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Motivations

De Goes-Cohen-Steiner-Alliez-Desbrun (SGP ’11)• Reconstructions with sharp corners
and boundaries.

Given a point sample, reconstruct the underlying object as a sub-
graph of a triangulation minimizing an energy related to OT.
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De Goes-Cohen-Steiner-Alliez-Desbrun (SGP ’11)• Reconstructions with sharp corners
and boundaries.

Given a point sample, reconstruct the underlying object as a sub-
graph of a triangulation minimizing an energy related to OT.

Main ingredient for a 3D version: compute the L2

optimal transport between the uniform measures ν on
N points in the plane and µ on a triangle.
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• Distance between grayscale images
representing a density.

Meaningful distances between such images can be of the form:

E(ρ, σ) = minT
∫
‖x− T (x)‖2ρ(x) dx+ Eregu(T ) where T#ρ = σ.
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L2 Optimal Transport

(α1, q1)
(β1, p1)

(β2, p2)

(β3, p3)

(β4, p4)

Transport plan: a matrix (Tij) satisfiying
∑
i Tij = αi and

∑
j Tij = βi.

T11

T12

Source measure µ Target measure ν

Cost: c(T ) =
∑
i,j Tij‖qi − pj‖2.

T13

T14

Wasserstein: W2(µ, ν) := (minT c(T ))1/2
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(βi, pi)

Transport plan: a map T : Ω→ {pi} such that µ(T−1(pi)) = βi.

Source measure µ Target measure ν

f ≥ 0

Ω

µ(A) =
∫

Ω∩A f(x) dx

T−1(pi)

Cost: c(T ) =
∫

Ω
‖x− T (x)‖2 dx.
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L2 Optimal Transport
Source measure µ Target measure ν

f ≥ 0

Ω

g ≥ 0

Ω′

T

Transport plan: a map T : Ω→ Ω′ such that det(dT (x)) = g(T (x))/f(x).

Cost: c(T ) =
∫

Ω
‖x− T (x)‖2 dx.

Wasserstein: W2(µ, ν) := (minT c(T ))1/2
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L2 Optimal Transport

Smooth f, g with positive lower bound:

For αi, βj = 1 and pi, qj ∈ Zd:
Hungarian algorithm, Bertsekas ’auction’ algorithm

linear programming

Benamou-Brenier ’00

Loeper ’05

Angenent-Haker-Tannenbaum ’03

General αi, βj :

Source with density, discrete target:
Aurenhammer, Hoffmann, Aronov ’98

McCann, Gangbo 98



1. Optimal Transport via Convex Programming
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p

Power cell of p:

P ⊆ Rd
w : P → R

VorwP (p) := {x ∈ Rd; TwP (x) = p}

Transport map:

TwP (x) := arg minp∈P ‖x− p‖2 + w(p)

Lemma: Given a measure µ with density and (P,w), the
map TwP is an optimal transport between µ and

ν :=
∑
p∈P

µ(VorwP (p))δp (i.e. ν = TwP#µ)



Power Diagrams and Optimal Transport

p

Power cell of p:

P ⊆ Rd
w : P → R

VorwP (p) := {x ∈ Rd; TwP (x) = p}

Transport map:

TwP (x) := arg minp∈P ‖x− p‖2 + w(p)

Theorem: Given a measure µ with density and a discrete
measure ν =

∑
p∈P αpδp, there exists w : P → R s.t.

∀p ∈ P, αp = µ(VorwP (p)) (i.e. ν = TwP#µ)

Aurenhammer, Hoffman, Aronov ’94 Brenier ’92



Optimal Transport via Convex Programming

Kantorovich Duality: Given two probability measure µ, ν

Wass2(µ, ν) = max
Rd

∫
v(x) dµ(x)−

∫
w(p) d ν(p)

where v, w are such that v(x)− w(p) ≤ ‖x− p‖2.
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Optimal Transport via Convex Programming

Kantorovich Duality: Given two probability measure µ, ν

Wass2(µ, ν) = max
Rd

∫
min
p

(‖x−p‖2+w(p)) dµ(x)−
∫
w(p) d ν(p).

Discrete case: µ with density and ν =
∑
p∈P αpδp,

Φ(w) := −
∑
p∈P

∫
VorwP (p)

[‖x− p‖2 + w(p)] dµ(x) +
∑
p∈P αpw(p)

Gradient: Φ(w + εh)− Φ(w) =
∑
p∈P h(p) (µ(VorwP (p))− αp) ε+ O(ε2)

I.e. ∇Φ(w) = (αp − µ(VorwP (p)))p∈P changes in Power cells

Wass2(µ, ν) = minw Φ(w)

=

∇Φ(w) is actually a subgradient, i.e. the function Φ is convex
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Implementation of Convex Programming

1. Computation of Φ and ∇Φ:
∫

Ω∩VorwP (p)
f(x) dx∫

Ω∩VorwP (p)
‖x− p‖2f(x) dx

f = 1:
O’Rourke, Chien, Olson, Naddor ’82

f = grayscale image:

Power diagram, Fast intersection of polygons
CGAL

Piecewise constant on pixels

Modification of Bresenham al-
gorithm to compute exact
pixel coverage



Implementation of Convex Programming

1. Computation of Φ and ∇Φ:
∫

Ω∩VorwP (p)
f(x) dx∫

Ω∩VorwP (p)
‖x− p‖2f(x) dx

2. Iterative unconstrained convex programming:
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∫

Ω∩VorwP (p)
f(x) dx∫

Ω∩VorwP (p)
‖x− p‖2f(x) dx

2. Iterative unconstrained convex programming:

• Computation of descent direction dk

steepest descent −∇Φ(wk), Newton −[D2Φ(wk)]−1(∇Φ(xk)), quasi-Newton.

L-BFGS: low-storage version of the BFGS quasi-Newton scheme

• Choice of an initial weight vector, e.g. w0(p) := 0 for all p.
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Ω∩VorwP (p)
‖x− p‖2f(x) dx

2. Iterative unconstrained convex programming:

• Computation of descent direction dk

• Computation of time step sk

optimal sk = arg mins Φ(wk + sdk), fixed sk = cst

in practice: backtracking line-search (e.g. Wolfe condition)

• Choice of an initial weight vector, e.g. w0(p) := 0 for all p.
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Implementation of Convex Programming

1. Computation of Φ and ∇Φ:
∫

Ω∩VorwP (p)
f(x) dx∫

Ω∩VorwP (p)
‖x− p‖2f(x) dx

2. Iterative unconstrained convex programming:

• Computation of descent direction dk

• Computation of time step sk

• wk+1 = wk + skdk

• Choice of an initial weight vector, e.g. w0(p) := 0 for all p.
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2. Multiscale approach



An Approximation Theorem

Proposition: Suppose the following:

• µ probability with density f ≥ m > 0 on a bounded
connected domain Ω with piecewise smooth boundary.

• (νn) and ν∞ are are supported on finite sets Pn ⊆ Ω,
and lim W2(νn, ν∞) = 0.

Let wn be weights that solve OT between µ and νn. Then,

∀pn ∈ Pn, lim pn = p ∈ P∞ =⇒ w∞(p) = limwn(pn)



An Approximation Theorem

Proposition: Suppose the following:

• µ probability with density f ≥ m > 0 on a bounded
connected domain Ω with piecewise smooth boundary.

• (νn) and ν∞ are are supported on finite sets Pn ⊆ Ω,
and lim W2(νn, ν∞) = 0.

Let wn be weights that solve OT between µ and νn. Then,

∀pn ∈ Pn, lim pn = p ∈ P∞ =⇒ w∞(p) = limwn(pn)

• Open question: a quantitative version of this theorem.

• Weights are defined up to an additive constant.
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An Approximation Theorem – Sketch of Proof

Proposition: Suppose [...] lim W2(νn, ν∞) = 0. Then,

∀pn ∈ Pn, lim pn = p ∈ P∞ =⇒ w∞(p) = limwn(pn)

Convex potential: φwP (x) = ‖x‖2 −minp∈P (‖x− p‖2 − w(p))

= maxp∈P 〈x|p〉+ 1
2 (w(p)− ‖p‖2)

∇φwP (x) = TwS

Zero-mean: we assume w.l.o.g. that
∫

Ω
φwS (x) dµ(x) = 0
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• By stability of optimal transport plans, lim ‖Tn − T∞‖L2(µ) = 0.



An Approximation Theorem – Sketch of Proof

Proposition: Suppose [...] lim W2(νn, ν∞) = 0. Then,

∀pn ∈ Pn, lim pn = p ∈ P∞ =⇒ w∞(p) = limwn(pn)

Zero-mean Convex potential: ∇φn = Tn and
∫

Ω
φn(x)f(x) dµ(x) = 0.

• By stability of optimal transport plans, lim ‖Tn − T∞‖L2(µ) = 0.

• By Poincaré inequality (assumptions on Ω and f),

‖φ‖L2(µ) ≤ cst×‖∇φ‖L2(µ) provided that

∫
Ω

φ(x) dµ(x) = 0.
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• By Poincaré inequality: ‖φn − φ∞‖L2(µ) ≤ cst× ‖Tn − T∞‖.
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An Approximation Theorem – Sketch of Proof

Proposition: Suppose [...] lim W2(νn, ν∞) = 0. Then,

∀pn ∈ Pn, lim pn = p ∈ P∞ =⇒ w∞(p) = limwn(pn)

Zero-mean Convex potential: ∇φn = Tn and
∫

Ω
φn(x)f(x) dµ(x) = 0.

• By stability of optimal transport plans, lim ‖Tn − T∞‖L2(µ) = 0.

• By Poincaré inequality: ‖φn − φ∞‖L2(µ) ≤ cst× ‖Tn − T∞‖.

• Since φn and φ∞ are Lipschitz, lim ‖φn − φ∞‖L∞(Ω) = 0.

With a bit more work, this result implies the conclusion of the theorem.
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Approach:

Given a measure µ with density, and ν supported on P , |P | = N ,Goal:
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• Replace ν by ν̄ supported on P̄ , |P̄ | = n� N points.

ν̄ = arg min{W2(ν, ν̄); |spt(ν̄)| ≤ n}

f ≥ 0

Ω
ν ν̄

k-means / Lloyd’s algorithm (local minimum)
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Approach:

Given a measure µ with density, and ν supported on P , |P | = N ,Goal:

minimise Φ : w 7→ ...

• Replace ν by ν̄ supported on P̄ , |P̄ | = n� N points.

ν̄ = arg min{W2(ν, ν̄); |spt(ν̄)| ≤ n}

• Solve the OT from µ to ν̄, constructing w̄ : P̄ → R.

f ≥ 0

Ω
ν ν̄

• Minimize Φ starting from w0 : p ∈ P 7→ w̄(NNP̄ (p)).

w̄(NNP̄ (p))

w0(p)



Two-scale Approach for Optimization

Approach:

Given a measure µ with density, and ν supported on P , |P | = N ,Goal:

minimise Φ : w 7→ ...

• Replace ν by ν̄ supported on P̄ , |P̄ | = n� N points.

ν̄ = arg min{W2(ν, ν̄); |spt(ν̄)| ≤ n}

• Solve the OT from µ to ν̄, constructing w̄ : P̄ → R.

• Minimize Φ starting from w0 : p ∈ P 7→ w̄(NNP̄ (p)).

lim W2(νn, ν∞) = 0

lim pn = p ∈ P∞ =⇒ limw∞(p) = limwn(pn)



Summary of the multiscale-scale algorithm

• Compute a sequence of discretizations of the target measure:
ν0 := ν, . . . , νL, s.t. ν` is supported P` with Nk−` points.

Input: a measure µ with density and a discrete measure ν on R2.
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Input: a measure µ with density and a discrete measure ν on R2.



Summary of the multiscale-scale algorithm

• Compute a sequence of discretizations of the target measure:
ν0 := ν, . . . , νL, s.t. ν` is supported P` with Nk−` points.

• Solve OT from µ to νL starting with wL := 0.

• Solve OT from µ to ν` starting from w`(p) := w`+1(NNP`(p)).

. . .

Input: a measure µ with density and a discrete measure ν on R2.



Summary of the multiscale-scale algorithm

• Compute a sequence of discretizations of the target measure:
ν0 := ν, . . . , νL, s.t. ν` is supported P` with Nk−` points.

• Solve OT from µ to νL starting with wL := 0.

• Solve OT from µ to ν` starting from w`(p) := w`+1(NNP`(p)).

. . .

Remark: If the target measure is not discrete, one can obtain a first
discretisation by an application of Lloyd’s algorithm.

Input: a measure µ with density and a discrete measure ν on R2.



3. Experiments
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source/target original multiscale speedup
1
2
U / U10000 577s 143s 4.0

1
4
U / U10000 1180s 189s 6.2

1
8
U / U10000 1844s 241s 7.6

U / L10000 216s 52s 4.1

Speedup

αU = uniform on [0, α× 512]2

L = standard grayscale ”Lena” picture

Dk = optimal sampling of D (Lloyd)



Multiscale vs Original — Wasserstein
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Some Pictures of Optimal Transport Plans

w = wsol

The mass of Dirac at p is spread onto VorwP (p)

Source: picture ”Cameraman”
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Some Pictures of Optimal Transport Plans

The mass of Dirac at p is spread onto VorwP (p)

Source: picture ”Cameraman”
Target: Lloyd sampling of picture ”Peppers” (k = 625)

w = 0

McCann ’97

”Displacement interpolation”
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k = 625

k = 15000



4. Assignment problem
ongoing work with Édouard Oudet



L2 Assignment Problem

Given P,Q ⊆ Rd with |P | = |Q| = N ,Problem:

find one-to-one σ : Q→ P minimizing
∑
q∈Q ‖q − σ(q)‖2.



L2 Assignment Problem

Given P,Q ⊆ Rd with |P | = |Q| = N ,Problem:

find one-to-one σ : Q→ P minimizing
∑
q∈Q ‖q − σ(q)‖2.

⇐⇒ minimising Ψ(v, w) = −
∑
q∈Q v(q) +

∑
p∈P w(p)

under the constraint v(q)− w(p) ≤ ‖p− q‖2



L2 Assignment Problem

Given P,Q ⊆ Rd with |P | = |Q| = N ,Problem:

find one-to-one σ : Q→ P minimizing
∑
q∈Q ‖q − σ(q)‖2.

⇐⇒

minimising Φ(w) = −
∑
q∈Q minp∈P (‖q − p‖2 + w(p)) +

∑
p∈P w(p)

minimising Ψ(v, w) = −
∑
q∈Q v(q) +

∑
p∈P w(p)

under the constraint v(q)− w(p) ≤ ‖p− q‖2

⇐⇒



L2 Assignment Problem

Given P,Q ⊆ Rd with |P | = |Q| = N ,Problem:

find one-to-one σ : Q→ P minimizing
∑
q∈Q ‖q − σ(q)‖2.

⇐⇒

minimising Φ(w) = −
∑
q∈Q minp∈P (‖q − p‖2 + w(p)) +

∑
p∈P w(p)

minimising Ψ(v, w) = −
∑
q∈Q v(q) +

∑
p∈P w(p)

under the constraint v(q)− w(p) ≤ ‖p− q‖2

⇐⇒

Dual formulation yields a non-smooth convex function

Φ is smooth at w ⇐⇒ minp∈P (‖q − p‖2 + w(p)) is unique for every q ∈ Q
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minp∈P (‖q − p‖2 + w(p)) = minp∈P ‖(q, 0)− (p,
√
w(p))‖Rd+1

Build time: O(N logN)

Query time: O(logN) (for uniformly distributed points)

−→ Efficient evaluation of Φ(w), ∇Φ(w) and ∂Φ(w) (equality cases)
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L2 Assignment Problem: Auction algorithm

Auction is an iterative algorithm of time complexity O(N2 + C logN)
where C = max ‖pi − qj‖2. All distances need to be integers.

• It is not clear how to correctly “floor” the two point sets
P,Q ⊆ Rd while keeping C small (e.g. concentration).

• Auction uses only 2 nearest neighbor, i.e. only first order
information about Φ.

• The algorithm does not build the dual variable w. Hence, it
is not possible to use LP in the final phase.

Bus-Tvrdik ’11

Many improvements since Bertsekas’ original Auction algorithm. We use
the fastest to date:
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L2 Assignment Problem: Another approach?

e.g. Lewis-Overton (’10)

• Many authors have observed the good behaviour of LBFGS
methods in minimizing non-smooth functions.

• LBFGS copes well with the non-smoothness of Φ at the
beginning. However, it becomes eventually not possible to
find a good descent direction.

• Proposal: when this happens, turn to a local linearization
of Ψ and use a LP solver.

LBFGS is a quasi-Newton algorithm to compute the minimum of
smooth functions.
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Local linearization: we replace the N × N constraints of the dual
program by k ×N constraints + box constraints.

Ψ(v, w) = −
∑
q∈Q v(q) +

∑
p∈P w(p)

under the constraint v(q)− w(p) ≤ ‖p− q‖2

Given w0 : P → R and q ∈ Q, define pi(q) (1 ≤ i ≤ N) by

‖q − p1(q)‖2 + w0(p1(q)) ≤ . . . ≤ ‖q − pN (q)‖2 + w0(pN (q))

Set w = w0 +δ. If ‖δ‖ ≤ δ0, the nearest neighbor for w remains among
the first k ones for w0, i.e.

∀p, q, v(q)− w(p) ≤ ‖p− q‖2

∀q,∀1 ≤ i ≤ k, v(q)− w(pi(q)) ≤ ‖pi(q)− q‖2 and ‖δ‖ ≤ δ0

⇐⇒
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Running time in seconds of Auction (blue) vs LBFGS and linearisation (green)

Data: P and Q are two random sample of N points in the
cube [0, 105]3 ∩ Z3, for N = 1k, . . . , 30k.



L2 Assignment Problem: Another approach?

Running time in seconds of Auction (blue) vs LBFGS and linearisation (green)

Data: P is a random sample of N points in the cube
[0, 105]3 ∩Z3, Q is obtained from a mixture of 15 isotropic
Gaussian distributions for N = 1k, . . . , 20k.
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Other applications of the multiscale approach:

Thank you for your attention!
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• Theory when both measures are discrete ? Complexity ?
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• Design of reflector antennas with prescribed far-field image.
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