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Introduction

Problem Statement

Let f be a given signal and S[f ] the statistical distribution of some of its
characteristics.
Problem 1: match the considered
statistics of f to some desired sta-
tistical distribution S0.

f ′ = Proj Γ(f ) where Γ = {u|S[u] = S0}

Example: Contrast Enhancement

Extension to multi-dimensional statistics ?
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Introduction

Problem Statement

Modifying statistics yields many artifacts: noise enhancement, detail loss,
“bloquing effect” (JPEG compression), color inconsistencies . . .

Problem 2: restore the texture and the geometry of the original image.

Example: Noise reduction for equalization

Example with histogram equalization
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Introduction

Problem Statement

Modifying statistics yields many artifacts: noise enhancement, detail loss,
“bloquing effect” (JPEG compression), color inconsistencies . . .

Problem 2: restore the texture and the geometry of the original image.

Example: Noise reduction for equalization Filtering technique

Regularization using non-local transfer [Rabin et al., 2011]
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Problem Statement

Modifying statistics yields many artifacts: noise enhancement, detail loss,
“bloquing effect” (JPEG compression), color inconsistencies . . .

Problem 2: restore the texture and the geometry of the original image.

Example: Noise reduction for equalization Filtering technique

Statistical matching and regularization within the same framework ?

J. Rabin Approximate Wasserstein Metric for Imaging Problems



Introduction

Problem Statement

Let {fi}i=1,...,K be a set of K signals and {S[fi ]}i their statistics.

Problem 3: Compute average statistics of {fi}i .

Simple example: Flicker correction of old movies

Midway-histogram [Delon, 2004]
Extension to multi-dimensional statistics ?
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Introduction

Outline

General problem: regularize and average images under
multi-dimensional statistical constraints

Part I. Multi-dimensional statistic specification
(“Wasserstein projection”)

Part II. Variational regularization under statistical constraints
(“Wasserstein regularization”)

Part III. Multi-dimensional statistics averaging
(“Wasserstein Barycenter”)

Applications to many image processing and computer vision tasks:

• Color transfer;
• Non-rigid shape matching;

• Texture synthesis and mixing from exemplar images;

Methodology: Optimal mass transportation problem framework.
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Part I

Wasserstein Projection
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Formulation in general case

Let f and g be two probability distributions in Rd (f , g > 0 and
∫

f =
∫

g = 1).

Monge-Kantorovich optimal mass transportation problem
Let c : Rd × Rd 7→ R+ be a nonnegative cost function (“ground cost”).
Optimal transport theory defines a cost and a transportation flow between
two measures [Villani, 2008]

MK(f , g) := inf
π∈Π{f ,g}

∫∫
x,y

c(x , y) dπ(x , y) , (1)

where Π{f ,g} is the set of probability measures on Rd × Rd with marginals f
and g (“transport plans”).

Wasserstein distance of order p when using L2 metric for the ground cost

Wp(f , g) =

(
inf

π∈Π{f ,g}

∫∫
x,y∈Rd

‖x − y‖pπ(dx , dy)

) 1
p

, (2)

where ‖.‖ is the Euclidean norm.

Remark: Earth Mover’s Distance (EMD) [Rubner et al., 2000]
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Formulation for point clouds

Definition: Wasserstein Distance Given two point clouds X ,Y ⊂ Rd×N of N
elements in Rd with equal masses, the quadratic Wasserstein distance is
defined as

W2(X ,Y )2 = min
σ∈ΣN

∑
i∈I

|Xi − Yσ(i)|2 (3)

where ΣN is the set of all permutations of N elements, and I = {1, . . . ,N}.

⇔ Optimal Assignment problem

The corresponding Wasserstein projection of X on Y is therefore

∀i ∈ I
(

W2-Proj[Y ](X )
)

i
= X∗i = Yσ∗(i) , (4)

where σ∗ is the optimal permutation of (3).
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Exact solution in unidimensional case (d = 1)

Computing the L2-Wasserstein projection in the one-dimensional case is
simple.

Algorithm: If one denotes by σX and σY the permutations that order the
points

∀ 0 6 i < N − 1, XσX (i) 6 XσX (i+1) and YσY (i) 6 YσY (i+1) (5)

the optimal permutation σ? that minimizes (3) is

σ∗ = σY ◦ σ−1
X , (6)

so that point XσX (i) is assigned to the point YσY (i).

Time complexity: O(N log(N)) operations using a fast sorting algorithm.

Application: Histogram equalization and specification (see e.g. [Nikolova et
al. 2011]).
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Exact solution in general case (d>1)

It is possible to recast the optimal assignment problem as a linear
programming one

W2(X ,Y )2 = min
P∈PN

∑
i,j∈I2

Pi,j |Xi − Yj |2 (7)

where PN is the set of bistochastic matrices.

The relaxed problem (7) can be solved with standard linear programming
algorithms (e.g. simplex and interior point method).

Remark 1: optimal transport matrices are assignment matrices (i.e. Pi,j ∈
{0, 1})

Remark 2: some dedicated algorithms are more efficient for optimal assign-
ment problem (e.g Hungarian and Auction algorithms in O(N3))

Remark 3: computation can be accelerated when using other
ground costs than L2 (e.g. L1 [Ling and Okada, 2007], Truncated
L1 [Pele and Werman, 2008])

Limitation

Intractable for signal processing applications where N � 103

(time complexity & memory limitation)
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Approximate solution: previous works

Solution

Approximation of optimal transportation problem

Previous works:
• Lower bounds on EMD [Guibas, 1997]

• EMD-embedding [Indyk and Thaper, 2003, Grauman and Darrell, 2004,
Grauman and Darrell, 2005]

• approximation of EMD with wavelet decomposition
(WEMD [Shirdhonkar and Jacobs, 2008])

• approximation of optimal transport with 1D-projections [Pitié et al., 2007]
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Sliced Wasserstein projection

Sliced-Wasserstein Approximation
Let SW2 be the Sliced Wasserstein Energy, defined for a given distribution Y
at point Z as

SW2(Z ,Y ) =

∫
θ∈Sd−1

W2(〈Z , θ〉, 〈Y , θ〉)2 dθ =

∫
θ∈Sd−1

Eθ(Z ,Y ) dθ , (8)

where
Eθ(Z ,Y ) = min

σθ∈ΣN

∑
i∈I

〈Zi − Yσθ(i), θ〉2

Sliced-Wasserstein Projection
To approximate the optimal transport of a point cloud X on a given discrete
distribution Y , evolve progressively X towards Y in such a way that the
Sliced Wasserstein energy is decreasing.

⇒ gradient descent algorithm
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Sliced Wasserstein projection gradient descent

Batch Gradient Descent algorithm

• Initialization: Set X (0) := X . Define a set of orientations Ψ := {θ ∈ Sd−1}
(s.t. |Ψ| > d)

• Iteration:
B Step 1: For each θ ∈ Ψ compute the minimizer σ∗θ of

Eθ(X (k),Y ) = min
σθ∈ΣN

∑
i∈I

〈X (k)
i − Yσθ(i), θ〉2 ;

B Step 2: For a given gradient step parameter λ 6 1, ∀ i ∈ I

X (k+1)
i = X (k)

i − λ · H−1
Ψ (X (k)

i )×
∑
θ∈Ψ

(
∇Eθ(X (k),Y )

)
i
,

where HΨ is the Hessian matrix.

• Output: The sliced Wasserstein projection of X onto Y is defined as X (∞).
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Sliced Wasserstein projection gradient descent (II)

∀i ∈ I , and for a given set {σ∗θ}θ∈Ψ, Gradient and Hessian can be
expressed as∑

θ∈Ψ

∇Eθ(Xi ) =
∑
θ∈Ψ

〈Xi − Yσ∗
θ

(i), θ〉. θ

=
(∑
θ∈Ψ

θ. θT ) · Xi −
∑
θ∈Ψ

θ. θT · Yσ∗
θ

(i)

HΨ =
∑
θ∈Ψ

∇2Eθ(Xi ) =
∑
θ∈Ψ

θ. θT = Θ

Note: H−1
Ψ is precomputed.

Convergence: the energy SW2(X (k),Y ) is strictly decreasing w.r.t. k and
X (k) converges towards a local minimum of the energy.
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Results with gradient descent

Projection results with respectively |Ψ| = 2d and |Ψ| = 100d

Remark: An interesting variant when using stochastic gradient descent
Go
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Application to Color Transfer

Source image (X )

Style image (Y )
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Application to Color Transfer

Source image (X )

Style image (Y )

Sliced Wasserstein projection of X to style
image color statistics Y

Source image after color transfer
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Application to Color Transfer

Source image (X )

Style image (Y )

X 7→ Y

Y 7→ X
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Bending invariant shape comparison

Goal: articulated shapes comparison

Euclidean dist. Geodesic dist. Geodesic paths
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Idea: Use multi-dimensional geodesic statistics (extension of
[Ion et al., 2007])

Example of quantile distributions (Min, Median and Max) inside a planar shape, and the
corresponding joint-distribution.
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Bending invariant shape comparison

Idea: Given two point-clouds X and Y, use ||X − X (∞)|| as a similarity
measure for descriptor comparison, where X (∞) is the Sliced-Wasserstein
projection of X onto Y.
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Texture synthesis with Heeger and Bergen algorithm

Let be Y a color texture exemplar Y : x ∈ Ω 7→ Y (x) ∈ R3 of N pixels.

Objective: Generate a new random texture with the same visual aspect.

7→

Principle of Heeger and Bergen algorithm: Texture synthesis through
iterated projections on statistical sets.

Sketch of the algorithm:
1– The texture exemplar image is analyzed via its projection on a set of

atoms (distribution of wavelet coefficients).

2– A random image is generated and analyzed, and its statistics are
modified to match the desired one (1-D Wasserstein projection).

3– The texture is synthesized by reconstruction (tight frame).
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Examples of Texture synthesis with Heeger and Bergen algorithm

HB algorithm succeeds to synthesize “micro-textures”

Exemplar textures

Synthesis
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Examples of Texture synthesis with Heeger and Bergen algorithm

Strong limitation of HB approach: restriction to 1st order statistics

Exemplar textures

Synthesis
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Portilla and Simoncelli extension

[Portilla and Simoncelli, 2000]: use of 2nd order statistics (correlation of
wavelet coefficients)

Original H-B. P-S.
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Examples of Texture synthesis with extended Heeger and Bergen
algorithm

Extension of HB approach to multi-dimensional statistics

Exemplar textures

Synthesis with HB

Synthesis with our approach
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Part II

Wasserstein Regularization
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Wasserstein Regularization Application

General Formulation

Limitation of Wasserstein projection for color transfer: strong visual
artifacts

Idea: define a variational framework to regularize under statistical
constraints

Let u be the source image and v the style image, and let denote by [u] and
[v ] their respective color distribution.

Find the minimizer of

min
w∈Rd×N

{
E(w) = F(w,u) + λR R(w) + λS S([w], [v])

}
(∗)

where

• F is the fidelity term (to preserve texture and geometry)

• R is the regularization penalty (denoising)

• S is the statistical constraint (here for color transfer)

J. Rabin Approximate Wasserstein Metric for Imaging Problems



Wasserstein Regularization Application

Definition of penalty terms for color transfer

• The choice F and R strongly depends on the considered application.
Here :
• F defined as the sum of the quadratic loss and a level set consistency

term [Ballester et al., 2006, Papadakis et al., 2010]

F(w,u) =
∑
i∈Ω

{
λL

2
‖wi − ui‖2 − λLS 〈∇wi ,

∇ui

‖∇ui‖
〉
}

• R defined as the color Total Variation [Rudin et al., 1992] penalty (TV):

R(w) = ‖w‖TV =
∑
i∈Ω

‖∇wi‖ ,

• A general method to constraint statistics is to use S = W2:

Limitation: Using Wasserstein projection is computationally prohibitive
in the multi-dimensional case !

Solution: use the Sliced Wasserstein energy SW2, which is
differentiable

Variational formulation for color transfer problem:

min
w∈Rd×N

{
E(w) = F (w , u) + λR R(w) + λS SW2([w], [v])

}
(?)
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Forward-backward algorithm

Problem (?) is a non-convex minimization problem: we use a
forward-backward proximal scheme to find a fixed point of energy E .

Starting from w (0) := u, the update of the image w (k) at iteration k and point
of coordinate i ∈ Ω depends on the two following Forward (F) and
Backward (B) steps:w

(k+ 1
2 )

i = w (k)
i − τ

(
F′(w(k),u)(i) + λS

∂SW2(w(k),[v])

∂w(k)
i

)
(F)

w (k+1)
i = prox τ ·λRR

(
w (k+ 1

2 )
)

(i) (B)

where
F′(w(k),u)(i) = λL(w (k)

i − ui ) + λLS div
∇ui

‖∇ui‖
,
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Application to Contrast Enhancement (equalization)

Original image W2 Projection W2 Regularization
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Regularized Color transfer

Source Image X

Style Image Y

SW2 Projection SW2 Regularization

Zoom
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Part III

Approximate Wasserstein Barycenter

J. Rabin Approximate Wasserstein Metric for Imaging Problems



Wasserstein Barycenter Sliced Wasserstein Barycenter Experimental results Applications Conclusion

Wasserstein Barycenter definition for point clouds

Wasserstein Barycenter Given a family {Y j}j∈J of point clouds, compute a
weighted average point cloud X?, that is defined, by analogy to the
Euclidean setting as the minimizer

X? := Bar(ρj ,Y j )j∈J ∈ argmin
X

∑
j∈J

ρjW2(X ,Y j )2, (9)

where ρj > 0, is a set of weights, that is constrained to satisfy
∑

j ρj = 1.

Remark: See [Agueh and Carlier, 2011, Gangbo and Świȩch, 1998] for theoretical analysis

Alternative formulation This barycenter can equivalently been computed in
two steps, by first finding a set of permutations {σ?j }j∈J maximizing

{σ?j }j∈J ∈ max
{σj}j∈(ΣN )|J|

∑
i∈I

C(σ1(i), . . . , σ|J|(i)) (10)

where the weights are defined as

C(i1, . . . , i|J|) =
∑

k,` 6=k∈J

ρk ρ` 〈Y k
ik ,Y

`
i`〉 , (11)

and then averaging the assignments

X?
i =

∑
j∈J

ρjY j
σ?j (i) ∀i ∈ I . (12)
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Computing the Wasserstein Barycenter for d = 1

In the 1-D case, with points clouds, the Wasserstein barycenter can be
computed again in O(N log(N)) operations using each permutation σ?j that
orders the set of values Y j ⊂ R, ∀ j ∈ J.

The Wasserstein barycenter then reads

∀ i ∈ I,
(
Bar(ρj ,Y j )j∈J

)
i =

∑
j∈J

ρjY j
σ?j (i) . (13)
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Computing the Wasserstein Barycenter in general case (d > 1)

In the multi-dimensional case, the relaxed problem can be cast as a linear
program

max
P∈P|J|N

∑
(i1,...,i|J|)∈I|J|

Pi1,...,ij C(i1, . . . , i|J|) , (14)

where P |J|N ⊂ RN×...×N is a multi-dimensional stochastic matrix
and C is the cost matrix defined in Eq. (11).

Note: Now, the matrix P has N |J| elements.

Limitations

• Intractable for signal processing applications where N � 103

• Solution of (14) is not a point cloud anymore !

Remark: The optimal multi-assignment is a NP-hard problem
[Burkard et al., 2009] . . .
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Sliced Wasserstein Barycenter definition

Using the Sliced Wasserstein energy SW2, we define the Sliced
Wasserstein Barycenter of several point clouds {Y j}j∈J for a given set of
orientations Ψ as the point cloud

SBar(ρj ,Y j )j∈J ∈ arg min
X

∑
j∈J

ρj SW2(X ,Y j )2 . (15)
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Sliced Wasserstein Barycenter gradient descent

A similar gradient descent algorithm can be defined for Sliced Wasserstein
Barycenter.

• Initialization: X (0) := Y q , where q = argmaxj∈Jρj . Define a set Ψ of
chosen orientations on Sd−1.

• Iteration:

B Step 1: For each θ ∈ Ψ and j ∈ J compute the minimizer σ?j,θ of

Eθ(X (k),Y j ) = min
σ∈ΣN

∑
i∈I

〈X (k)
i − Y j

σ(i), θ〉
2 ;

B Step 2: For a given gradient step parameter λ 6 1, ∀ i ∈ I

X (k+1)
i = X (k)

i − λ · H†Ψ(X (k)
i )×

∑
θ∈Ψ

∑
j∈J

ρj

(
∇Eθ(X (k),Y j )

)
i
,

where H†Ψ is the pseudo-inverse Hessian matrix.

• Output: The Sliced Wasserstein Barycenter of {Y j}j is defined as
SBar(ρj ,Y j )j∈J := X (∞).
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Example with |J = 2|

Interpolation of 2 distributions.
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Example with |J = 3|
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Color transfer

Color harmonization of several images
. Step 1: compute Sliced-Wasserstein Barycenter of color statistics;
. Step 2: compute Sliced-Wasserstein projection of each image onto the
Barycenter;

. Step 3: Sliced-Wasserstein regularization.

Raw image sequence
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Color transfer

Color harmonization of several images
. Step 1: compute Sliced-Wasserstein Barycenter of color statistics;
. Step 2: compute Sliced-Wasserstein projection of each image onto the
Barycenter;

. Step 3: Sliced-Wasserstein regularization.

Sliced Wasserstein Projection on the barycenter

J. Rabin Approximate Wasserstein Metric for Imaging Problems



Wasserstein Barycenter Sliced Wasserstein Barycenter Experimental results Applications Conclusion

Color transfer

Color harmonization of several images
. Step 1: compute Sliced-Wasserstein Barycenter of color statistics;
. Step 2: compute Sliced-Wasserstein projection of each image onto the
Barycenter;
. Step 3: Sliced-Wasserstein regularization.

Combination with the Sliced Wasserstein regularization framework
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Extension of Heeger and Bergen algorithm for texture mixing

Idea:

use the Sliced Wasserstein Barycenter to mix color textures
within the Heeger&Bergen texture synthesis framework.
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Original f 1 ρ = 0.1 ρ = 0.2 ρ = 0.3

ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

ρ = 0.8 ρ = 0.9 ρ = 1 Original f 2
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ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1
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Original ρ = 0.1 ρ = 0.2 ρ = 0.3

ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

ρ = 0.8 ρ = 0.9 ρ = 1 Original
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Examples of Texture mixing with extended Heeger and Bergen
algorithm

Original Y 1 ρ = 0.0 ρ = 0.3 ρ = 0.5 ρ = 0.6

ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 1.0 Original Y 2
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Examples of Texture mixing with extended Heeger and Bergen
algorithm

Original Y 1 ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.6

ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 1.0 Original Y 2
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Examples of Texture mixing with extended Heeger and Bergen
algorithm

Original Y 1 ρ = 0.0 ρ = 0.2 ρ = 0.4

ρ = 0.6 ρ = 0.8 ρ = 1.0 Original Y 2
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Conclusion

• A fast algorithm to approximate optimal transport between several
point clouds;

• A new and generic variational framework for regularization under
statistical constraints.

Future works:

• Extension to other ground cost functions and other statistics;

• Use data structure to speed-up the algorithm;

• Some artifacts are not removed (diffusion):

• Use more appropriate fidelity and regularity terms ? Example

• Define a penalty term depending on the transport plan regularity ?
Example
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Question time

Thank you for your attention !
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Stochastic gradient descent for Sliced Wasserstein projection

Alternative method: a Stochastic gradient descent scheme can be
implemented in a such way that [Bottou, 1998]:

B The set of orientations Ψ(k) used at each iteration k is random.

B The gradient steps {λk 6 1}k are s.t.
∑

k λk =∞ and
∑

k λ
2
k <∞ (e.g

λk = 1
k ) (optimal under some hypotheses which are not verified here).

Convergence: There is no proof of convergence in such settings,
nevertheless we have always observed that X (k) converges to a local
minimum which is a (non-optimal) permutation of the distribution Y .
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Results with stochastic gradient descent

Projection results with |Ψ| = 10d , respectively with and without fixed
direction set |Ψ|

Back
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Results with regularized Slice-Wasserstein projection

Given two point clouds X and Y ∈ Rd×N , compute a regularized Sliced -
Wasserstein Projection W ? ∈ Rd×N of X onto Y

W ? ∈ min
W∈Rd×N

‖W − X‖2 + λ ‖∇T‖2 + µ SW2(W ,Y )

where T = Y −W is the approximate transport plan

Results with µ = 103 and λ
µ ∈ {0, .1, .2, .5, 1, 2, 5, 10, 20, 50, 100, 200, 500} Back
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Back to part II Back to conclusion

J. Rabin Approximate Wasserstein Metric for Imaging Problems



Stochastic gradient descent Regularized Wasserstein projection Experiments

Back to part II Back to conclusion
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Back
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