A Review of Proximal Splitting Methods

with a new one

Hugo Raguet Gabriel Peyré

COTS DAUPH

Jalal Fadili

www.numerical-tours.com

Setting: $G: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$

 \mathcal{H} : Hilbert space. Here: $\mathcal{H} = \mathbb{R}^N$.

Problem: $\min_{x \in \mathcal{H}} G(x)$

Setting: $G: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$

 \mathcal{H} : Hilbert space. Here: $\mathcal{H} = \mathbb{R}^N$.

Problem: $\min_{x \in \mathcal{H}} G(x)$

Class of functions:

Convex: $G(tx + (1 - t)y) \le tG(x) + (1 - t)G(y)$ $t \in [0, 1]$

 $\boldsymbol{\mathcal{X}}$

Setting: $G: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$

 \mathcal{H} : Hilbert space. Here: $\mathcal{H} = \mathbb{R}^N$.

Problem: $\min_{x \in \mathcal{H}} G(x)$

Class of functions:

Convex: $G(tx + (1 - t)y) \leq tG(x) + (1 - t)G(y)$ $t \in [0, 1]$

 \mathcal{X}

Y

Lower semi-continuous: $\liminf_{x \to x_0} G(x) \ge G(x_0)$ Proper: $\{x \in \mathcal{H} \setminus G(x) \neq +\infty\} \neq \emptyset$

Setting: $G: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$

 \mathcal{H} : Hilbert space. Here: $\mathcal{H} = \mathbb{R}^N$.

Problem: $\min_{x \in \mathcal{H}} G(x)$

Class of functions:

Convex: $G(tx + (1 - t)y) \le tG(x) + (1 - t)G(y)$ $t \in [0, 1]$

 \mathcal{X}

Y

Lower semi-continuous: $\liminf_{x \to x_0} G(x) \ge G(x_0)$

Proper: $\{x \in \mathcal{H} \setminus G(x) \neq +\infty\} \neq \emptyset$

Indicator:

 $\iota_{\mathcal{C}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C}, \\ +\infty & \text{otherwise.} \end{cases}$

(\mathcal{C} closed and convex)

Inverse problem: measurements $y = \mathcal{K}f_0 + w$

 $\mathcal{K}: \mathbb{R}^N \to \mathbb{R}^P, \quad P \leqslant N$

Inverse problem: measurements $y = \mathcal{K} f_0 + w$

i. Š

 $\frac{f_0}{\mathcal{K}} \xrightarrow{\mathcal{K}} \overset{\mathcal{K}}{\longrightarrow} \overset{\mathcal{K}}{\longrightarrow}$

 $\mathcal{K}: \mathbb{R}^N \to \mathbb{R}^P, \quad P \leqslant N$

Model: $f_0 = \Psi x_0$ sparse in dictionary $\Psi \in \mathbb{R}^{N \times Q}, Q \ge N$.

Inverse problem: measurements $y = \mathcal{K} f_0 + w$

i. S

 $\mathcal{K}: \mathbb{R}^N \to \mathbb{R}^P, \quad P \leqslant N$

Model: $f_0 = \Psi x_0$ sparse in dictionary $\Psi \in \mathbb{R}^{N \times Q}, Q \ge N$.

Sparse recovery: $f^{\star} = \Psi x^{\star}$ where x^{\star} solves

$$\min_{x \in \mathbb{R}^{N}} \begin{bmatrix} \frac{1}{2} \|y - \Phi x\|^{2} \\ \frac{1}{2} \|y - \Phi x\|^{2} \end{bmatrix} + \begin{bmatrix} \lambda \|x\|_{1} \\ \lambda \|x\|_{1} \end{bmatrix}$$
Fidelity Regularization

Inpainting: masking operator \mathcal{K}

$$(\mathcal{K}f)_i = \begin{cases} f_i & \text{if } i \in \Omega, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathcal{K}: \mathbb{R}^N \to \mathbb{R}^P \qquad P = |\Omega|$$

 $\Psi \in \mathbb{R}^{N \times Q}$ translation invariant wavelet frame.

Orignal $f_0 = \Psi x_0$

 $y = \Phi x_0 + w$

Recovery Ψx^{\star}

- Subdifferential Calculus
- Proximal Calculus
- Forward Backward
- Douglas Rachford
- Generalized Forward-Backward

i. S

Sub-differential:

$\partial G(x) = \{ u \in \mathcal{H} \setminus \forall z, \ G(z) \ge G(x) + \langle u, \ z - x \rangle \}$

Sub-differential:

 $\partial G(x) = \{ u \in \mathcal{H} \setminus \forall z, \ G(z) \ge G(x) + \langle u, \ z - x \rangle \}$

Smooth functions:

If F is C^1 , $\partial F(x) = \{\nabla F(x)\}$

Sub-differential

Sub-differential:

 $\partial G(x) = \{ u \in \mathcal{H} \setminus \forall z, \ G(z) \ge G(x) + \langle u, \ z - x \rangle \}$

Smooth functions:

If F is
$$C^1$$
, $\partial F(x) = \{\nabla F(x)\}$

First-order conditions:

 $x^{\star} \in \underset{x \in \mathcal{H}}{\operatorname{argmin}} G(x) \iff 0 \in \partial G(x^{\star})$

Sub-differential

Sub-differential:

 $\partial G(x) = \{ u \in \mathcal{H} \setminus \forall z, \ G(z) \ge G(x) + \langle u, \ z - x \rangle \}$

Smooth functions:

If F is C^1 , $\partial F(x) = \{\nabla F(x)\}\$

First-order conditions:

 $x^{\star} \in \underset{x \in \mathcal{H}}{\operatorname{argmin}} G(x) \iff 0 \in \partial G(x^{\star})$

Monotone operator: $U(x) = \partial G(x)$ $\forall (u, v) \in U(x) \times U(y), \quad \langle y - x, v - u \rangle \ge 0$

$$x^* \in \operatorname*{argmin}_{x \in \mathbb{R}^Q} G(x) = \frac{1}{2} \|y - \Phi x\|^2 + \lambda \|x\|_1$$

$$\partial G(x) = \Phi^* (\Phi x - y) + \lambda \partial \| \cdot \|_1(x)$$

$$\partial \| \cdot \|_1(x)_i = \begin{cases} \operatorname{sign}(x_i) & \text{if } x_i \neq 0, \\ [-1,1] & \text{if } x_i = 0. \end{cases}$$

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^{Q}} G(x) = \frac{1}{2} \|y - \Phi x\|^{2} + \lambda \|x\|_{1}$$

$$\partial G(x) = \Phi^* (\Phi x - y) + \lambda \partial \| \cdot \|_1(x)$$

$$\partial \| \cdot \|_1(x)_i = \begin{cases} \operatorname{sign}(x_i) & \text{if } x_i \neq 0, \\ [-1,1] & \text{if } x_i = 0. \end{cases}$$

Support of the solution: • $I = \{i \in \{0, \dots, N-1\} \setminus x_i^* \neq 0\}$

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^{Q}} G(x) = \frac{1}{2} \|y - \Phi x\|^{2} + \lambda \|x\|_{1}$$

$$\partial G(x) = \Phi^* (\Phi x - y) + \lambda \partial \| \cdot \|_1(x)$$

$$\partial \| \cdot \|_1(x)_i = \begin{cases} \operatorname{sign}(x_i) & \text{if } x_i \neq 0, \\ [-1,1] & \text{if } x_i = 0. \end{cases}$$

Support of the solution: •

$$I = \{i \in \{0, \dots, N-1\} \setminus x_i^* \neq 0\}$$

First-order conditions: $\exists s \in \mathbb{R}^{N}, \quad \Phi^{*}(\Phi x^{*} - y) + \lambda s = 0$ $\begin{cases} s_{I} = \operatorname{sign}(x_{I}), \\ \|s_{I^{c}}\|_{\infty} \leq 1. \end{cases}$

<u>iste</u>

- Subdifferential Calculus
- Proximal Calculus
- Forward Backward
- Douglas Rachford
- Generalized Forward-Backward

Proximal Operators

Proximal operator of G: $\operatorname{Prox}_{\gamma G}(x) = \operatorname{argmin}_{z} \frac{1}{2} \|x - z\|^{2} + \gamma G(z)$

Proximal Operators

$$G(x) = \sum_{i} \log(1 + |x_i|^2)$$

Proximal Operators

Proximal operator of G: $\operatorname{Prox}_{\gamma G}(x) = \operatorname{argmin} \frac{1}{2} \|x - z\|^2 + \gamma G(z)$ $\log(1+x^2)$ $G(x) = ||x||_1 = \sum |x_i|$ $|x| = |x|_0$ $\operatorname{Prox}_{\gamma G}(x)_{i} \stackrel{i}{=} \max\left(0, 1 - \frac{\gamma}{|x_{i}|}\right) x_{i}$ $G(x) = ||x||_0 = |\{i \setminus x_i \neq 0\}|$ $\operatorname{Prox}_{\gamma G}(x)_{i} = \begin{cases} x_{i} & \text{if } |x_{i}| \geq \sqrt{2\gamma}, \\ 0 & \text{otherwise.} \end{cases}$ $G(x) = \sum \log(1 + |x_i|^2)$ $\operatorname{Prox}_{G}(x)$ \longrightarrow 3rd order polynomial root.

G(x)

<u>. 198</u>

Separability: $G(x) = G_1(x_1) + \ldots + G_n(x_n)$ $\operatorname{Prox}_G(x) = (\operatorname{Prox}_{G_1}(x_1), \ldots, \operatorname{Prox}_{G_n}(x_n))$ Proximal Calculus

Separability:
$$G(x) = G_1(x_1) + \ldots + G_n(x_n)$$

 $\operatorname{Prox}_G(x) = (\operatorname{Prox}_{G_1}(x_1), \ldots, \operatorname{Prox}_{G_n}(x_n))$
Quadratic functionals: $G(x) = \frac{1}{2} \|\Phi x - y\|^2$
 $\operatorname{Prox}_{\gamma G} = (\operatorname{Id} + \gamma \Phi^* \Phi)^{-1} \Phi^*$
 $= \Phi^* (\operatorname{Id} + \gamma \Phi \Phi^*)^{-1}$

Proximal Calculus

Separability:
$$G(x) = G_1(x_1) + \ldots + G_n(x_n)$$

 $\operatorname{Prox}_G(x) = (\operatorname{Prox}_{G_1}(x_1), \ldots, \operatorname{Prox}_{G_n}(x_n))$
Quadratic functionals: $G(x) = \frac{1}{2} \|\Phi x - y\|^2$
 $\operatorname{Prox}_{\gamma G} = (\operatorname{Id} + \gamma \Phi^* \Phi)^{-1} \Phi^*$
 $= \Phi^* (\operatorname{Id} + \gamma \Phi \Phi^*)^{-1}$

Composition by tight frame: $A \circ A^* = \mathrm{Id}$ $\mathrm{Prox}_{G \circ A}(x) = A^* \circ \mathrm{Prox}_G \circ A + \mathrm{Id} - A^* \circ A$ **Proximal Calculus**

Separability:
$$G(x) = G_1(x_1) + \ldots + G_n(x_n)$$

 $\operatorname{Prox}_G(x) = (\operatorname{Prox}_{G_1}(x_1), \ldots, \operatorname{Prox}_{G_n}(x_n))$
Quadratic functionals: $G(x) = \frac{1}{2} \|\Phi x - y\|^2$
 $\operatorname{Prox}_{\gamma G} = (\operatorname{Id} + \gamma \Phi^* \Phi)^{-1} \Phi^*$
 $= \Phi^* (\operatorname{Id} + \gamma \Phi \Phi^*)^{-1}$

Composition by tight frame: $A \circ A^* = \mathrm{Id}$ $\mathrm{Prox}_{G \circ A}(x) = A^* \circ \mathrm{Prox}_G \circ A + \mathrm{Id} - A^* \circ A$

Indicators: $G(x) = \iota_{\mathcal{C}}(x)$ $\operatorname{Prox}_{\gamma G}(x) = \operatorname{Proj}_{\mathcal{C}}(x)$ $= \operatorname*{argmin}_{z \in \mathcal{C}} ||x - z||$

Prox and Subdifferential

Resolvant of ∂G : $z = \operatorname{Prox}_{\gamma G}(x) \quad \iff \quad 0 \in z - x + \gamma \partial G(z)$ $\iff \quad x \in (\operatorname{Id} + \gamma \partial G)(z) \quad \iff \quad z = (\operatorname{Id} + \gamma \partial G)^{-1}(x)$

Inverse of a set-valued mapping:

where $x \in U(y) \iff y \in U^{-1}(x)$ $\operatorname{Prox}_{\gamma G} = (\operatorname{Id} + \gamma \partial G)^{-1}$ is a single-valued mapping **Prox and Subdifferential**

Resolvant of ∂G : $z = \operatorname{Prox}_{\gamma G}(x) \quad \iff \quad 0 \in z - x + \gamma \partial G(z)$ $\iff \quad x \in (\operatorname{Id} + \gamma \partial G)(z) \quad \iff \quad z = (\operatorname{Id} + \gamma \partial G)^{-1}(x)$

Inverse of a set-valued mapping:

where
$$x \in U(y) \iff y \in U^{-1}(x)$$

 $\operatorname{Prox}_{\gamma G} = (\operatorname{Id} + \gamma \partial G)^{-1}$ is a single-valued mapping

Fix point:
$$x^* \in \underset{x}{\operatorname{argmin}} G(x)$$

 $\iff 0 \in \partial G(x^*) \iff x^* \in (\operatorname{Id} + \gamma \partial G)(x^*)$
 $\iff x^* = (\operatorname{Id} + \gamma \partial G)^{-1}(x^*) = \operatorname{Prox}_{\gamma G}(x^*)$

Gradient and Proximal Descents

Gradient descent: $x^{(\ell+1)} = x^{(\ell)} - \gamma_{\ell} \nabla G(x^{(\ell)})$ [explicit] $G \text{ is } C^1 \text{ and } \nabla G \text{ is } L\text{-Lipschitz}$

Theorem: If $0 < \gamma_{\ell} < 2/L, x^{(\ell)} \to x^*$ a solution.

Gradient and Proximal Descents

Gradient descent: $x^{(\ell+1)} = x^{(\ell)} - \gamma_{\ell} \nabla G(x^{(\ell)})$ [explicit] $G \text{ is } C^1 \text{ and } \nabla G \text{ is } L\text{-Lipschitz}$

Theorem: If $0 < \gamma_{\ell} < 2/L, x^{(\ell)} \to x^*$ a solution.

Sub-gradient descent: $x^{(\ell+1)} = x^{(\ell)} - \gamma_{\ell} v^{(\ell)}, \quad v^{(\ell)} \in \partial G(x^{(\ell)})$

Theorem: If $\gamma_{\ell} \sim 1/\ell$, $x^{(\ell)} \to x^*$ a solution.

 \longrightarrow Problem: slow.

Gradient and Proximal Descents

Gradient descent: $x^{(\ell+1)} = x^{(\ell)} - \gamma_{\ell} \nabla G(x^{(\ell)})$ [explicit] $G \text{ is } C^1 \text{ and } \nabla G \text{ is } L\text{-Lipschitz}$

Theorem: If $0 < \gamma_{\ell} < 2/L, x^{(\ell)} \to x^*$ a solution.

Sub-gradient descent:
$$x^{(\ell+1)} = x^{(\ell)} - \gamma_{\ell} v^{(\ell)}, \quad v^{(\ell)} \in \partial G(x^{(\ell)})$$

Theorem: If $\gamma_{\ell} \sim 1/\ell$, $x^{(\ell)} \to x^*$ a solution.

 \longrightarrow Problem: slow.

Proximal-point algorithm: $x^{(\ell+1)} = \operatorname{Prox}_{\gamma_{\ell}G}(x^{(\ell)})$ [implicit]

Theorem: If $\gamma_{\ell} \ge c > 0$, $x^{(\ell)} \to x^*$ a solution.

 $\longrightarrow \operatorname{Prox}_{\gamma G}$ hard to compute.

ist.

- Subdifferential Calculus
- Proximal Calculus
- Forward Backward
- Douglas Rachford
- Generalized Forward-Backward

Proximal Splitting Methods

Solve $\min_{x \in \mathcal{H}} E(x)$

Problem: $\operatorname{Prox}_{\gamma E}$ is not available.

Proximal Splitting Methods

Solve $\min_{x \in \mathcal{H}} E(x)$

Problem: $\operatorname{Prox}_{\gamma E}$ is not available.

Splitting:
$$E(x) = F(x) + \sum_{i} G_{i}(x)$$

Smooth Simple

Proximal Splitting Methods

Smooth + Simple Splitting

Inverse problem: measurements $y = \mathcal{K}f_0 + w$

 $\mathcal{K}: \mathbb{R}^N \to \mathbb{R}^P, \quad P \leqslant N$

Model: $f_0 = \Psi x_0$ sparse in dictionary Ψ . Sparse recovery: $f^{\star} = \Psi x^{\star}$ where x^{\star} solves $\min_{x \in \mathbb{R}^N} |F(x)| + |G(x)|$ Smooth Simple Data fidelity: $F(x) = \frac{1}{2} \|y - \Phi x\|^2$ $\Phi=\mathcal{K}\circ\Psi$ Regularization: $G(x) = ||x||_1 = \sum |x_i|$

iđ

Fix point equation:

 $x^{\star} \in \operatorname{argmin} F(x) + G(x) \iff 0 \in \nabla F(x^{\star}) + \partial G(x^{\star})$ x $\iff (x^{\star} - \gamma \nabla F(x^{\star})) \in x^{\star} + \gamma \partial G(x^{\star})$ $\iff x^{\star} = \operatorname{Prox}_{\gamma G}(x^{\star} - \gamma \nabla F(x^{\star}))$

in the

Fix point equation:

$$x^{\star} \in \underset{x}{\operatorname{argmin}} F(x) + G(x) \iff 0 \in \nabla F(x^{\star}) + \partial G(x^{\star})$$
$$\iff (x^{\star} - \gamma \nabla F(x^{\star})) \in x^{\star} + \gamma \partial G(x^{\star})$$
$$\iff x^{\star} = \operatorname{Prox}_{\gamma G}(x^{\star} - \gamma \nabla F(x^{\star}))$$
Forward-backward: $x^{(\ell+1)} = \operatorname{Prox}_{\gamma G}\left(x^{(\ell)} - \gamma \nabla F(x^{(\ell)})\right)$

<u>i de</u>

Fix point equation:

$$\begin{aligned} x^{\star} \in \underset{x}{\operatorname{argmin}} F(x) + G(x) \iff 0 \in \nabla F(x^{\star}) + \partial G(x^{\star}) \\ \iff (x^{\star} - \gamma \nabla F(x^{\star})) \in x^{\star} + \gamma \partial G(x^{\star}) \\ \iff x^{\star} = \operatorname{Prox}_{\gamma G}(x^{\star} - \gamma \nabla F(x^{\star})) \end{aligned}$$

$$Forward-backward: \quad x^{(\ell+1)} = \operatorname{Prox}_{\gamma G}\left(x^{(\ell)} - \gamma \nabla F(x^{(\ell)})\right)$$

$$Projected \ gradient \ descent: \qquad G = \iota_{\mathcal{C}}$$

Forward-Backward

i.đ

Fix point equation:

$$x^{\star} \in \underset{x}{\operatorname{argmin}} F(x) + G(x) \iff 0 \in \nabla F(x^{\star}) + \partial G(x^{\star})$$
$$\iff (x^{\star} - \gamma \nabla F(x^{\star})) \in x^{\star} + \gamma \partial G(x^{\star})$$
$$\iff x^{\star} = \operatorname{Prox}_{\gamma G}(x^{\star} - \gamma \nabla F(x^{\star}))$$
Forward-backward:
$$x^{(\ell+1)} = \operatorname{Prox}_{\gamma G}\left(x^{(\ell)} - \gamma \nabla F(x^{(\ell)})\right)$$

Projected gradient descent: $G = \iota_{\mathcal{C}}$

Theorem: Let ∇F be *L*-Lipschitz. If $\gamma < 2/L$, $x^{(\ell)} \to x^*$ a solution of (\star) Forward-Backward

i.đ

Fix point equation:

$$x^{\star} \in \underset{x}{\operatorname{argmin}} F(x) + G(x) \iff 0 \in \nabla F(x^{\star}) + \partial G(x^{\star})$$
$$\iff (x^{\star} - \gamma \nabla F(x^{\star})) \in x^{\star} + \gamma \partial G(x^{\star})$$
$$\iff x^{\star} = \operatorname{Prox}_{\gamma G}(x^{\star} - \gamma \nabla F(x^{\star}))$$
Forward-backward:
$$x^{(\ell+1)} = \operatorname{Prox}_{\gamma G}\left(x^{(\ell)} - \gamma \nabla F(x^{(\ell)})\right)$$

Projected gradient descent: $G = \iota_{\mathcal{C}}$

Theorem:Let ∇F be L-Lipschitz.If $\gamma < 2/L$, $x^{(\ell)} \rightarrow x^{\star}$ a solution of (\star)

 \rightarrow Multi-step accelerations (Nesterov, Beck-Teboule).

Example: L1 Regularization

$$\min_{x} \frac{1}{2} \|\Phi x - y\|^2 + \lambda \|x\|_1 \quad \Longleftrightarrow \quad \min_{x} F(x) + G(x)$$

$$F(x) = \frac{1}{2} \|\Phi x - y\|^2$$

$$\nabla F(x) = \Phi^*(\Phi x - y) \qquad L = \|\Phi^*\Phi\|$$

$$G(x) = \lambda \|x\|_1$$

$$\operatorname{Prox}_{\gamma G}(x)_i = \max\left(0, 1 - \frac{\gamma \lambda}{|x_i|}\right) x_i$$

Forward-backward \iff Iterative soft thresholding

ist.

- Subdifferential Calculus
- Proximal Calculus
- Forward Backward
- Douglas Rachford
- Generalized Forward-Backward

Douglas Rachford Scheme

Douglas-Rachford iterations:

$$z^{(\ell+1)} = \left(1 - \frac{\alpha}{2}\right) z^{(\ell)} + \frac{\alpha}{2} \operatorname{RProx}_{\gamma G_2} \circ \operatorname{RProx}_{\gamma G_1}(z^{(\ell)})$$
$$x^{(\ell+1)} = \operatorname{Prox}_{\gamma G_2}(z^{(\ell+1)})$$

Reflexive prox:

$$\operatorname{RProx}_{\gamma G}(x) = 2\operatorname{Prox}_{\gamma G}(x) - x$$

Douglas Rachford Scheme

$$\begin{array}{c} \min_{x} G_1(x) + G_2(x) \\ \text{Simple} & \text{Simple} \end{array} (\star)
\end{array}$$

Douglas-Rachford iterations:

$$z^{(\ell+1)} = \left(1 - \frac{\alpha}{2}\right) z^{(\ell)} + \frac{\alpha}{2} \operatorname{RProx}_{\gamma G_2} \circ \operatorname{RProx}_{\gamma G_1}(z^{(\ell)})$$
$$x^{(\ell+1)} = \operatorname{Prox}_{\gamma G_2}(z^{(\ell+1)})$$

Reflexive prox:

$$\operatorname{RProx}_{\gamma G}(x) = 2\operatorname{Prox}_{\gamma G}(x) - x$$

Theorem: If $0 < \alpha < 2$ and $\gamma > 0$, $x^{(\ell)} \to x^*$ a solution of (\star) **DR Fix Point Equation**

$$\min_{x} G_1(x) + G_2(x) \quad \Longleftrightarrow \quad 0 \in \partial(G_1 + G_2)(x)$$

 $\iff \exists z, z - x \in \partial(\gamma G_1)(x) \text{ and } x - z \in \partial(\gamma G_2)(x)$

 $\iff x = \operatorname{Prox}_{\gamma G_1}(z)$ and

$$(2x-z) - x \in \partial(\gamma G_2)(x)$$

DR Fix Point Equation $\min G_1(x) + G_2(x) \quad \Longleftrightarrow \quad 0 \in \partial (G_1 + G_2)(x)$ $\iff \exists z, z - x \in \partial(\gamma G_1)(x) \text{ and } x - z \in \partial(\gamma G_2)(x)$ $\iff x = \operatorname{Prox}_{\gamma G_1}(z) \quad \text{and} \quad (2x - z) - x \in \partial(\gamma G_2)(x)$ $\iff x = \operatorname{Prox}_{\gamma G_2}(2x - z) = \operatorname{Prox}_{\gamma G_2} \circ \operatorname{RProx}_{\gamma G_1}(z)$ $\iff z = 2 \operatorname{Prox}_{\gamma G_2} \circ \operatorname{RProx}_{\gamma G_1}(y) - (2x - z)$ $\iff z = 2 \operatorname{Prox}_{\gamma G_2} \circ \operatorname{RProx}_{\gamma G_1}(z) - \operatorname{RProx}_{\gamma G_1}(z)$ $\iff z = \operatorname{RProx}_{\gamma G_2} \circ \operatorname{RProx}_{\gamma G_1}(z)$ () $\mathbf{\Omega}$

$$\iff z = \left(1 - \frac{\alpha}{2}\right)z + \frac{\alpha}{2}\operatorname{RProx}_{\gamma G_2} \circ \operatorname{RProx}_{\gamma G_1}(z)$$

Example: Constrainted L1

$$\min_{\Phi x=y} \|x\|_{1} \iff \min_{x} G_{1}(x) + G_{2}(x)$$

$$G_{1}(x) = i_{\mathcal{C}}(x), \qquad \mathcal{C} = \{x \setminus \Phi x = y\}$$

$$\operatorname{Prox}_{\gamma G_{1}}(x) = \operatorname{Proj}_{\mathcal{C}}(x) = x + \Phi^{*}(\Phi\Phi^{*})^{-1}(y - \Phi x)$$

$$G_{2}(x) = \|x\|_{1} \qquad \operatorname{Prox}_{\gamma G_{2}}(x) = \left(\max\left(0, 1 - \frac{\gamma}{|x_{i}|}\right)x_{i}\right)_{i}$$

 \longrightarrow efficient if $\Phi\Phi^*$ easy to invert.

Example: Constrainted L1

 $\min_{\Phi x=y} \|x\|_1 \iff \min_{x} G_1(x) + G_2(x)$ $G_1(x) = i_{\mathcal{C}}(x), \qquad \mathcal{C} = \{x \setminus \Phi x = y\}$ $\operatorname{Prox}_{\gamma G_1}(x) = \operatorname{Proj}_{\mathcal{C}}(x) = x + \Phi^*(\Phi\Phi^*)^{-1}(y - \Phi x)$ $G_2(x) = \|x\|_1$ $\operatorname{Prox}_{\gamma G_2}(x) = \left(\max\left(0, 1 - \frac{\gamma}{|x_i|}\right)x_i\right)$ \longrightarrow efficient if $\Phi\Phi^*$ easy to invert. $\log_{10}(\|x^{(\ell)}\|_1 - \|x^{\star}\|_1)$ Example: compressed sensing $\Phi \in \mathbb{R}^{100 \times 400}$ -2 Gaussian matrix $|\gamma| = 0.01$ $y = \Phi x_0 \qquad \|x_0\|_0 = 17$ 100 50 150 200 250

$$\min_{x} G_{1}(x) + \ldots + G_{k}(x) \quad \text{each } F_{i} \text{ is simple}$$

$$\iff \min_{x} G(x_{1}, \ldots, x_{k}) + \iota_{\mathcal{C}}(x_{1}, \ldots, x_{k})$$

$$G(x_{1}, \ldots, x_{k}) = G_{1}(x_{1}) + \ldots + G_{k}(x_{k})$$

$$\mathcal{C} = \{(x_{1}, \ldots, x_{k}) \in \mathcal{H}^{k} \setminus x_{1} = \ldots = x_{k}\}$$

$$\iff \min_{x} G(x_1, \dots, x_k) + \iota_{\mathcal{C}}(x_1, \dots, x_k)$$

$$G(x_1, \dots, x_k) = G_1(x_1) + \dots + G_k(x_k)$$

$$\mathcal{C} = \left\{ (x_1, \dots, x_k) \in \mathcal{H}^k \setminus x_1 = \dots = x_k \right\}$$

G and $\iota_{\mathcal{C}}$ are simple:

 $\operatorname{Prox}_{\gamma G}(x_1, \dots, x_k) = \left(\operatorname{Prox}_{\gamma G_i}(x_i)\right)_i$ $\operatorname{Prox}_{\gamma \iota_{\mathcal{C}}}(x_1, \dots, x_k) = (\tilde{x}, \dots, \tilde{x}) \quad \text{where} \quad \tilde{x} = \frac{1}{k} \sum_i x_i$

<u>ist</u>

- Subdifferential Calculus
- Proximal Calculus
- Forward Backward
- Douglas Rachford
- Generalized Forward-Backward

$$F = 0 \longrightarrow \text{Douglas-Rachford.}$$

 $x \in \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} F(x) + \sum_i G_i(x) \iff 0 \in \nabla F(x^*) + \sum_i \partial G_i(x^*)$

$\iff \exists y_i \in \partial G_i(x^*), \ \nabla F(x^*) + \sum_i y_i = 0$

 $x \in \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} F(x) + \sum_i G_i(x) \iff 0 \in \nabla F(x^*) + \sum_i \partial G_i(x^*)$

$$\iff \exists y_i \in \partial G_i(x^*), \ \nabla F(x^*) + \sum_i y_i = 0$$

$$\iff \exists (z_i)_{i=1}^n, \forall i, \frac{1}{n} (x^* - z_i - \gamma \nabla F(x^*)) \in \gamma \partial G_i(x^*)$$
$$x^* = \frac{1}{n} \sum_i z_i \quad (\text{use } z_i = x^* - \gamma \nabla F(x^*) - n\gamma y_i)$$

 $x \in \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} F(x) + \sum_i G_i(x) \iff 0 \in \nabla F(x^*) + \sum_i \partial G_i(x^*)$

$$\iff \exists y_i \in \partial G_i(x^*), \ \nabla F(x^*) + \sum_i y_i = 0$$

$$\iff \exists (z_i)_{i=1}^n, \forall i, \frac{1}{n} (x^* - z_i - \gamma \nabla F(x^*)) \in \gamma \partial G_i(x^*)$$
$$x^* = \frac{1}{n} \sum_i z_i \quad (\text{use } z_i = x^* - \gamma \nabla F(x^*) - n\gamma y_i)$$

$$\iff (2x^{\star} - z_i - \gamma \nabla F(x^{\star})) - x^{\star} \in n\gamma \partial G_i(x^{\star})$$

$$\iff x^{\star} = \operatorname{Prox}_{n\gamma G_i}(2x^{\star} - z_i - \gamma \nabla F(x^{\star}))$$

$$\iff z_i = z_i + \operatorname{Prox}_{n\gamma G_\ell} (2x^* - z_i - \gamma \nabla F(x^*)) - x^*$$

 $x \in \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} F(x) + \sum_i G_i(x) \iff 0 \in \nabla F(x^*) + \sum_i \partial G_i(x^*)$

$$\iff \exists y_i \in \partial G_i(x^*), \ \nabla F(x^*) + \sum_i y_i = 0$$

$$\iff \exists (z_i)_{i=1}^n, \forall i, \frac{1}{n} (x^* - z_i - \gamma \nabla F(x^*)) \in \gamma \partial G_i(x^*)$$
$$x^* = \frac{1}{n} \sum_i z_i \quad (\text{use } z_i = x^* - \gamma \nabla F(x^*) - n\gamma y_i)$$

+

$$\iff (2x^{\star} - z_{i} - \gamma \nabla F(x^{\star})) - x^{\star} \in n\gamma \partial G_{i}(x^{\star})$$
$$\iff x^{\star} = \operatorname{Prox}_{n\gamma G_{i}}(2x^{\star} - z_{i} - \gamma \nabla F(x^{\star}))$$
$$\iff z_{i} = z_{i} + \operatorname{Prox}_{n\gamma G_{\ell}}(2x^{\star} - z_{i} - \gamma \nabla F(x^{\star})) - x^{\star}$$

 \rightarrow Fix point equation on $(x^{\star}, z_1, \ldots, z_n)$.

Block Regularization

$$\ell^1 - \ell^2$$
 block sparsity: $G(x) = \sum_{b \in \mathcal{B}} \|x^{[b]}\|, \|x^{[b]}\|^2 = \sum_{m \in b} x_m^2$

Image $f = \Psi x$ Coefficients x.

Block Regularization

$$\ell^1 - \ell^2$$
 block sparsity: $G(x) = \sum_{b \in \mathcal{B}} \|x^{[b]}\|, \|x^{[b]}\|^2 = \sum_{m \in b} x_m^2$

Non-overlapping decomposition: $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_n$

$$G(x) = \sum_{i=1}^{i} G_i(x) \qquad G_i(x) = \sum_{b \in \mathcal{B}_i} \|x^{[b]}\|,$$

Block Regularization

$$\ell^1 - \ell^2$$
 block sparsity: $G(x) = \sum_{b \in \mathcal{B}} \|x^{[b]}\|, \|x^{[b]}\|^2 = \sum_{m \in b} x_m^2$

Non-overlapping decomposition: $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_n$ YI.

$$G(x) = \sum_{i=1}^{i} G_i(x) \qquad G_i(x) = \sum_{b \in \mathcal{B}_i} \|x^{[b]}\|,$$

Each G_i is simple:

$$\forall m \in b \in \mathcal{B}_i, \quad \operatorname{Prox}_{\gamma G_i}(x)_m = \max\left(0, 1 - \frac{\gamma}{\|x^{[b]}\|}\right) x_m$$

/

Inverse problems in imaging: \rightarrow Large scale, $N \ge 10^6$.

- \rightarrow Non-smooth (sparsity, TV, ...)
- \rightarrow (Sometimes) convex.

 \rightarrow Highly structured (separability, ℓ^p norms, ...).

Inverse problems in imaging: \rightarrow Large scale, $N \ge 10^6$.

- \rightarrow Non-smooth (sparsity, TV, ...)
- \rightarrow (Sometimes) convex.

 \rightarrow Highly structured (separability, ℓ^p norms, ...).

Proximal splitting:

- \rightarrow Unravel the structure of problems.
- \rightarrow Parallelizable.

	_	Ļ										N.			
1			2	1	1		1				1	2.5			
	Λ	۳,		3	1		Ψ.			E.		8	10		æ
				$\mathcal{G}^{(1)}$	33		K		1.	t de la compañía de			1		77
								2		. 1			L	Ľ,	¥.
-		2		10		\mathcal{A}_{1}^{i}		F^{2}		11		53	$\langle f \rangle$	्र	
1	1		5	1	111						383		Ň	\square	
										88	1		7		
												100			
			-	3							din.	100			
		670		210	1	2	0					1	1		ù.
						8	17		Č.	1		e"		Ŵ	37
1			1			Z	4		8				84	2	d.
Z													18		
14					×.								X		
1			di.				1	18. 19.			ž.				1

Inverse problems in imaging: \rightarrow Large scale, $N \ge 10^6$.

- \rightarrow Non-smooth (sparsity, TV, ...)
- \rightarrow (Sometimes) convex.

 \rightarrow Highly structured (separability, ℓ^p norms, ...).

Proximal splitting:

- \rightarrow Unravel the structure of problems.
- \rightarrow Parallelizable.

Open problems:

- \rightarrow Less structured problems without smoothness.
- \rightarrow Non-convex optimization.

