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Introduction

Draw K samples {xk}Kk=1, from a N -dimensional Gaussian distribution

xk ∼ N (µ,R)

with a mean vector µ ∈ R
N and a symmetric definite positive covariance matrixR ∈ R

N×N .

⊛ Classical approach [Wold 1948 ; Scheuer and Stoller, 1962]

1. perform the Cholesky factorization, R = LrL
t
r,  O(N3)

2. draw a sample from a standard Gaussian distribution, ω ∼ N (0N , IN),

3. retain x = Lrω + µ.

∢ Main purpose: reduce the computation complexity of MCMC algorithms involving

repeated application of high-dimensional Gaussian sampling
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1. Gaussian sampling for a Bayesian inference

1.1 Context of inverse problems

The observations y ∈ R
M are expressed according to

y = H x+ n (1)

with x ∈ R
N the sought variable and H ∈ R

M×N the observation matrix (convolution,

projection, mixing)

• Gaussian likelihood: y|(x,µn,Rn) ∼ N (Hx+ µn,Rn),

• Gaussian prior: x|(µx,Rx) ∼ N (µx,Rx)

– Simple Gaussian model,

– Gaussian Markov random fields,

– Hierarchical Gaussian model (scale/location Gaussian mixtures).
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• Inference from the posterior distribution,

P (x,Θ|y) ∝ P (y|x,Θ)P (x|Θ)P (Θ) (2)

with Θ hyperparameter set, Θ = {µx,Rx,µn,Rn}

• Gibbs sampler: for k = 1, . . . , K,




sample Θk ∼ P (Θ|y,xk−1)

sample xk ∼ P (x|y,Θk)

According to the Bayesian model,

x|(y,Θ) ∼ N
(
µ,R = Q−1

)

with

Q = HtR−1
n H +R−1

x ,  Q = F tF (3)

Qµ = HtR−1
n (y − µn) +R−1

x µx.  Qµ = b (4)
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∢ The calculation of the distribution involves the precision matrix Q, instead of R

∢ A matrix inversion is necessary to apply the classical sampling approach

∢ The posterior mean is given as the solution of a linear system depending on Q

⊛ Solution 1. Avoid high-dimensionnal matrix inversion. [Rue, 2001]

1. perform the Cholesky factorization of Q = LqL
t
q, instead of R,

2. draw a sample from a standard Gaussian distribution, ω ∼ N (0N , IN),

3. solve Lqz = b and get z,

4. retain x, solution of Lt
qx = z + ω.
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⊛ Solution 2. Perturbation-Optimization [Orieux et al., 2012 ; Lalanne 2001]

1. draw a sample from a standard Gaussian distribution, ω ∼ N (0M+N , IM+N),

2. get a sample from a Gaussian distribution, η ∼ N (Qµ,Q), according to η = F tω+Qµ,

3. retain x, solution of Qx = η.

∢ The complexity of both solutions (1 and 2) is O(N3) unless matrix Q exhibits an

exploitable structure,

∢ Matrix Q depends on Θ and, thus, varies during Gibbs sampler iterations.
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⊛ Practical alternative. [Bardsley, 2010 ; Papandreou et al., 2010 ; Tan et al., 2010]

Numerical complexity reduction by applying an early stopped iterative solver (conjugate

gradient) in Step 3.

∢ Question 1. Correctness of the sampler?

∢ Question 2. Choice of the truncation level?
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∢ Approximate resolution induces an incorrect sampling !

Let Q and µ be defined by

Q = R−1 with Rij = σ2ρ|i−j| and µi ∼ U [0, 10], (∀i, j = 1, . . . , N) (5)

with N = 20, σ2 = 1 and ρ = 0.8. Draw K = 10, 000 samples.
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Our proposal: Introduce an accept-reject step to correct this behavior.
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2. Sampling within the Reversible Jump MCMC framework

2.1 Reversible Jump MCMC [Green, 1995 ; Waagepetersen and Sorensen, 2001]

• Construct a Markov chain whose distribution asymptotically converges to the target

distribution PX(·).

• Introduce an auxiliary variable z ∈ R
L ∼ fZ(z|xold) and define a differentiable

transformation φ(·)

φ :
(
R

N × R
L
)
7→
(
R

N × R
L
)

(xold, z) 7→ (x, s)

that must be reversible φ(x, s) = (xold, z).
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• The transition from xold to xnew is governed by an acceptance probability

α(xold,x) = min

(
1,

PX(x)PZ(s|x)

PX(xold)PZ(z|xold)
|Jφ(xold,z)|

)
.

where Jφ(·) is the Jacobian determinant of φ(·).
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2.2 Gaussian sampling within RJMCMC

To sample from a Gaussian distribution x ∼ N
(
µ,Q−1

)
,

• An auxiliary variable z ∈ R
N is sampled from

PZ(z|xold) = N (Axold + c,B) . (6)

The choice of A ∈ R
N×N , B ∈ R

N×N and c ∈ R
N×N will be discussed later.

• The deterministic move is performed using the transformation φ(·), such that

(
x

s

)
=

(
φ1(xold, z)

φ2(xold, z)

)
=

(
−xold + f(z)

z

)
, (7)

with functions
(
f : RN 7→ R

N
)
,
(
φ1 : (R

N × R
N) 7→ R

N
)
and

(
φ2 : (R

N × R
N) 7→ R

N
)
.

∢ f(z) must be independent from xold to ensure the reversibility condition
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⊛ Proposition [Gilavert 2014]

Let an auxiliary variable z be obtained according to (6) and a proposed sample x

according to the transformation defined by (7). Then the acceptance probability is

α(xold,x) = min
(
1, e−r(z)t(xold−x)

)
,

with r(z) = Qµ+AtB−1 (z − c)− 1
2

(
Q+AtB−1A

)
f(z).

In particular, the acceptance probability equals one when f(z) is the exact solution

of the linear system

1

2

(
Q+AtB−1A

)
f(z) = Qµ+AtB−1 (z − c) . (8)

⊛ Proof. See paper [Gilavert 2015].
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⊛ Consequence

Setting A = B = Q and c = Qµ

• defines z ∼ N (Qxold +Qµ,Q), which can also be expressed as z = Qxold + η,

• simplifies equation (8) to a linear system Qf(z) = z,

• cancels the correlation between successive samples when the acceptance probability

equals one,

• by substituting x = f(z)− xold in (8), the latter becomes Qx = η.
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2.3 Reversible Jump Perturbation-Optimization algorithm

1. Sample η ∼ N (Qµ,Q).

2. Solve the linear system Qx = η in an approximate way. Let x̂ denote the obtained

solution and r(z) = η −Qx̂.

3. With probability min
(
1, e−r(z)t(xold−x̂)

)
, set xnew = x̂, otherwise set xnew = xold.

∢ To ensure reversibility of the deterministic move, the initial point x0 of the solver

must be such that u0 = x0 + xold does not depend on xold.

∢ Consequence: setting x0 = 0 or x0 = xold is not allowed, while x0 = −xold is the

default choice corresponding to u0 = 0.
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⊛ Comparison with the T-PO algorithm

Similarly to the T-PO, the proposed RJPO algorithm relies on the approximate resolution

of the same linear system Qx = η, but with two additional features:

• An accept-reject strategy to ensure the sampler convergence,

• An initial point x0 of the linear solver such that x0 + xold does not depend on xold.

⊛ Implementation issues

• The linear conjugate gradient algorithm is used for the system resolution since it permits

a matrix-free implementation with reduced memory requirements,

• A stopping rule based on a threshold on the relative residual norm is applied:

ǫ =
‖η −Qx‖2

‖η‖2
.
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1) Application to the toy example

⊛ Acceptance probability
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∢ The acceptance rate curve indicates a required minimal number of CG iterations,

∢ How to choose the appropriate truncation level to maximize efficiency?
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2) Influence of the relative residual norm

⊛ Estimation error

RMSE(µ) =
‖µ − µ̂‖2

‖µ‖2

and RMSE(R) =
‖R − R̂‖F

‖R‖F

,

where µ̂ and R̂ the empirical estimates using 105 generated Markov chain samples.
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⊛ Convergence diagnosis and computation cost

• Assess the total (cumulated) number of conjugate gradient iterations before convergence

(diagnosis based on Gelman-Rubin convergence criterion on 100 parallel chains)
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∢ A lower acceptance rate induces a higher number of iterations due to slow convergence.

∢ A minimal cost can be reached and it corresponds to an acceptance rate of almost one.
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3. Adaptive tuning of the Gaussian sampler

3.1 Targeting a predefined acceptance rate

Adjust recursively the relative residual norm ǫ to achieve a desired acceptance rate αt

using a stochastic approximation procedure [Andrieu and Robert 2001]

log(ǫk+1) = log(ǫk) + γk [α(xk,x)− αt] (9)

with γk = K0 k
−β. (Take K0 = 1 and β = 0.5.)
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3.2 Minimization of the computation cost per effective sample

1) Statistical efficiency

• Effective sample size (ESS) [Goodman and Sokal, 1989]: number neff of independent

samples, that would yield the same estimation variance in approximating the Bayesian

estimator as nmax samples of the simulated chain:

neff =
nmax

1 + 2
∞∑
k=1

ρk

(10)

where ρk the autocorrelation coefficient at lag k. For a first-order autoregressive chain,

ρk = ρk,

neff = nmax
1− ρ

1 + ρ
=⇒ ESS Ratio =

neff

nmax
. (11)

• It defines how many iterations nmax are needed for each resolution accuracy in order to

get chains having the same effective sample size.
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2) Computation cost per effective sample

We propose to define the computing cost per effective sample (CCES) as

CCES =
Jtot
neff

= J ·
1 + ρ

1− ρ
. (12)

where J = Jtot/nmax is the average number of CG iterations per sample.

• The chain correlation ρ is an implicit function of the acceptance rate α. It has two

terms:

– With a probability (1 − α), the accept-reject procedure produces identical (i.e.,

maximally correlated) samples in case of rejection.

– In case of acceptance, the new sample is slightly correlated with the previous one,

because of the early stopping of the CG algorithm.

• The correlation induced in the case of acceptance is negligible compared to the correlation
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induced by rejection.

Thus, ρ = (1− α) and

CCES = J
1 + ρ

1− ρ
=

2− α

α

• The best tuning of the relative residual norm leading to the lowest CCES satisfies

J
dα

dJ
− α+

α2

2
= 0.

∢ The solution can not be calculated analytically.
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⊛ Adaptive tuning

The stochastic approximation procedure is now applied to adaptively adjust the optimal

value of ǫ,

log ǫk+1 = log ǫk + γk

(
Jk

dαk

dJ
− αk +

α2
k

2

)
, (13)
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∢ There is no need to define the target acceptance probability.
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3.3 Example of image superresolution

Original image One observation Reconstructed image

Having 5 images of size 128× 128 pixels (M = 81920) we reconstruct the original one

of size 256× 256 (N = 65536 pixels).

• The noise is assumed zero mean, Gaussian with an unknown precision matrix Qn = γnI,

• A zero-mean Gaussian distribution x, with a precision matrix Qx = γxD
tD assigned to

x, with D a circulant convolution matrix associated to a Laplacian filter.
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• Non-informative Jeffrey’s priors are assigned to the two hyper-parameters γn and γx.

• A Gibbs sampler is run for 1000 iterations and a burn-in period of 100 iterations.

⊛ Sampled posterior statistics. Mean (standard deviation)

γn γx × 10−4 xi

Cholesky 102.1 (0.56) 6.1 (0.07) 104.6 (9.06)

T-PO ǫ = 10−4 0.3 (0.06) 45 (0.87) 102.2 (3.30)

T-PO ǫ = 10−6 6.8 (0.04) 32 (0.22) 104.8 (2.34)

T-PO ǫ = 10−8 71.7 (0.68) 21 (0.29) 102.7 (2.51)

RJPO αt = 0.99 101.2 (0.55) 6.1 (0.07) 101.9 (8.89)
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⊛ Acceptance rate
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⊛ Computation time and memory usage

• The computation time per sample, on a Intel Core i7-3770 with 8 GB of RAM and a

64bit system :

– Cholesky sampler: 20.3s and the required memory is about 6 GB

– RJPO algorithm: 15.1s and the memory usage is less than 200 MB

• This last result is due to the use of a conjugate gradient on which each matrix-vector

product is performed without explicitly writing the matrix Q.
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4. Conclusions

• Convergent multivariate Gaussian sampling suitable for high-dimensional problems

• Empirical analysis of the statistical efficiency,

• Set an adaptive tuning allowing to optimize the computation cost.

⊛ Open questions

• Establish a link between the proposed strategy and random walk Metropolis Hastings

(RWMH), Metropolis Adjusted Langevin Algorithm (MALA)?

• Use of the computation cost per effective sample for an adaptive scaling of RWMH and

MALA?
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