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The Cosmic Microwave 
Background

• The Universe is filled with a blackbody radiation field at 
a temperature of 3K.

• Predicted by G. Gamow in 1948

• Observed for the first time by Penzias and Wilson (1965)

• Confirmed by COBE (1990)
•Spectacular measurement of anisotropies by WMAP

•WMAP observed the CMB since 2002. Fifth and Last 
data release in August 2011.

•PLANCK first cosmological results in January 2013.



•Successor of WMAP (better resolution, better sensitivity, more channels)
•Launched on May 14, 2009
•Two instruments LFI and HFI
•Nine Temperature maps at  30,44,70,100,143,217,353,545,857 GHz + Polarization
•Angular resolutions:  33’, 24’, 14’, 10’, 7.1’, 5’, 5’, 5’, 5’

==> DATA Released in 2013

  PLANCK and Sparsity  





WMAP

The CMB exhibits Fluctuations

The Cosmic Microwave Background (CMB) is a relic radiation (with a temperature equals to 2.726 Kelvin) 
emitted 13 billion  years ago when the Universe was about 370000 years old. 

Cosmic Microwave Background (CMB)
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ΩDE

Measure of Time 
Variation in the 
Gravitational Potential on 
large scales (linear)

Detect by cross-
correlating with local 
tracers of mass

       ≠ 0 (flat prior)

Open Universe

Deviations from GR on large scales

Detection 
implies

 
→

Integrated Sachs-Wolfe Effect (ISW)

 F.-X. Dupe, A. Rassat, J.-L. Starck, M. J. Fadili , “Measuring the Integrated Sachs-Wolfe Effect”, arXiv:1010.2192,  Astronomy & 
Astrophysics  534, A51+, 2011.



Temperature

Galaxies

ISW (T)

ISW Reconstruction

 Previously: Cross-Correlate
<Tg>

 Reconstruct part of 
Temperature map due to ISW
 Reconstruct large scale secondary 

anisotropies
 Due to one or several galaxy 

distributions in foreground
 Recover primordial T at large 

scales
 Detection tricky  

Reconstruction complex 
problem



CMB

CS

SZ

Total

•J.-L. Starck, N. Aghanim and O. Forni, "Detecting Cosmological non-Gaussian Signatures by Multi-scale Methods", A&A, 416, 9--17, 2004.
•J. Jin, J.-L. Starck, D.L. Donoho, N. Aghanim and O. Forni, "Cosmological Non-Gaussian Signatures Detection: Comparison of Statistical Tests",  Eurasip Journal on 
Applied Signal Processing,  15 pp 2470-2485, 2005.

       Cosmic Strings
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PLANCK SIMULATED POLARIZED DATA: 
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OrientationMagnitude



IWCS - June, 1st  2011CS-Orion meeting  - 01/28/2011

CMB simulated map 

The importance of Source Separation
Extra foregrounds are superimposed with the CMB !!!

Point sources, galactic foregrounds, ... etc



30 GHz

44 GHz

70 GHz

100 GHz

143 GHz

217 GHz353 GHz545 GHz857 GHz



CMB Thermal SZ Synchrotron Free-free Dust

Sky components

Observations
Linear combination + PSF + Noise



WMAP

The CMB exhibits Fluctuations

The Cosmic Microwave Background (CMB) is a relic radiation (with a temperature equals to 2.726 Kelvin) 
emitted 13 billion  years ago when the Universe was about 370000 years old. 

Cosmic Microwave Background (CMB)



Healpix
K.M. Gorski et al., 1999, astro-ph/9812350, 

http://www.eso.org/science/healpix

• Pixel = Rhombus
• Same Surfaces  
• For a given latitude : 

regularly spaced  
• Number of pixels:
    12 x (Nsides)2

• Included in the software:
– Anafast
– Synfast



Is Sparse models adapted to PLANCK Data ?

DustDust

CMB CMB

• Components are sparse in a wavelet dictionary

Spatial Domain Wavelet Domain
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Isotropic Undecimated Wavelet on the Sphere

16

j=1

j=2

j=3

j=4

     Undecimated
Wavelet Transform

Wavelets, Ridgelets and Curvelets on the Sphere, Astronomy & Astrophysics, 446, 1191-1204, 2006.





Curvelet functions on the sphere
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  Dictionaries

Spherical Harmonics

Wavelets

Curvelets
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 Polarized Dictionary:  E/B Polarized Wavelet   
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j=4

J.-L. Starck,  Y. Moudden and J. Bobin, "Polarized Wavelets and Curvelets on the Sphere", Astronomy and Astrophysics,  497,  3, pp 931--943, 2009.
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 Curvelet and E/B Mode Decomposition
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Polarized Data Denoising 

Where 

Hard thresholding corresponds to the following non linear operation:



Polarized Data Denoising 



Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data: Sparse Inpainting
•M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component 
Analysis (MCA)", ACHA, Vol. 19, pp. 340-358,  2005.
• P. Abrial, Y. Moudden, J.L. Starck, M.J. Fadili, J. Delabrouille, and M. Nguyen, "CMB Data Analysis and Sparsity" , Statistical 
Methodology , Vol 5, No 4, pp 289-298, 2008.

Theoretical justification through the sampling theory of Compressed Sensing ? 
Rauhut and Ward, “Sparse Legendre expansion via l1 minimization”, Constructive Approximation journal, 2010.

Sparse-Inpainting preserves the ISW and the Weak Lensing signal.
L. Perotto, J. Bobin, S. Plaszczynski,  J.-L. Starck, and A. Lavabre, "Reconstruction of the CMB lensing for Planck",  5109 , A4, A&A, 2010.

 F.-X. Dupe, A. Rassat, J.-L. Starck, M. J. Fadili , “Measuring the Integrated Sachs-Wolfe Effect”,  A&A, arXiv:1010.2192, 534, A51+, 2011.



 Semi-Blind Source Separation
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Standard approaches amount to model each observation as a linear mixture
of elementary components (i.e. CMB, SZ, Synchrotron, Free-Free, Dust ...) :

X = AS+NWhich can be recast as:

Blind source separation:
The objective is to estimate both A and S simultaneously !!

∀i; xi =
�

j

aijsj + nj

- CMB, SZ and Free-Free emission : their electromagnetic spectrum is well known
 (i.e. the related columns of A are known and fixed).
- Synchrotron emission : rank-1 assumption / its electromagnetic spectrum is a power 
law with an unknown spectral index.

We have nine channels and we search for nine sources: 

4 sources are modeled and 5 are not modeled.



Morpho-Spectral Diversity

Spatial Dictionary with 
Spectral Dictionary

€ 

S = s1,...,sn[ ]Source: Data: 

€ 

X = x1,...,xm[ ] = AS

€ 

xl = ai,l
i=1

n

∑ si
€ 

X = x1,...,xm[ ]



 Sparse Component Separation: the GMCA Method
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•J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden,  "Sparsity, Morphological Diversity and Blind Source 
Separation", IEEE Trans. on Image Processing,  Vol 16, No 11, pp 2662 - 2674, 2007.
•.J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, "Blind Source Separation: The Sparsity Revolution", 
Advances in Imaging and Electron Physics , Vol 152, pp 221 -- 306, 2008.

 A and S are estimated alternately and iteratively in two steps : 

1) Estimate S assuming A is fixed (iterative thresholding) :

2) Estimate A assuming S is fixed (a simple least square problem) :

{S} = ArgminS
�

j

λj�sjW�1 + �X−AS�2F,Σ

{A} = ArgminA�X−AS�2F,Σ

==> GMCA searches a  sparse solution S  in the dictionary           subject to the constraint 
that  the norm                         is  minimal.

€ 

φ

We define a dictionary 

Source: Data: 

€ 

φ
X = [x1, ..., xn] = AS + NS = [s1, sn]

� X −AS �2



PLANCK Simulated Data



Planck - WG2 - Challenge 2  

Input simulated CMB map (mK)

  Estimated map with GMCA
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Planck - WG2 - Challenger 2 comparaisons - power spectrum
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GMCA has the lowest spectral residuals at  low l.
Plot shows C_l of (reconstructed CMB – input CMB) evaluated at high galactic latitudes.

Sam Leach (SISSA), June 19, 2008, WG2 meeting, Munich
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Limitations  

- Limitation of GMCA: 
✴    One matrix to describe the whole sky (i.e. the simplest model !)

✴    PSF were not taken into account properly 
 

✴    Non stationary noise.

Y = A X + N

But three main problems: 
i)  A is spatially variant.
ii) This model does not take into account the beam.
iii) Noise is not homogeneous.

GMCA Model: 



 Component Separation  

Planck provides data that do not share the same resolution :

Planck beam
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 Component Separation: more problems
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More formally:
∀i; xi = bi �




�

j

aijsj



 + ni

Globally: X = H (AS) +N
where         is the multichannel convolution operatorH

The mixture model no more holds !           is singular !H

Spectral behavior varies spatially for some   components 
(dust, synchroton):  



The BEAM problem

1- Work in the spherical harmonic domain (SMICA)
2- Perform the component separation several times: 

. one with all channels up to l=300, 

. Repeat with less channels up to  500, 800, 1200, 3000.

. Merge all results

The second approach could be done in much more elegant 
way using the Wavelet-Vaguelette Decomposition (Donoho, 
1995, Abramovich, 1998).



 Component Separation  
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=> Use Wavelets to work at different  resolutions: 
Planck beam

0 500 1000 1500 2000 2500
Spherical harmonic

0.0
0.2

0.4

0.6

0.8
1.0

H
[1−9]
1 H

[2−9]
2 H

[3−9]
3 H

[5−9]
4

=> Assume the mixing matrix varies smoothly 
     Partitionning of the Wavelet Scales 



Wavelet-Vaguelette GMCA Decomposition

f =
�

j

�

k

�Kf,Ψj,k�ψj , k
WVD

f̃ =
�

j

�

k

∆(�y, Ψj,k�)ψj , k

Yi =
�

j Ki(AjX)i + Ni

y = Kf + n with K∗Ψj,k = ψj,k

Inverse problem

Multi-channel WVD

GHz

X̃s =




�

j

�

k

Ã+
j

�
Yi,Ψ

(i)
j,k

�
ψj,k





s

with K∗
i Ψ(i)

j,k = ψj,k=βj,k =
�
Yi,Ψ

(i)
j,k

�
Aj αj,k = �Xs,ψj,k�

min
αj ,Aj

�

j

1
2σ2

�βj −Ajαj�2 s.t. α is sparse
The sparse GMCA solution is obtained by minimizing:



j=1

j=2

j=3

j=4

Global 

12 Blocks

12*4 Blocks

12*16 Blocks

12*32 Blocks

Undecimated Isotropic Wavelet Transform + Block Partitioning

LOCAL GMCA



Channel 1 Channel 9Channel 2

GMCA

Scale



Wavelet-Vaguelette GMCA Decomposition

f =
�

j

�

k

�Kf,Ψj,k�ψj , k f̃ =
�

j

�

k

∆(�y, Ψj,k�)ψj , kwith K∗Ψj,k = ψj,k

GMCA

Wavelet
Partionning

DATA

GMCA

GMCA

Wavelet
Partionning

Wavelet
Partionning

GMCA

Wavelet-Vaguelette
Reconstruction
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CMB map estimation Input

Input CMB Map
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CMB map estimation lGMCA

Estimate CMB Map
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CMB map estimation Residual at 60min

Residual map for Global GMCA



CS-Orion meeting  - 01/28/2011

CMB map estimation Residual at 60min

Residual map for L-GMCA
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CMB map estimation Residual per latitude

Residual per band at 60min
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  Correlation of CMB Wavelet Scale 1 (l=2250) with Dust template (IRIS map, Miville-Deschene & Lagache, 2005).

Cross-Correlation with Dust Template per Latitude Band:
Wavelet Scale 1 (l=[1500, 3000])



Wiener Filtering  
Noise have an additive contribution to the CMB map : y = x+ n
Standard approach - Wiener in spherical harmonics: ∀�,m > 0; ax̂�m =

C�

C� + Cn
�

ay�m

But does not account for the non-stationarity of the noise !!

More rigorously, min
x

xTFHC−1Fx+ (y − x)T Σ−1 (y − x)

Sph. Harmonics

CMB power spectrum

Noise covariance matrix

But wavelets are well known to decorrelate 1/f noise ==> 

LInear Wavelet-based Filtering (Iterative Wiener Algorithm)
 
- J. Bobin, J.-L. Starck, F. Sureau, J. Fadili, “CMB Map Restoration,  http://arxiv.org/abs/1111.3149, submitted.
 

• Wavelet-based Gaussian modeling of the noise covariance matrix, either from the JackKnife map 
or noise simulations.
• Solve the equation using an iterative Forward-Backward Algorithm.



Accounting 
for the non-stationarity

Result on WG2 Simulations



CMB power spectrum of the CMB map computed by:
- GMCA CMB (black)
- GMCA + Wiener (blue)
- GMCA + LIW-filtering (in red). 

GMCA-LIW Filtering



Whatever the estimator used to estimate the CMB map, the CMB map will
be contaminated by spurious foreground residuals  

y = x+ n+ f

From the decorrelation of CMB, noise and foregrounds:

CMB Noise Foregrounds

We use exactly the same wavelet-based Gaussian modeling. 

σ̂f
j [k]

2 =

�
σ̂y
j [k]

2 − 1

4π

�

�

(2�+ 1)ψ2
j,�C� − σ̂n

j [k]
2

�

+

σ̂y
j [k]

2 = σ2
j + σ̂n

j [k]
2 + σ̂f

j [k]
2

Beyond Noise Reduction



Some results

Noise only

Noise + residuals only



MSE per latitude - wavelet scale #1
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Some results

Kurtosis per wavelet scale
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Some results

Kurtosis per latitude - wavelet scale #1
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Sparsity and CMB Conclusions
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Sparsity is very efficient for

Inverse problems (denoising, deconvolution, etc).

Inpainting

Component Separation.

Wiener Wiltering.

Perspectives

Estimator Aggregation.

Dictionary Learning.

Postdoc position available at CEA-Saclay


