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Introduction

Draw K samples {x}};* |, from a N-dimensional Gaussian distribution
L ~ N(/”'? R)

with a mean vector & € RY and a symmetric definite positive covariance matrix R € RY XY,

® Classical approach [Wold 1948 ; Scheuer and Stoller, 1962]
1. perform the Cholesky factorization, R = L, Lf, ~~ O(N?)

2. draw a sample from a standard Gaussian distribution, w ~ N (On, In),

3. retain x = L,w + L.

< Mawn purpose: reduce the computation complexity of MCMC algorithms involving

repeated application of high-dimensional Gaussian sampling
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1. Gaussian sampling for a Bayesian inference

1.1 Context of inverse problems

The observations y € RM are expressed according to
y=Hx+n (1)

with £ € RY the sought variable and H € RM*Y the observation matrix (convolution,

projection, mixing)
e Gaussian likelihood: y|(x, u,,, R,) ~N(Hx + ., R,),

e Gaussian prior: x|(u,, R:) ~ N(p,, R,)

— Simple Gaussian model,
— Gaussian Markov random fields,

— Hierarchical Gaussian model (scale/location Gaussian mixtures).
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e Inference from the posterior distribution,

P(z,0ly) o< P(y|z,0)P(x|0)P(O)

with © hyperparameter set, © ={u,., R, .., R, }

sample Oy ~ P(Oly, xr_1)

e Gibbs sampler: for k=1,..., K,

sample x; ~ P(x|y, O)

According to the Bayesian model,

z|(y,0) ~N (n, R=Q7")

with

Q=H'R,'H+R,', ~Q=F'F

Qu=H'R,'(y—p,) + R, ',
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< The calculation of the distribution involves the precision matriz QQ, instead of R
< A matrix tnversion 1s necessary to apply the classical sampling approach

< The posterior mean is given as the solution of a linear system depending on Q

® Solution 1. Avoid high-dimensionnal matrix inversion. [Rue, 2001]

1. perform the Cholesky factorization of @ = L,L!, instead of R,
2. draw a sample from a standard Gaussian distribution, w ~ N (On, In),
3. solve L,z = b and get z,

4. retain a, solution of ng =z 4+ w.
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% Solution 2. Perturbation—Optimization [Orieux et al., 2012 ; Lalanne 2001]

1. draw a sample from a standard Gaussian distribution, w ~ N (O v, Inran),

2. get a sample from a Gaussian distribution, n ~ N (Qu, Q), according ton = F'w+Qu,

3. retain x, solution of Qx = n.

< The complexity of both solutions (1 and 2) is O(N?) unless matriz Q exhibits an

exploitable structure,

< Matrixz QQ depends on © and, thus, varies during Gibbs sampler iterations.
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® Practical alternative. [Bardsley, 2010 ; Papandreou et al., 2010 ; Tan et al., 2010]

Numerical complexity reduction by applying an early stopped iterative solver (conjugate

gradient) in Step 3.

< Question 1. Correctness of the sampler?

< Question 2. Choice of the truncation level?
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< Approzximate resolution induces an incorrect sampling !

Let @@ and p be defined by
Q = R ! with Ry; = 0?pl" ™7 and pu; ~U[0,10], (Vi,j=1,...,N)

with N =20, 0? =1 and p = 0.8. Draw K = 10,000 samples.

6

S

2 4 6 8 10 12 14

J = 4 CG iterations J = 10 CG iterations Sample mean

Our proposal: Introduce an accept-reject step to correct this behavior.
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2. Sampling within the Reversible Jump MCMC framework

2.1 Reversible Jump MCMC [Green, 1995 ; Waagepetersen and Sorensen, 2001]

e Construct a Markov chain whose distribution asymptotically converges to the target

distribution Px(-).

e Introduce an auxiliary variable z € RY ~ fz(z|xoq) and define a differentiable

transformation ¢(-)

¢ : (RY x RY) = (RY x R")

(o1a, 2) — (x, 8)

that must be reversible ¢(x, s) = (o1, 2).
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e The transition from x,1q to ,ew IS governed by an acceptance probability

Px(x)Pz(s|x)
' Px(@o1q) Pz(2z|To1a

)\qu(wold,z)\) .

Oz(iEOld, iE) = min (1

where J(-) is the Jacobian determinant of ¢(-).
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2.2 Gaussian sampling within RJIMCMC

To sample from a Gaussian distribution £ ~ N (u, Q_l),

e An auxiliary variable z € R¥ is sampled from
Pz(z|xoq) =N (Axoq + ¢, B). (6)
The choice of A € RV*XN B € RVXN and ¢ € RY*N will be discussed later.

e The deterministic move is performed using the transformation ¢(-), such that
r \ [ ¢1(xaa,2) \ [ —Toa + f(2)
- = , (7)
S ¢2(wold7 Z) z
with functions (f : RY — RY), (¢, : (RY x RY) = RY) and (¢, : (RY x RY) — RY).
< f(z) must be independent from x4 to ensure the reversibility condition
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® Proposition [Gilavert 2014]

Let an auxiliary variable z be obtained according to (6) and a proposed sample x

according to the transformation defined by (7). Then the acceptance probability is
(T 14, ) = min (1, e—"“(Z)t(%zd—w)> 7

with r(z) =Qu+ A'B™' (z —¢) — 5 (Q + A'B™'A) f(2).

In particular, the acceptance probability equals one when f(z) is the exact solution

of the linear system

(Q+A'B7'A) f(2) = Qu+ A'B~ (z —¢). (8)

DO | —

® Proof. See paper [Gilavert 2015].
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% Consequence

Setting A=B =Q and c = Qu
e defines z ~ N (Qxo1qa + Qu, Q), which can also be expressed as z = Qx4 + 7,
e simplifies equation (8) to a linear system Qf(z) = z,

e cancels the correlation between successive samples when the acceptance probability

equals one,

e by substituting * = f(z) — x,q in (8), the latter becomes Qx = 7.
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2.3 Reversible Jump Perturbation-Optimization algorithm

1. Sample n ~ N (Qu, Q).

2. Solve the linear system Qx = 71 in an approximate way. Let  denote the obtained

solution and r(z) = n — Q.
3. With probability min (1, e_r(z)t(wold_a’\)), set T,ow = I, Otherwise set Tpew = Told.

< To ensure reversibility of the deterministic move, the initial point xy of the solver

must be such that ug = xg + g does not depend on .

< Consequence: setting g = 0 or xg = x,y 1S not allowed, while £y = —xyy 15 the

default choice corresponding to ug = 0.
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® Comparison with the T-PO algorithm

Similarly to the T-PO, the proposed RJPO algorithm relies on the approximate resolution

of the same linear system Qx = 7, but with two additional features:
e An accept-reject strategy to ensure the sampler convergence,

e An initial point x( of the linear solver such that xy + x,q does not depend on x.4.

® Implementation issues

e The linear conjugate gradient algorithm is used for the system resolution since it permits

a matrix-free implementation with reduced memory requirements,

e A stopping rule based on a threshold on the relative residual norm is applied:

_|n — Q=||;

€
7l
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1) Application to the toy example

® Acceptance probability

0.8
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< The acceptance rate curve indicates a required minimal number of CG iterations,

<t How to choose the appropriate truncation level to maximize efficiency?
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2) Influence of the relative residual norm

&% Estimation error

b= pll2y RMSE(R) =

e | R r

where [t and R the empirical estimates using 10° generated Markov chain samples.

0

[~O-T-PO

—k—RJ-PO
---E-PO
ST
=
wn
=
=
10‘? R
104 Il Il Il Il Il Il n Lol n Lol n Lol n Lol " Lol " PR
10° 107 107 107 107 10”" 10° 10° 10° 107 107 107 107 10°
Relative residual norm (e) Relative residual norm (€)
e Lol
)
= 0.8F
()
‘§
S 0.6F
[&}
5
<, 04r
5]
o
o
< 0.2F
— — — — = > *===*0
10 10 10 10 10 10 10

Relative residual norm (€)

MCMC workshop e 26th November 2014 e Marseille, France 18/28



® Convergence diagnosis and computation cost

e Assess the total (cumulated) number of conjugate gradient iterations before convergence

(diagnosis based on Gelman-Rubin convergence criterion on 100 parallel chains)
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< A lower acceptance rate induces a higher number of iterations due to slow convergence.

< A manimal cost can be reached and it corresponds to an acceptance rate of almost one.
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3. Adaptive tuning of the Gaussian sampler

3.1 Targeting a predefined acceptance rate

Adjust recursively the relative residual norm e to achieve a desired acceptance rate oy

using a stochastic approximation procedure [Andrieu and Robert 2001]

log(€ex+1) = log(ex) + i [a(Tr, ) — ]

with v, = Ko k=°. (Take Ky =1 and 8 = 0.5.)

1
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3.2 Minimization of the computation cost per effective sample

1) Statistical efficiency

e Effective sample size (ESS) [Goodman and Sokal, 1989]: number neg of independent
samples, that would yield the same estimation variance in approximating the Bayesian

estimator as n.,,x samples of the simulated chain:

neff — nmax (10)

o
L+2 ) pk
k=1

where pr the autocorrelation coefficient at lag k. For a first-order autoregressive chain,

pre = p~, 1
Mot = Nmax——" = ESS Ratio = —<| (11)
1 —+ P Nmax

e |t defines how many iterations n,,,x are needed for each resolution accuracy in order to

get chains having the same effective sample size.
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2) Computation cost per effective sample
We propose to define the computing cost per effective sample (CCES) as

T |
CCES = Ztet _ 7 21 P
Neff 1_/0

(12)
where J = Jiot/Nmax IS the average number of CG iterations per sample.

e The chain correlation p is an implicit function of the acceptance rate a. It has two

terms:

— With a probability (1 — «), the accept-reject procedure produces identical (i.e.,
maximally correlated) samples in case of rejection.
— In case of acceptance, the new sample is slightly correlated with the previous one,

because of the early stopping of the CG algorithm.
e The correlation induced in the case of acceptance is negligible compared to the correlation

MCMC workshop e 26th November 2014 @ Marseille, France 22/28



induced by rejection.

Thus, p = (1 — a) and

e The best tuning of the relative residual norm leading to the lowest CCES satisfies

do a?

<L The solution can not be calculated analytically.
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® Adaptive tuning

The stochastic approximation procedure is now applied to adaptively adjust the optimal

value of ¢,
2
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< There is no need to define the target acceptance probability.
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3.3 Example of image superresolution

Original image One observation Reconstructed image

Having 5 images of size 128 x 128 pixels (M = 81920) we reconstruct the original one
of size 256 x 256 (N = 65536 pixels).

e The noise is assumed zero mean, Gaussian with an unknown precision matrix Q,, = v,1,

e A zero-mean Gaussian distribution x, with a precision matrix Q, = v, D'D assigned to

a, with D a circulant convolution matrix associated to a Laplacian filter.

MCMC workshop e 26th November 2014 e Marseille, France 25/28



e Non-informative Jeffrey's priors are assigned to the two hyper-parameters ~,, and ~,.

e A Gibbs sampler is run for 1000 iterations and a burn-in period of 100 iterations.

® Sampled posterior statistics. Mean (standard deviation)

o % x 1074 T;
Cholesky 102.1 (0.56) | 6.1 (0.07) | 104.6 (9.06)
T-PO e=10""* | 0.3(0.06) (0.87) 102.2 (3.30)
T-PO e=10"° 6.8 (0.04) 2 (0.22) | 104.8 (2.34)
T-PO e=10"% | 71.7 (0.68) | 21 (0.29) | 102.7 (2.51)
RJPO  a; =0.99 | 101.2 (0.55) | 6.1 (0.07) | 101.9 (8.89)

MCMC workshop @ 26th November 2014 e Marseille, France

26/28



% Acceptance rate
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® Computation time and memory usage

e The computation time per sample, on a Intel Core i7-3770 with 8 GB of RAM and a
64bit system :

— Cholesky sampler: 20.3s and the required memory is about 6 GB
— RJPO algorithm: 15.1s and the memory usage is less than 200 MB

e This last result is due to the use of a conjugate gradient on which each matrix-vector

product is performed without explicitly writing the matrix Q.
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4. Conclusions

e Convergent multivariate Gaussian sampling suitable for high-dimensional problems
e Empirical analysis of the statistical efficiency,

e Set an adaptive tuning allowing to optimize the computation cost.
® Open questions

e Establish a link between the proposed strategy and random walk Metropolis Hastings
(RWMH), Metropolis Adjusted Langevin Algorithm (MALA)?

e Use of the computation cost per effective sample for an adaptive scaling of RWMH and
MALA?
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