N,

minimise ® : w — ...

Approach: e Replace v by ¥ supported on P, |P| = n < N points.
v =argmin{Ws(v,0); |spt(v)| < n}

k-means / Lloyd’s algorithm (local minimum)

e KL
I




Two-scale Approach for Optimization

Goal: Given a measure p with density, and v supported on P, |P| = N,

minimise ¢ : w — ...
Approach: e Replace v by ¥ supported on P, |P| = n < N points.
v =argmin{Ws(v,0); |spt(v)| < n}

e Solve the OT from p to ¥, constructing w : P — R.

Ny
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Goal: Given a measure p with density, and v supported on P, |P| = N,

minimise ® : w — ...

Approach: e Replace v by ¥ supported on P, |P| = n < N points.
v =argmin{Ws(v,v); |spt(v)| < n}
e Solve the OT from p to ¥, constructing w : P — R.

e Minimize ® starting from wg : p € P — w(NNa(p)).
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Two-scale Approach for Optimization

Goal: Given a measure p with density, and v supported on P, |P| = N,

minimise ® : w — ...

Approach: e Replace v by ¥ supported on P, |P| = n < N points.
-V = argmin{Ws(v,7); |spt(v)| < n}

e Solve the OT from p to ¥, constructing w : P — R.

e Minimize ® starting from wg : p € P — w(NNa(p)).

4

lim W (1, V) = 0

limp, =p € Py, — limw. (p) = lim w,, (pn )




Summary of the multiscale-scale algorithm

Input: a measure 1 with density and a discrete measure v on R?.

e Compute a sequence of discretizations of the target measure:
Vo i=1,...,vr, s.t. vp is supported Py, with Nk~*¢ points.
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Summary of the multiscale-scale algorithm

Input: a measure 1 with density and a discrete measure v on R?.

e Compute a sequence of discretizations of the target measure:
Vo i=1,...,vr, s.t. vp is supported Py, with Nk~*¢ points.

e Solve OT from pu to vy, starting with wy, := 0.

e Solve OT from p to vy starting from wy(p) := wy11(NNp,(p)).

Remark: If the target measure is not discrete, one can obtain a first
discretisation by an application of Lloyd's algorithm.



3. Experiments



Multiscale vs Original — Convergence Speed
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Multiscale vs Original — Convergence Speed

|wy, — wSOIHOO at time t

t = Os t = 30s t = 60s
I\|\ | | 1000 Source
\ - Speedup
- source/target | original | multiscale | speedup
%U / UlOOOO 577s 143s 4.0
U / Uioooo | 1180s 189s 6.2
%U / U10000 1844s 241s 7.0
U / LlOOOO 216s 52s 4.1
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256

aU = uniform on [0, o x 512]?

L = standard grayscale "Lena"” picture

sampling of D (Lloyd)

D = optimal

3k Lloyd sampling of Lena
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sampling of Lena

| 1000

100

\\ 0.1
0.01




Multiscale vs Original — Wasserstein

t = Os t = 10s t = 20s
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Some Pictures of Optimal Transport Plans

Source: picture " Cameraman”
Target: Lloyd sampling of picture " Peppers’ (k = 625)

"Displacement interpolation”
McCann '97

The mass of Dirac at p is spread onto Vorp(p)
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Some Pictures of Optimal Transport Plans

Source: picture " Cameraman”
Target: Lloyd sampling of picture " Peppers’ (k = 625)

"Displacement interpolation”
McCann '97

The mass of Dirac at p is spread onto Vorp(p)

W = wsol . %wso

]



Some Pictures of Optimal Transport Plans

Source: picture " Cameraman”
Target: Lloyd sampling of picture " Peppers’ (k = 625)

"Displacement interpolation”
McCann '97

The mass of Dirac at p is spread onto Vorp(p)

w =70



Some Pictures of Optimal Transport Plans

k =625




Some Pictures of Optimal Transport Plans

k =625

k = 15000



4. Assignment problem

ongoing work with Edouard Oudet



[2 Assignment Problem

Problem: Given P,Q C R with |P| = |Q| = N,

find one-to-one o : Q — P minimizing >_ _1l¢ — o(q)|*.
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[2 Assignment Problem

Problem: Given P,Q C R with |P| = |Q| = N,

find one-to-one o : Q — P minimizing >_ _1l¢ — o(q)|*.

— minimising ¥(v,w) = — quQ v(q) + Zpep w(p)

under the constraint v(q) — w(p) < ||p — C]Hz

= minimising @(w) = — Y, o mingep([lg — pl* + w(p) + e p w(p)

Dual formulation yields a non-smooth convex function

® is smooth at w <= min,cp(||qg — p||* + w(p)) is unique for every ¢ € Q




[ 2 Assignment Problem: A useful trick

Problem: min. ®(w) = =3 cominep(llg — pl* + w(p)) + 2 ,cp w(p)

e Suppose that w > 0 (P is invariant to shifts of w by a constant),

minyep(|lg - pl2 +w(p) = mingep [[(,0) — (p, /w(P))lga+s
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e kD-tree: A data-structure for finding nearest neighbors.

Build time: O(N log N)
Query t|me O(log N) (for uniformly distributed points)



[ 2 Assignment Problem: A useful trick

Problem: min. ®(w) = -3 ,minyep(|lg—p|* +w(p)) + > ,cpwp)
e Suppose that w > 0 (P is invariant to shifts of w by a constant),

minyep(|lg - pl2 +w(p) = mingep [[(,0) — (p, /w(P))lga+s

e kD-tree: A data-structure for finding nearest neighbors.

Build time: O(N log N)
Query t|me O(log N) (for uniformly distributed points)

— Efficient evaluation of ®(w), V®(w) and 0®(w) (equality cases)
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Auction is an iterative algorithm of time complexity O(N? + C'log N)
where C' = max ||p; — ¢;||*. All distances need to be integers.
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P,Q C R% while keeping C' small (e.g. concentration).
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Auction is an iterative algorithm of time complexity O(N? + C'log N)
where C' = max ||p; — ¢;||*. All distances need to be integers.

e |t is not clear how to correctly “floor” the two point sets
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Auction is an iterative algorithm of time complexity O(N? + C'log N)
where C' = max ||p; — ¢;||*. All distances need to be integers.

e |t is not clear how to correctly “floor” the two point sets
P,Q C R% while keeping C' small (e.g. concentration).

e Auction uses only 2 nearest neighbor, i.e. only first order
information about ®.

e [he algorithm does not build the dual variable w. Hence, it
Is not possible to use LP in the final phase.

Many improvements since Bertsekas' original Auction algorithm. We use
the fastest to date: Bus-Tvrdik '11
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LBFGS is a quasi-Newton algorithm to compute the minimum of
smooth functions.

e Many authors have observed the good behaviour of LBFGS

methods in minimizing non-smooth functions.
e.g. Lewis-Overton ('10)

o LBFGS copes well with the non-smoothness of ® at the
beginning. However, it becomes eventually not possible to
find a good descent direction.

e Proposal: when this happens, turn to a local linearization
of ¥ and use a LP solver.
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Local linearization: we replace the NV x N constraints of the dual
program by k X N constraints + box constraints.

V(v,w) == cqovla)+ ). epw(D)
under the constraint v(q) — w(p) < ||p — g

Given wop : P — R and q € @), define p;(q) (1 <7 < N) by

lg — p1(@)|I> + wo(p1(q) < ... < |lg — pn()||> + wo(pn(q))

Set w = wg+9. If ||§|| < dg, the nearest neighbor for w remains among
the first k£ ones for wy, i.e.

¥p,q, v(q) —w(p) < |lp—ql?
cm—

Vg,V1 <i <k, v(q) —w(pi(q)) < llpi(q) —¢l*> and [|6]] < o
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Running time in seconds of Auction (blue) vs LBFGS and linearisation (green)
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Data: P is a random sample of N points in the cube
[0,10°]° NZ?, Q is obtained from a mixture of 15 isotropic
Gaussian distributions for N = 1k, ..., 20k.
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e Dependency of convergence speed on the "geometry” of u
and v, i.e. quantitative stability theorem for OT plans 7

e Theory when both measures are discrete ? Complexity 7

Other applications of the multiscale approach:

e Minkowski's problem: designing a convex polyhedron with
given facets normals and areas.

e Design of reflector antennas with prescribed far-field image.

C++ code: http://quentin.mrgt.fr/

Thank you for your attention!



