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Sampling multimodal densities in high dimensional sampling space

Introduction

Sample from a target distribution π dλ on X ⊆ R`,
when π is (possibly) known up to a normalizing constant,

↪→ Hereafter, to make the notations simpler, π is assumed to be normalized

and in the context

π is multimodal

large dimension

Research guided by Computational Bayesian Statistics

π: the a posteriori distribution, known up to a normalizing constant

Needed: algorithms to explore π, to compute expectations w.r.t. π, · · · .
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Usual Monte Carlo samplers

Usual Monte Carlo samplers

1 Markov chain Monte Carlo (MCMC)
Sample a Markov chain (Xk)k having π as unique invariant distribution
Approximation:

π ≈
1

n

n∑
k=1

δXk

Example: Hastings-Metropolis algorithm with proposal kernel q(x,y)
given Xk, sample Y ∼ q(Xk,·)
accept-reject mecanism

Xk+1 =

{
Y with probability 1 ∧ π(Y )

π(Xk)
q(Y,Xk)
q(Xk,Y )

Xk otherwise

2 Importance Sampling (IS)
Sample i.i.d. points (Xk)k with density q - proposal distribution chosen by
the user
Approximation:

π ≈
1

n

n∑
k=1

π(Xk)

q(Xk)
δXk
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The proposal mecanism

The proposal mecanism: MCMC

Toy example in the case: Hastings-Metropolis algorithm with Gaussian
proposal kernel

q(x,y) ∝ exp

(
−1

2
(y − x)TΣ−1(y − x)

)
Acceptance-rejection ratio: 1 ∧ π(Y )

π(Xk)
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Fig.: For three different values of Σ: [top] Plot of the chain (in R);[bottom] autocorrelation function
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The proposal mecanism

The proposal mecanism: Importance Sampling (1/2)

Toy example:

compute

∫
R
|x|π(x)dx when π(x) ∼ t(3) ∝ 1

(1 + x2

3
)2

Consider in turn the proposal q equal to a Student t(1) and then to a
Normal N (0,1)
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The proposal mecanism

The proposal mecanism: Importance Sampling (2/2)

The efficiency of the algorithm depends upon the proposal distribution q:
if few large weights and the others negligible, the approximation is likely
not accurate

Monitoring the convergence: there exist criteria measuring the proportion
of “ineffective draws”:

Coefficient of Variation
Effective Sample Size
Normalized perplexity
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Adaptive Monte Carlo samplers

Adaptive Monte Carlo samplers

To fix some design parameters and make the samplers more efficient:
adaptive Monte Carlo samplers were proposed

Adaptive Algorithms:

- The optimal design parameters are defined as the solutions of an
optimality criterion. In practice, it can not be solved explicitly.
- Based on the past history of the sampler, solve an approximation of
this criterion and compute the design parameters for the current run
of the samplers.
- Repeat the scheme: adaption/sampling.
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Adaptive Monte Carlo samplers

Adaptive MC sampler: example of adaptive MCMC (1/2)

Adaptive Hastings-Metropolis algorithm with Gaussian proposal distribution

qΣ(x,y) ∝ exp

(
−1

2
(y − x)TΣ−1(y − x)

)

Design parameters: the covariance matrix Σ

Optimal criterion: by using the scaling approach for Markov Chains, it is
advocated pioneering work: Roberts, Gelman, Gilks (1997)

Σ =
(2.38)2

`
× covariance of π

Iterative algorithm Haario, Saksman, Tamminen (2001)

Adaption Update the covariance matrix

Σt =
(2.38)2

`
× Σ̂

(π)
t

Sampling one step of a Hastings-Metropolis algorithm with proposal
qΣt to sample Xt+1.
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Adaptive MCMC

An elementary example : the Adaptive Metropolis
Algorithm

I Yk+1 = Xk + Zk+1 where Zk+1 ∼i.i.d. q̄, and q̄ is symmetric (i.e.
q̄(z) = q̄(−z))

I In this case, q(x, y) = q(y, x) = q̄(y − x) = q̄(x− y) and the
acceptance rate does not depend on the proposal distribution

α(x, y) = 1 ∧ π(y)

π(x)

I ... biased random walk where some moves get rejected.
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Adaptive MCMC

Influence of the scaling

I If the variance is either too small or too large, then the
convergence rate of the Markov chain is slow :

1. too small... almost all the proposal are accepted. Nevertheless, the
stepsizes are small, and the algorithm visits the state space very
slowly.

2. too large... many propositions fall in regions where π is very small.
These proposals are often rejected and the algorithm get stuck at a
point.

Finding a proper scale is thus mandatory ! but it is not always
obvious to say what small or large mean for a given distribution π and a
given function.
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Adaptive MCMC

Scaling
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Adaptive MCMC

Optimal Scaling of the RWM

I A useful idea to get a better understanding of the influence of
scaling is to consider a high-dimensional limit, i.e. the state space
X = Rd where we let the dimension d→∞.

I Under appropriate assumptions, each coordinate of the Markov chain

{X(d)
k,i }di=1 converges to a diffusion limit.

I The choice of an optimal scaling then translates into the
optimization of the limiting diffusion speed, which is rather easy to
handle.
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Adaptive MCMC

Diffusive Limits

I Stationary distribution : π(d)(x1, . . . , xd) =
∏d
i=1 f(xi) on Rd

(d→∞)

I Metropolis proposal : q
(d)
θ (x1, . . . , xd) ∼ N

(
0, (θ2/d)Id

)
... with

variance decreasing as 1/d.

I Interpolated process : Z
(d)
t = X

(d)
[td],1... we consider a single

component and we speed up the time scale by d.

I When d becomes large, a single component becomes independent
from the other components which globally act as a random
environment.
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Diffusive Limits
Z(d) ⇒d Z in the Skorokhod space, where Z is a solution the Langevin
SDE

dZt = v1/2(θ)dBt + (1/2)v(θ)∇ log f(Zt)dt

v(θ) = θ2τ (∞) [θ, I(f)]

where,
τ (∞) [θ, I(f)] = lim

d→∞
τ (d)(θ)

is the limit of the acceptance rate in stationarity,

τ (d)(θ) =

∫∫
π(d)(x)q

(d)
θ (y − x)

{
1 ∧ π

(d)(y)

π(d)(x)

}
dxdy

with x = (x1, x2, . . . , xd) and

I(f) =

∫ [(
d log f(x)

dx

)′]2

dx .
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Adaptive MCMC

Diffusion speed

I v(θ) = 2θ2τ (∞) [θ, I(f)] is the speed of the limiting diffusion :
Zt = Z̃v(θ)t where {Z̃t} is a solution of the Langevin SDE

dZ̃t = dBt + (1/2)∇ log f(Z̃t)dt .

I Optimizing the scale amounts to find θ which maximizes the
diffusion speed.



Adaptive and Interacting MCMC algorithms

Adaptive MCMC

Diffusion speed optimization

I The limiting acceptance rate is given

τ (∞) [θ] = 2Φ

(
θ

√
I(f)

2

)
⇐⇒ θ = 2√

I(f)
Φ−1

(
τ (∞) [θ] /2

)
.

I Since v(θ) = θ2τ (∞) [θ] the speed may be rewritten as a function of
the mean acceptance rate in stationarity

v(θ) ∝ w
[
τ (∞)(θ)

]
w : τ 7→ τΦ−1(τ/2) .

I The speed is maximized if the scale is chosen so that τ (∞) [θ?],
where τ̄ is the maximum of w.

I The optimum value of the acceptance rate may be shown to be
τ̄ ≈ 0.234...
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Adaptive MCMC

Pros and Cons of diffusion limits

I Empirically this 0.234 rule has been observed to be approximately
right much more generally.

I Extensions and generalisations of this result can be found in
(Roberts and Rosenthal, 2001) and (Bedard, 2007), (Pillai, Stuart,
2009), (Bedard, Douc, Fort, Moulines, 2010).

I The focus of much of this work is in trying to characterise when the
0.234 rule holds and to explain how and why it breaks down in other
situations.

I One major disadvantage of the diffusion limit work is its reliance on
asymptotics in the dimensionality of the problem. Although it is
often empirically observed that the limiting behaviour can be seen in
rather small dimensional problems, (see for example Gelman et al.,
1996), it is difficult to quantify this in any general way.
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Adaptive MCMC

How to control the Acceptance Rate

I Objective : Finding the scale θ therefore amounts to solve

h(θ)
def
=

∫∫ {
1 ∧ π(y)

π(x)

}
1

θ
q

(
y − x
θ

)
π(x)dxdy − τ̄ = 0,

I Under appropriate assumptions, θ → h(θ) is monotone with
limθ→0+ h(θ) = 1− τ̄ > 0 and limθ→∞ h(θ) = −τ̄ < 0... But h(θ)
cannot be computed explicitly !

I Suggest to use a stochastic approximation procedure to adapt
the scale θ.
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Adaptive MCMC

Adaptive Scaling Metropolis Algorithm

I Proposition & Accept/Reject

Yk+1 = Xk + θkN (0, Id)

Xk+1 =

{
Yk+1 with prob. α(Xk, Yk+1)

Xk otherwise

I Update the scaling factor

log(θk+1) = log(θk) + γk+1 {α(Xk, Yk+1)− τ̄}

where limk→∞ γk = 0 and
∑∞
k=1 γk =∞.
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Multidimensional Scaling

Multidimensional scaling

I Same asymptotic analysis (d→∞) with

π
(d)
Σd

(x) = |Σd|−1π(d)
(
Σ−1
d x

)
, π(d)(x1, . . . , xd) =

d∏
i=1

f(xi)

q ∼ N(0, (σ2/d)Id)

then Z
(d)
t = X[td],1 converges to the solution a Langevin SDE.

I the target acceptance rate (0.234...) which maximizes the speed of
the limiting diffusion is independent from the covariance but the
maximal achievable speed is strongly affected.

I Idea : adapt the scale and the covariance of the proposal.
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Adaptive MCMC

Multidimensional Scaling

Adaptive MCMC with multidimensional scaling
1. Simulate

Yk+1 = Xk +N (0, σkΓk)

Xk+1 =

{
Yk+1 with proba. α(Xk, Yk+1)

Xk otherwise

2. Update the target mean and covariance

µk+1 = µk + γk+1(Xk+1 − µk)

Γk+1 = Γk + γk+1

{
(Xk+1 − µk)(Xk+1 − µk)T − Γk

}
3. Control the global scale of the proposal

log(σk+1) = log(σk) + γk+1 (α(Xk, Yk+1)− τ̄)
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Multidimensional Scaling
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Multidimensional Scaling
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Multidimensional Scaling
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Adaptive Monte Carlo samplers

Adaptive MC sampler: example of adaptive MCMC (2/2)

Nevertheless, this receipe is not designed for any context.

Example: multimodality

Target distribution: mixture of
20 Gaussian in R2. The means of
the Gaussians are indicated with
a red cross.
5 106 i.i.d. draws

Adaptive Hastings Metropolis:
5 106 draws
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Adaptive Monte Carlo samplers

Adaptive MC sampler: example of Adaptive Importance Sampling (1/2)

Design parameter: the proposal distribution

Optimal criterion: choose the proposal density q among a (parametric)
family Q as the solution of

argminq∈Q

∫
log

(
π(x)

q(x)

)
π(x)λ(dx)⇐⇒ argmaxq∈Q

∫
log q(x) π(x)λ(dx)

Iterative algorithm: O. Cappé, A. Guillin, J.M. Marin, C.Robert (2004)

Adaption Update the sampling distribution

qt = argmaxq∈Q
1

n

n∑
k=1

log q(X
(t−1)
k )

π(X
(t−1)
k )

qt−1(X
(t−1)
k )

Sampling Draw points (X
(t)
k )k + importance reweighting

π ≈ 1

n

n∑
k=1

π(X
(t)
k )

qt(X
(t)
k )

δ
X

(t)
k
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Adaptive Monte Carlo samplers

Adaptive MC sampler: example of Adaptive Importance Sampling (2/2)

Nevertheless, it is known that such Importance Sampling techniques are
not robust to the dimension: when sampling on R` with ` > 15, the
degeneracy of the importance ratios

π(Xk)

q(Xk)

can not be avoided.
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Conclusion

Conclusion

Usual adaptive Monte Carlo samplers are not robust (enough) to the
context of

• multimodality of the target distribution π: how to jump from modes
to modes.

• large dimension of the sampling space

Importance Sampling:
π(x)
q(x)

MCMC: 1 ∧ π(y)q(y,x)
π(x)q(x,y)

= 1 ∧ π(y)
π(x)

when q is a symetric kernel

New Monte Carlo samplers combine

tempering techniques and/or biasing potential techniques

and

sampling steps.
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Tempering: the idea

0
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Learn a well fitted proposal mecanism by considering tempered versions
π1/T

(T > 1) of the target distribution π.

Hereafter, an example where tempering is plugged in a MCMC sampler.
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The Equi-Energy sampler

Example: Equi-Energy sampler (1/6)

Kou, Zhou and Wong (2006)

In the MCMC proposal mecanism, allow to pick a point from an auxiliary
process designed to have better mixing properties.

Y
1

Y
2

Y
t-1

Y
t

θ
1

θ
2

θ
t-1 θ

t

Auxiliary process
With target πβ

X
1

X
2

X
t-1

X
t

The process of interest
With target π
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The Equi-Energy sampler

Example: Equi-Energy sampler (2/6)

Algorithm: at iteration t, given

the current state Xt

the samples Y1, · · · ,Yt from the auxiliary process

1 with probability 1− ε, draw
Xt+1 ∼ MCMC kernel with invariant distribution π

2 with probability ε, choose a point Y` among the auxiliary samples in the
same energy level as Xt and accept/reject the move Xt+1 = Y`.
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current state

target distribution

local move

tempered distribution

equi-energy jump

boundary 1

boundary 2
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The Equi-Energy sampler

Example: Equi-Energy sampler (3/6), numerical illustration

π is a mixture of 20 Gaussian distributions.
With 4 auxiliary processes πβ4 , · · · ,πβ1 , 0 < β4 < · · · < β1 < 1.
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The Equi-Energy sampler

Example: Equi-Energy sampler (4/6), numerical illustration

Schreck, F. and Moulines (2013)

Problem: Motif sampling in biological sequences
- objective: find where motifs (a subsequence of length w = 12) are,
in a ADN sequence of length L = 2000.
Observation: (s1, · · · ,sL) with sl ∈ {A,C,G,T}.
Quantity of interest: motifs position collected in (a1, · · · ,aL) with
aj ∈ {0, · · · ,w}

1  .… w1  .… w0       ...            0 0                    ...                         0 0  ...  
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Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (4/6), numerical illustration

Schreck, F. and Moulines (2013)

Result: EE with 4 auxiliary chains and 3 energy rings
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Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (5/6), design parameters

Design parameters

the probability of interaction ε
the number of auxiliary processes and the scale of the βi
the energy rings
the MCMC kernels for the local moves

Convergence Analysis: Andrieu, Jasra, Doucet and Del Moral (2007,2008); F., Moulines, Priouret (2012); F.,

Moulines, Priouret and Vandekerkhove (2013)

Adaptive version of Equi Energy Sampler: Schreck, F. and Moulines (2013); Baragatti, Grimaud and

Pommeret (2013)



Sampling multimodal densities in high dimensional sampling space

Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (6/6), transition kernel

Let us describe the conditional distribution of Xt+1 given the past:

Pθt(Xt,A) = (1− ε)P (Xt,A)

+ ε

∫
· · · g(Xt,y)θt(dy)︸ ︷︷ ︸

proposition with selection

where

θt =
1

t

t∑
k=1

δYk
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Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (6/6), transition kernel

Let us describe the conditional distribution of Xt+1 given the past:

Pθt(Xt,A) = (1− ε)P (Xt,A)

+ ε

∫
1 ∧ π(y) g(y,Xt) π

β(Xt)

π(Xt)g(Xt,y) πβ(y)︸ ︷︷ ︸
acceptance-rejection

g(Xt,y)θt(dy)︸ ︷︷ ︸
proposition with selection

where

θt =
1

t

t∑
k=1

δYk
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The Equi-Energy sampler

Example: Equi-Energy sampler (6/6), transition kernel

Let us describe the conditional distribution of Xt+1 given the past:

Pθt(Xt,A) = (1− ε)P (Xt,A)

+ ε

∫
1 ∧ π(y) g(y,Xt) π

β(Xt)

π(Xt)g(Xt,y) πβ(y)︸ ︷︷ ︸
acceptance-rejection

g(Xt,y)θt(dy)︸ ︷︷ ︸
proposition with selection

where

θt =
1

t

t∑
k=1

δYk
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The idea

Among the Importance Sampling Monte Carlo sampler

π ≈ 1

n

n∑
t=1

π(Xt)

q?(Xt)
δXt where (Xt)t approximates q?

Idea from the molecular dynamics field; see e.g. Chopin, Lelièvre and Stoltz (2012) for the extension

to Computational Statistics Choose a proposal distribution of the form

q?(x) = π(x) exp (−A(ξ(x)))

where A(ξ(x)) is a biasing potential depending on few “directions of
metastability” ξ(x) and such that q is “less multimodal” than π.

Example:

Consider a partition of X in d strata: X1, · · · ,Xd and set ξ(x) = i for
any x ∈ Xi.
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Example: Wang-Landau algorithms (1/4)

Wang and Landau (2001) - very popular algorithm in the molecular dynamics field

Wang-Landau type algorithms: learn adaptively the proposal distribution

Proposal Distribution q
*.

At the same time, 
    − Learn the proposal distribution 
    − Sample points X

k
 approximating this proposal

distribution
    − Compute the associated importance weights θ

k

Approximate the
target π

At iteration t:

- approximation qt of q?

- draw Xt approximating qt,
and compute its associated im-
portance weight π(Xt)/qt(Xt).

π ≈ 1

n

n∑
t=1

π(Xt)

qt(Xt)
δXt
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Wang-Landau algorithms (2/4)

Key idea: q? is obtained by locally biasing the target distribution

q?(x) ∝
d∑
i=1

π(x)

θ?(i)
1IXi(x)

where
- X1, · · · ,Xd is a partition of the sampling space X.
- the weights θ?(i) are given by

θ?(i) =

∫
Xi
π(x) dx.

With this biasing strategy, the proposal distribution visits each stratum Xi
with the same frequency ∫

Xi
q?(x) dx =

1

d
.

Unfortunately,
- θ?(i) are unknown and have to be learnt on the fly.
- exact sampling under q? is not possible, but it can be replaced by a
MCMC step.
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Wang-Landau algorithms (2/4)

Key idea: q? is obtained by locally biasing the target distribution

q?(x) ∝
d∑
i=1

π(x)

θ?(i)
1IXi(x)

where
- X1, · · · ,Xd is a partition of the sampling space X.
- the weights θ?(i) are given by

θ?(i) =

∫
Xi
π(x) dx.

With this biasing strategy, the proposal distribution visits each stratum Xi
with the same frequency ∫

Xi
q?(x) dx =

1

d
.

Unfortunately,
- θ?(i) are unknown and have to be learnt on the fly.
- exact sampling under q? is not possible, but it can be replaced by a
MCMC step.
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Wang-Landau algorithms (3/4)

Wang-Landau algorithm: at iteration t, given

the current point Xt

the current bias θt = (θt(1), · · · ,θt(d))

1 Draw a new point

Xt+1 ∼ MCMC with invariant distribution qt(x) ∝
d∑
i=1

π(x)

θt(i)
1IXi(x)

2 Update the bias θt+1.

3 In parallel, update the approximation of π

π ∝ 1

n

n∑
t=1

(
d

d∑
i=1

θt(i)1IXi(Xt)

)
δXt
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Wang-Landau algorithms (4/4)

To learn θ? on the fly:

Different strategies in the literature, based on Stochastic Approximation
algorithms with controlled Markov chain dynamics (Xt)t

θt+1(i) = θt(i) + γt+1Hi(θt,Xt+1)

where Hi is chosen so that

- penalize the stratum currently visited: Hi(θt,Xt+1) > 0 iff
Xt+1 ∈ Xi
- the mean field function θ 7→

∫
H(θ,x) q?(x)dx admits θ? as the

unique root.

Two examples of updating rules:
1 if Xt+1 ∈ Xi

θt+1(i) = θt(i) + γt+1 θt(i)(1− θt(i))
θt+1(k) = θt(k)− γt+1 θt(i)θt(k) k 6= i

2

St+1(j) = St(j) + γ θt(j) 1IXj (Xt+1)

θt+1(j) =
St+1(j)∑d
r=1 St+1(r)
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Wang-Landau algorithms (4/4)

To learn θ? on the fly:

Different strategies in the literature, based on Stochastic Approximation
algorithms with controlled Markov chain dynamics (Xt)t

θt+1(i) = θt(i) + γt+1Hi(θt,Xt+1)

where Hi is chosen so that

- penalize the stratum currently visited: Hi(θt,Xt+1) > 0 iff
Xt+1 ∈ Xi
- the mean field function θ 7→

∫
H(θ,x) q?(x)dx admits θ? as the

unique root.
Two examples of updating rules:

1 if Xt+1 ∈ Xi
θt+1(i) = θt(i) + γt+1 θt(i)(1− θt(i))
θt+1(k) = θt(k)− γt+1 θt(i)θt(k) k 6= i

2

St+1(j) = St(j) + γ θt(j) 1IXj (Xt+1)

θt+1(j) =
St+1(j)∑d
r=1 St+1(r)
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Transition kernel

The conditional distribution of Xt+1 given the past is a MCMC kernel
with invariant distribution qt, denoted by Pθt

Example: HM with Gaussian proposal distribution

Pθ(x,A) =

∫
A

(
1 ∧ π(y)

π(x)

θ(str(x))

θ(str(y))

)
N (x,Σ)[dy]

+ δx(A)

∫
1−

(
1 ∧ π(y)

π(x)

θ(str(x))

θ(str(y))

)
N (x,Σ)[dy]
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Numerical illustration, a toy example
Target distribution: mixture of 20 Gaussian in R2. The means of the Gaussians
are indicated with a red cross
Wang Landau algorithm: 50 strata, obtained by partitioning the energy levels.

5 106 draws approximating q?:
the sampler was able to jump
the deep valleys and draw points
around all the modes.
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Numerical illustration: Structure of a protein

In biophysics, structure of a protein from its sequence.

AB model: two types of monomers A (hydrophobic) and B (hydophilic), linked
by rigidbonds of unit length to form (2D) chains. Given a sequence, what is the
optimal shape of the N monomers?
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Minimize the energy function H(x) on

x = (x1,2, x2,3, · · · , xN−2,N−1) ∈ [−π,π]N−2

where

H(x) =
1

4

N−2∑
i=1

(
1− cos(xi,i+1)

)
+ 4

N−2∑
i=1

N∑
j=i+2

 1

r12
ij

−
C(σi,σj)

r6ij


xi,j is the angle between i-th and j-th bond vector

rij is the distance between monomers i,j

C(σi,σj) = 1 (resp. 1/2 and −1/2) between monomers AA (resp. BB and AB).
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Numerical illustration: Structure of a protein

In biophysics, structure of a protein from its sequence.

AB model: two types of monomers A (hydrophobic) and B (hydophilic), linked
by rigidbonds of unit length to form (2D) chains. Given a sequence, what is the
optimal shape of the N monomers?
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Minimize the energy function H(x) on

minH(x)⇐⇒ maxπn(x) ∝ exp(−βnH(x)) βn > 0
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Numerical illustration: Structure of a protein

In biophysics, structure of a protein from its sequence.

AB model: two types of monomers A (hydrophobic) and B (hydophilic), linked
by rigidbonds of unit length to form (2D) chains. Given a sequence, what is the
optimal shape of the N monomers?
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(left) WL: initial config with energy 0.1945; (center) WL: optimal config with energy −3.2925; (right) optimal

config in the literature with energy −3.2941
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Design parameters (1/4)

Choice of the biasing potential A(ξ(x)) i.e. in the Wang-Landau algorithms

- Number of strata and the strata
- The update strategy for the bias vector θt

The MCMC kernels with target distribution qt

Convergence analysis: Liang (2005); Liang, Liu and Carroll (2007); Atchadé and Liu (2010); Jacob and Ryder

(2012); F., Jourdain, Kuhn, Lelièvre and Stoltz (2014a); F., Jourdain, Lelièvre and Stoltz (submitted)

Efficiency analysis: F., Jourdain, Kuhn, Lelièvre and Stoltz (2014b); F., Jourdain, Lelièvre and Stoltz

(submitted)

Adaptive Wang Landau: Bornn, Jacob, Del Moral and Doucet (2012)
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Design parameters (2/4)

Role on the limiting behavior of the sampler: convergence occurs whatever
the number of strata and the strata, for many MCMC samplers and many
update strategies of the bias vector.

Role on the transient phase of the sampler: for example, how long is the
exit time from a mode?

Let us illustrate the role of some design parameters on the exit time from a
mode when:

π(x1,x2) ∝ exp(−β U(x1,x2))1I[−R,R](x1)
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d strata (see the right plot); the chains are initialised at (−1,0)
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Design parameters (3/4)
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Fig.: [left] Wang Landau, T = 110 000 and d = 48. [right] Hastings Metropolis, T = 2 106 ; the red line is at x = 110 000
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Design parameters (4/4)

F., Jourdain, Lelièvre, Stoltz (2014)

We compute the (mean) exit times tβ from the left mode (time to reach the
right mode x > 1) for different values of d and [left] a fixed proposal scale σ in
the MCMC samplers; [right] a proposal scale σ ∝ 1/d in the MCMC samplers.
We observe

tβ = C(β,σ,d) exp(βµ) with a slope µ independent of β
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Controlled Markov chains (2/2)

These new samplers combine adaption/interaction and sampling: the
draws (Xt)t are from a controlled Markov chain

E [h(Xt+1)|Ft] =

∫
h(y)Pθt(Xt,dy)

where (Pθ,θ ∈ Θ) is a family of Markov kernels having an invariant
distribution πθ.

Examples

1 Wang Landau: the conditional distribution Xt+1|Ft is a

MCMC kernel with invariant distribution distribution qt ∝
∑d
i=1

π(x)
θt(i)

1IXi (x).

Here, πθ depends on θ and its expression is known.

2 Equi-Energy: the conditional distribution Xt+1|Ft is a
MCMC kernel indexed by the empirical distribution θt of the auxiliary process.
Here, πθ exists but its expression is unknown.

3 Adaptive Hastings-Metropolis: the conditional distribution Xt+1|Ft is a
MCMC kernel with invariant distribution π and proposal distribution N (Xt,θt)
Here, all the kernels have the same invariant distribution.
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Controlled Markov chains (2/2)

Question: let (Pθ,θ ∈ Θ) be a family of Markov kernels having the same
invariant distribution π. Let (θt)t be some Ft-adapted random processes
and draw

Xt+1|Ft ∼ Pθt(Xt,·)
Does (Xt)t converges (say in distribution) to π?

No.

Example:

if Xt = 0 Xt+1 ∼ P0(Xt,·)
if Xt = 1 Xt+1 ∼ P1(Xt,·)

where

P` =

(
1− t` t`
t` 1− t`

)
.

We have πP` = π with π ∝ (1,1) but the transition matrix of (Xt)t is

P̃ =

(
1− t0 t0
t1 1− t1

)
with invariant distribution π̃ ∝ (t1,t0)
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Controlled Markov chains (2/2)

Question: let (Pθ,θ ∈ Θ) be a family of Markov kernels having the same
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No.

Example:

if Xt = 0 Xt+1 ∼ P0(Xt,·)
if Xt = 1 Xt+1 ∼ P1(Xt,·)

where

P` =

(
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.
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)
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Sufficient conditions for the cvg in distribution (1/3)
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Sufficient conditions for the cvg in distribution (2/3)

E
[
h(Xt)|pastt−N

]
−
∫
h(y) πθ? (dy) = E

[
h(Xt)|pastt−N

]
−
∫
h(y) P

N
θt−N

(Xt−N ,dy)

+

∫
h(y) P

N
θt−N

(Xt−N ,dy)−
∫
h(y) πθn−N (dy)

+

∫
h(y) πθn−N (dy)−

∫
h(y) πθ? (dy)

Diminishing adaption condition Roughly speaking:

dist(Pθ,Pθ′) ≤ dist(θ,θ′)

If θt − θt−1 are close, then the transition kernels Pθt and Pθt−1 are close
also.

Containment condition Roughly speaking:

lim
N→∞

dist(PNθ ,πθ) = 0

at some rate depending smoothly on θ.

Regularity in θ of πθ so that

lim
t
θt = θ? =⇒ dist (πθt − πθ?)→ 0
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Sufficient conditions for the cvg in distribution (3/3)

F., Moulines, Priouret (2012)

Assume

A. (Containment condition)
∃πθ s.t. πθPθ = πθ
for any ε > 0, there exists a non-decreasing positive sequence {rε(n),n ≥ 0}
such that lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
[
‖P rε(n)
θn−rε(n)

(Xn−rε(n),·)− πθn−rε(n)
‖tv
]
≤ ε

B. (Diminishing adaptation) For any ε > 0,

lim
n→∞

rε(n)−1∑
j=0

E
[
sup
x
‖Pθn−rε(n)+j

(x,·)− Pθn−rε(n)
(x,·)‖tv

]
= 0

C. (Convergence of the invariant distributions) (πθn)n converges weakly to π
almost-surely.

Then for any bounded and continuous function f

lim
n

E [f(Xn)] = π(f)
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Convergence results

The literature provides sufficient conditions for

Convergence in distribution of (Xt)t

Strong law of large numbers for (Xt)t

Central Limit Theorem for (Xt)t

G.O. Roberts, J.S. Rosenthal. Coupling and Ergodicity of Adaptive Markov chain Monte Carlo algorithms. J. Appl. Prob. (2007)

G. Fort, E. Moulines, P. Priouret. Convergence of adaptive MCMC algorithms: ergodicity and law of large numbers. Ann. Stat.
2012

G. Fort, E. Moulines, P. Priouret and P. Vandekerkhove. A Central Limit Theorem for Adaptive and Interacting Markov Chain.
Bernoulli, 2013.

Conditions successfully applied to establish the convergence of Adaptive
Hastings-Metropolis, (adaptive) Equi-Energy, Wang-Landau, · · ·
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Example: Application to Wang Landau (1/2)

Theorem ( F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume · · ·
Then for any bounded measurable function f

lim
t

E [f(Xt)] =

∫
f(x) q?(x) dλ(x)

lim
T

1

T

T∑
t=1

f(Xt) =

∫
f(x) q?(x) dλ(x) almost-surely
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Example: Application to Wang Landau (1/2)

Theorem ( F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

1 The target distribution π dλ satisfies 0 < infX π ≤ supX π <∞ and
infi π(Xi) > 0.

2 For any θ, Pθ is a Hastings-Metropolis kernel with invariant distribution

∝
d∑
i=1

π(x)

θ(i)
1IXi(x)

and proposal distribution q(x,y)dλ(y) such that infX2 q > 0.

3 The step-size sequence is non-increasing, positive,∑
t

γt =∞
∑
t

γ2
t <∞
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Example: Application to Wang Landau (2/2)

Sketch of proof
(1.) The containment condition:
There exist ρ ∈ (0,1) and C such that

sup
x

sup
θ
‖P tθ (x,·)− πθ‖TV ≤ C ρt

(2.) The diminishing adaption condition:
There exists C such that for any θ,θ′

sup
x
‖Pθ(x,·)− Pθ′(x,·)‖TV ≤ C

d∑
i=1

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣
The update of the parameter satisfies: there exists C′ such that ∀t

‖θt+1 − θt‖ ≤ C′ γt+1

(3.) Convergence of πθn Requires to prove the convergence of Stochastic
Approximation algorithm with controlled Markov chain dynamics.
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