A Multivariate Gaussian Sampler in High Dimensions

Saïd MOUSSAOUI

Joint work with: Clément GILAVERT and Jérôme IDIER

Ecole Centrale de Nantes, IRCCyN, CNRS UMR 6597, Nantes, France

said.moussaoui@irccyn.ec-nantes.fr

MCMC workshop

26th November 2014 • Marseille, France

Reference: C. Gilavert, S. Moussaoui, J. Idier, Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems using

MCMC, IEEE Trans. Signal Processing, vol. 63, No. 1, pp. 70-80, 2015 (Arxiv preprint:1409.0606).

Introduction

Draw K samples $\{x_k\}_{k=1}^K$, from a N-dimensional Gaussian distribution

 $oldsymbol{x}_k \sim \mathcal{N}(oldsymbol{\mu},oldsymbol{R})$

with a mean vector $\boldsymbol{\mu} \in \mathbb{R}^N$ and a symmetric definite positive covariance matrix $\boldsymbol{R} \in \mathbb{R}^{N \times N}$.

Classical approach [Wold 1948; Scheuer and Stoller, 1962]

- 1. perform the Cholesky factorization, $oldsymbol{R} = oldsymbol{L}_r oldsymbol{L}_r^{
 m t}$, $\rightsquigarrow \mathcal{O}(N^3)$
- 2. draw a sample from a standard Gaussian distribution, $\boldsymbol{\omega} \sim \mathcal{N}(\boldsymbol{0}_N, \boldsymbol{I}_N)$,
- 3. retain $x = L_r \omega + \mu$.

 \triangleleft Main purpose: reduce the computation complexity of MCMC algorithms involving repeated application of high-dimensional Gaussian sampling

Outline

- 1. Gaussian sampling for a Bayesian inference
 - Context of inverse problems
 - Main approaches
- 2. Gaussian sampling within the Reversible Jump MCMC framework
 - The Reversible Jump MCMC framework
 - Proposed sampler
- 3. Sampler cost optimization and its adaptive tuning
 - Targeting an acceptance rate
 - Optimization of the computation cost
- 4. Concluding remarks

1. Gaussian sampling for a Bayesian inference

1.1 Context of inverse problems

The observations $oldsymbol{y} \in \mathbb{R}^M$ are expressed according to

$$y = H x + n \tag{1}$$

with $x \in \mathbb{R}^N$ the sought variable and $H \in \mathbb{R}^{M \times N}$ the observation matrix (convolution, projection, mixing)

- Gaussian likelihood: $m{y}|(m{x},m{\mu}_n,m{R}_n)\sim\mathcal{N}(m{H}m{x}+m{\mu}_n,m{R}_n)$,
- Gaussian prior: $m{x}|(m{\mu}_x,m{R}_x)\sim\mathcal{N}(m{\mu}_x,m{R}_x)$
 - Simple Gaussian model,
 - Gaussian Markov random fields,
 - Hierarchical Gaussian model (scale/location Gaussian mixtures).

• Inference from the posterior distribution,

$$P(\boldsymbol{x}, \Theta | \boldsymbol{y}) \propto P(\boldsymbol{y} | \boldsymbol{x}, \Theta) P(\boldsymbol{x} | \Theta) P(\Theta)$$

with Θ hyperparameter set, $\Theta = \{ oldsymbol{\mu}_x, oldsymbol{R}_x, oldsymbol{\mu}_n, oldsymbol{R}_n \}$

• Gibbs sampler: for $k = 1, \ldots, K$,

$$\begin{cases} \mathsf{sample} \ \Theta_k \sim P(\Theta | \boldsymbol{y}, \boldsymbol{x}_{k-1}) \\ \mathsf{sample} \ \boldsymbol{x}_k \sim P(\boldsymbol{x} | \boldsymbol{y}, \Theta_k) \end{cases}$$

According to the Bayesian model,

$$oldsymbol{x}|(oldsymbol{y},\Theta)\sim\mathcal{N}\left(oldsymbol{\mu},oldsymbol{R}=oldsymbol{Q}^{-1}
ight)$$

with

$$\boldsymbol{Q} = \boldsymbol{H}^{\mathrm{t}}\boldsymbol{R}_{n}^{-1}\boldsymbol{H} + \boldsymbol{R}_{x}^{-1}, \quad \rightsquigarrow \boldsymbol{Q} = \boldsymbol{F}^{\mathrm{t}}\boldsymbol{F}$$
(3)

$$\boldsymbol{Q}\boldsymbol{\mu} = \boldsymbol{H}^{\mathrm{t}}\boldsymbol{R}_{n}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}_{n}) + \boldsymbol{R}_{x}^{-1}\boldsymbol{\mu}_{x}. \quad \rightsquigarrow \boldsymbol{Q}\boldsymbol{\mu} = \boldsymbol{b}$$
(4)

MCMC workshop • 26th November 2014 • Marseille, France

5/28

(2)

 \triangleleft The calculation of the distribution involves the precision matrix Q, instead of R

 \triangleleft A matrix inversion is necessary to apply the classical sampling approach

 \triangleleft The posterior mean is given as the solution of a linear system depending on Q

Solution 1. Avoid high-dimensionnal matrix inversion. [Rue, 2001]

- 1. perform the Cholesky factorization of $m{Q} = m{L}_q m{L}_q^{ ext{t}}$, instead of $m{R}$,
- 2. draw a sample from a standard Gaussian distribution, $\boldsymbol{\omega} \sim \mathcal{N}(\boldsymbol{0}_N, \boldsymbol{I}_N)$,

3. solve $L_q z = b$ and get z,

4. retain x, solution of $L_q^{\mathrm{t}} x = z + \omega$.

- Solution 2. Perturbation-Optimization [Orieux et al., 2012; Lalanne 2001]
- 1. draw a sample from a standard Gaussian distribution, $\boldsymbol{\omega} \sim \mathcal{N}(\mathbf{0}_{M+N}, \boldsymbol{I}_{M+N})$,
- 2. get a sample from a Gaussian distribution, $\eta \sim \mathcal{N}(Q\mu, Q)$, according to $\eta = F^{\mathrm{t}} \omega + Q\mu$,
- 3. retain x, solution of $Qx = \eta$.

 \triangleleft The complexity of both solutions (1 and 2) is $\mathcal{O}(N^3)$ unless matrix \mathbf{Q} exhibits an exploitable structure,

 \triangleleft Matrix **Q** depends on Θ and, thus, varies during Gibbs sampler iterations.

* Practical alternative. [Bardsley, 2010 ; Papandreou et al., 2010 ; Tan et al., 2010]

Numerical complexity reduction by applying an early stopped iterative solver (conjugate gradient) in Step 3.

⊲ Question 1. Correctness of the sampler?

 \triangleleft Question 2. Choice of the truncation level?

Approximate resolution induces an incorrect sampling !

Let Q and μ be defined by

$$Q = R^{-1}$$
 with $R_{ij} = \sigma^2 \rho^{|i-j|}$ and $\mu_i \sim \mathcal{U}[0, 10], \quad (\forall i, j = 1, \dots, N)$ (5)

with N = 20, $\sigma^2 = 1$ and $\rho = 0.8$. Draw K = 10,000 samples.

Our proposal: Introduce an accept-reject step to correct this behavior.

2. Sampling within the Reversible Jump MCMC framework

- 2.1 Reversible Jump MCMC [Green, 1995 ; Waagepetersen and Sorensen, 2001]
- Construct a Markov chain whose distribution asymptotically converges to the target distribution $P_{\mathbf{X}}(\cdot)$.
- Introduce an auxiliary variable $z \in \mathbb{R}^L \sim f_Z(z|x_{old})$ and define a differentiable transformation $\phi(\cdot)$

$$oldsymbol{\phi}: ig(\mathbb{R}^N imes \mathbb{R}^Lig) \mapsto ig(\mathbb{R}^N imes \mathbb{R}^Lig) \ (oldsymbol{x}_{ ext{old}}, oldsymbol{z}) \mapsto ig(oldsymbol{x}, oldsymbol{s})$$

that must be reversible $\boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{s}) = (\boldsymbol{x}_{\mathrm{old}}, \boldsymbol{z}).$

ullet The transition from $x_{
m old}$ to $x_{
m new}$ is governed by an acceptance probability

$$\alpha(\boldsymbol{x}_{\text{old}}, \boldsymbol{x}) = \min\left(1, \frac{P_{\boldsymbol{X}}(\boldsymbol{x})P_{\boldsymbol{Z}}(\boldsymbol{s}|\boldsymbol{x})}{P_{\boldsymbol{X}}(\boldsymbol{x}_{\text{old}})P_{\boldsymbol{Z}}(\boldsymbol{z}|\boldsymbol{x}_{\text{old}})}|J_{\boldsymbol{\phi}}(\boldsymbol{x}_{\text{old}}, \boldsymbol{z})|\right).$$

where $J_{\phi}(\cdot)$ is the Jacobian determinant of $\phi(\cdot)$.

2.2 Gaussian sampling within RJMCMC

To sample from a Gaussian distribution $m{x} \sim \mathcal{N}\left(m{\mu}, m{Q}^{-1}
ight)$,

• An auxiliary variable $oldsymbol{z} \in \mathbb{R}^N$ is sampled from

$$P_{\boldsymbol{Z}}(\boldsymbol{z}|\boldsymbol{x}_{\text{old}}) = \mathcal{N}\left(\boldsymbol{A}\boldsymbol{x}_{\text{old}} + \boldsymbol{c}, \boldsymbol{B}\right).$$
(6)

The choice of $A \in \mathbb{R}^{N \times N}$, $B \in \mathbb{R}^{N \times N}$ and $c \in \mathbb{R}^{N \times N}$ will be discussed later.

• The deterministic move is performed using the transformation $oldsymbol{\phi}(\cdot)$, such that

$$\begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{s} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\phi}_1(\boldsymbol{x}_{\text{old}}, \boldsymbol{z}) \\ \boldsymbol{\phi}_2(\boldsymbol{x}_{\text{old}}, \boldsymbol{z}) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{x}_{\text{old}} + \boldsymbol{f}(\boldsymbol{z}) \\ \boldsymbol{z} \end{pmatrix}, \quad (7)$$

with functions $(\boldsymbol{f}: \mathbb{R}^N \mapsto \mathbb{R}^N)$, $(\boldsymbol{\phi}_1: (\mathbb{R}^N \times \mathbb{R}^N) \mapsto \mathbb{R}^N)$ and $(\boldsymbol{\phi}_2: (\mathbb{R}^N \times \mathbb{R}^N) \mapsto \mathbb{R}^N)$.

 $\triangleleft f(z)$ must be independent from x_{old} to ensure the reversibility condition

Proposition [Gilavert 2014]

Let an auxiliary variable z be obtained according to (6) and a proposed sample xaccording to the transformation defined by (7). Then the acceptance probability is

$$lpha(\boldsymbol{x}_{old}, \boldsymbol{x}) = \min\left(1, e^{-\boldsymbol{r}(\boldsymbol{z})^{\mathrm{t}}(\boldsymbol{x}_{old}-\boldsymbol{x})}
ight),$$

with $r(z) = Q\mu + A^{t}B^{-1}(z-c) - \frac{1}{2}(Q + A^{t}B^{-1}A)f(z)$.

In particular, the acceptance probability equals one when f(z) is the exact solution of the linear system

$$\frac{1}{2} \left(\boldsymbol{Q} + \boldsymbol{A}^{\mathrm{t}} \boldsymbol{B}^{-1} \boldsymbol{A} \right) \boldsymbol{f}(\boldsymbol{z}) = \boldsymbol{Q} \boldsymbol{\mu} + \boldsymbol{A}^{\mathrm{t}} \boldsymbol{B}^{-1} \left(\boldsymbol{z} - \boldsymbol{c} \right).$$
(8)

Proof. See paper [Gilavert 2015].

*** Consequence**

Setting A = B = Q and $c = Q\mu$

• defines $m{z} \sim \mathcal{N}(m{Q}m{x}_{
m old} + m{Q}m{\mu}, m{Q})$, which can also be expressed as $m{z} = m{Q}m{x}_{
m old} + m{\eta}$,

• simplifies equation (8) to a linear system $\boldsymbol{Q}\boldsymbol{f}(\boldsymbol{z})=\boldsymbol{z}$,

- cancels the correlation between successive samples when the acceptance probability equals one,
- by substituting $m{x} = m{f}(m{z}) m{x}_{
 m old}$ in (8), the latter becomes $m{Q}m{x} = m{\eta}.$

2.3 Reversible Jump Perturbation-Optimization algorithm

- 1. Sample $\boldsymbol{\eta} \sim \mathcal{N}\left(\boldsymbol{Q}\boldsymbol{\mu}, \boldsymbol{Q}\right)$.
- 2. Solve the linear system $Qx = \eta$ in an approximate way. Let \hat{x} denote the obtained solution and $r(z) = \eta Q\hat{x}$.

3. With probability $\min\left(1, e^{-r(z)^{t}(x_{\text{old}} - \widehat{x})}\right)$, set $x_{\text{new}} = \widehat{x}$, otherwise set $x_{\text{new}} = x_{\text{old}}$.

 \triangleleft To ensure reversibility of the deterministic move, the initial point x_0 of the solver must be such that $u_0 = x_0 + x_{old}$ does not depend on x_{old} .

 \triangleleft Consequence: setting $x_0 = 0$ or $x_0 = x_{old}$ is not allowed, while $x_0 = -x_{old}$ is the default choice corresponding to $u_0 = 0$.

Some and Some and So

Similarly to the T-PO, the proposed RJPO algorithm relies on the approximate resolution of the same linear system $Qx = \eta$, but with two additional features:

- An accept-reject strategy to ensure the sampler convergence,
- An initial point x_0 of the linear solver such that $x_0 + x_{
 m old}$ does not depend on $x_{
 m old}$.
- Implementation issues
- The linear conjugate gradient algorithm is used for the system resolution since it permits a matrix-free implementation with reduced memory requirements,
- A stopping rule based on a threshold on the relative residual norm is applied:

$$\epsilon = rac{\|oldsymbol{\eta} - oldsymbol{Q} x\|_2}{\|oldsymbol{\eta}\|_2}.$$

1) Application to the toy example

***** Acceptance probability

 \triangleleft The acceptance rate curve indicates a required minimal number of CG iterations,

 \triangleleft How to choose the appropriate truncation level to maximize efficiency?

2) Influence of the relative residual norm

*** Estimation error**

$$\operatorname{RMSE}(\boldsymbol{\mu}) = \frac{\|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\|_2}{\|\boldsymbol{\mu}\|_2} \quad \text{and} \quad \operatorname{RMSE}(\boldsymbol{R}) = \frac{\|\boldsymbol{R} - \hat{\boldsymbol{R}}\|_F}{\|\boldsymbol{R}\|_F},$$

where $\hat{\mu}$ and \hat{R} the empirical estimates using 10^5 generated Markov chain samples.

MCMC workshop • 26th November 2014 • Marseille, France

*** Convergence diagnosis and computation cost**

• Assess the total (cumulated) number of conjugate gradient iterations before convergence (diagnosis based on Gelman-Rubin convergence criterion on 100 parallel chains)

A lower acceptance rate induces a higher number of iterations due to slow convergence.
A minimal cost can be reached and it corresponds to an acceptance rate of almost one.

3. Adaptive tuning of the Gaussian sampler

3.1 Targeting a predefined acceptance rate

Adjust recursively the relative residual norm ϵ to achieve a desired acceptance rate α_t using a stochastic approximation procedure [Andrieu and Robert 2001]

$$\log(\epsilon_{k+1}) = \log(\epsilon_k) + \gamma_k \left[\alpha(\boldsymbol{x}_k, \boldsymbol{x}) - \alpha_t\right]$$
(9)

with $\gamma_k = K_0 k^{-\beta}$. (Take $K_0 = 1$ and $\beta = 0.5$.)

MCMC workshop • 26th November 2014 • Marseille, France

3.2 Minimization of the computation cost per effective sample

1) Statistical efficiency

• Effective sample size (ESS) [Goodman and Sokal, 1989]: number $n_{\rm eff}$ of independent samples, that would yield the same estimation variance in approximating the Bayesian estimator as $n_{\rm max}$ samples of the simulated chain:

$$n_{\text{eff}} = \frac{n_{\text{max}}}{1+2\sum_{k=1}^{\infty}\rho_k} \tag{10}$$

where ρ_k the autocorrelation coefficient at lag k. For a first-order autoregressive chain, $\rho_k = \rho^k$, $1 - \rho$

$$n_{\rm eff} = n_{\rm max} \frac{1-\rho}{1+\rho} \Longrightarrow \text{ ESS Ratio} = \frac{n_{\rm eff}}{n_{\rm max}}.$$
 (11)

• It defines how many iterations n_{\max} are needed for each resolution accuracy in order to get chains having the same effective sample size.

2) Computation cost per effective sample

We propose to define the *computing cost per effective sample* (CCES) as

$$CCES = \frac{J_{tot}}{n_{eff}} = J \cdot \frac{1+\rho}{1-\rho}.$$
(12)

where $J = J_{tot}/n_{max}$ is the average number of CG iterations per sample.

- The chain correlation ρ is an implicit function of the acceptance rate α . It has two terms:
 - With a probability (1α) , the accept-reject procedure produces identical (*i.e.*, maximally correlated) samples in case of rejection.
 - In case of acceptance, the new sample is slightly correlated with the previous one, because of the early stopping of the CG algorithm.
- The correlation induced in the case of acceptance is negligible compared to the correlation

induced by rejection.

Thus, $\rho = (1 - \alpha)$ and $\mathrm{CCES} = J \, \frac{1 + \rho}{1 - \rho} = \frac{2 - \alpha}{\alpha}$

• The best tuning of the relative residual norm leading to the lowest CCES satisfies

$$J\frac{d\alpha}{dJ} - \alpha + \frac{\alpha^2}{2} = 0.$$

 \triangleleft The solution can not be calculated analytically.

***** Adaptive tuning

The stochastic approximation procedure is now applied to adaptively adjust the optimal value of ϵ ,

$$\log \epsilon_{k+1} = \log \epsilon_k + \gamma_k \left(J_k \frac{d\alpha_k}{dJ} - \alpha_k + \frac{\alpha_k^2}{2} \right), \tag{13}$$

 \triangleleft There is no need to define the target acceptance probability.

3.3 Example of image superresolution

Original image

One observation Reconstructed image

Having 5 images of size 128×128 pixels (M = 81920) we reconstruct the original one of size 256×256 (N = 65536 pixels).

- The noise is assumed zero mean, Gaussian with an unknown precision matrix $oldsymbol{Q}_n = \gamma_n oldsymbol{I}$,
- A zero-mean Gaussian distribution x, with a precision matrix $Q_x = \gamma_x D^t D$ assigned to x, with D a circulant convolution matrix associated to a Laplacian filter.

- Non-informative Jeffrey's priors are assigned to the two hyper-parameters γ_n and γ_x .
- A Gibbs sampler is run for 1000 iterations and a burn-in period of 100 iterations.
- Sampled posterior statistics. Mean (standard deviation)

	γ_n	$\gamma_x \times 10^{-4}$	x_i
Cholesky	102.1 (0.56)	6.1 (0.07)	104.6 (9.06)
T-PO $\epsilon = 10^{-4}$	0.3 (0.06)	45 (0.87)	102.2 (3.30)
T-PO $\epsilon = 10^{-6}$	6.8 (0.04)	32~(0.22)	104.8 (2.34)
T-PO $\epsilon = 10^{-8}$	71.7 (0.68)	21 (0.29)	102.7 (2.51)
RJPO $\alpha_t = 0.99$	101.2 (0.55)	6.1 (0.07)	101.9 (8.89)

***** Acceptance rate

- **Solution** Solution time and memory usage
- The computation time per sample, on a Intel Core i7-3770 with 8 GB of RAM and a 64bit system :
 - Cholesky sampler: 20.3s and the required memory is about 6 GB
 - RJPO algorithm: 15.1s and the memory usage is less than 200 MB
- This last result is due to the use of a conjugate gradient on which each matrix-vector product is performed without explicitly writing the matrix Q.

4. Conclusions

- Convergent multivariate Gaussian sampling suitable for high-dimensional problems
- Empirical analysis of the statistical efficiency,
- Set an adaptive tuning allowing to optimize the computation cost.
- *** Open questions**
- Establish a link between the proposed strategy and random walk Metropolis Hastings (RWMH), Metropolis Adjusted Langevin Algorithm (MALA)?
- Use of the computation cost per effective sample for an adaptive scaling of RWMH and MALA?