Stability of Markov Chains & Approximate MCMC methods

Pierre Alquier

ENSAE ParisTech

Workshop "Markov chain Monte Carlo (MCMC) methods" 26/11/2014

Metropolis-Hastings Algorithm

• Objective : simulate from $p(\theta)$.

Metropolis-Hastings Algorithm

- Objective : simulate from $p(\theta)$.
- Usually : $p(\theta) = \pi(\theta|x) \propto \pi(\theta) \mathcal{L}_{\theta}(x)$ known up to a constant.

Metropolis-Hastings Algorithm

- Objective : simulate from $p(\theta)$.
- Usually : $p(\theta) = \pi(\theta|x) \propto \pi(\theta) \mathcal{L}_{\theta}(x)$ known up to a constant.

Metropolis-Hastings Algorithm (MH)

- arbitraty θ_0 ,
- given θ_n ,
 - **1** draw $t_{n+1} \sim q(\cdot|\theta_n)$,
 - $\theta_{n+1} = \begin{cases} t_{n+1} \text{ with proba. } a(\theta_n, t_{n+1}) \\ \theta_n \text{ otherwise.} \end{cases}$

$$a(heta,t) = rac{p(t)q(heta|t)}{p(heta)q(t| heta)} \wedge 1.$$

Potential Problem with MH (1/2)

In some situations, the computation of the acceptance ratio $a(\theta_n, t_{n+1})$ is too slow.

Example 1: "Big Data"

 $x = (x_1, \dots, x_n)$ iid with n very large,

$$p(\theta) \propto \pi(\theta) \prod_{i=1}^n f_{\theta}(x_i).$$

A. Korattikara, Y. Chen & M. Welling (2014). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. *Proceedings of ICML 2014*.

Potential Problem with MH (2/2)

Example 2 : Exponential Random Graph Model (ERGM)

Given a set of nodes $\{1, \ldots, n\}$, and x a graph on these nodes represented by the adjacency matrix $x_{i,j} = 1 \Leftrightarrow "i$ and j are connected", and s(x) be a vector of statistics. We define :

$$f_{\theta}(x) = \frac{\exp(\theta^T s(x))}{\sum_{y} \exp(\theta^T s(x))} = \frac{\exp(\theta^T s(x))}{Z(\theta)}.$$

Then

$$a(\theta, t) = \frac{\pi(t) \exp(t^T s(x)) Z(\theta) q(\theta|t)}{\pi(\theta) \exp(\theta^T s(x)) Z(t) q(t|\theta)}.$$

A. Caimo & N. Friel (2011). Bayesian Inference for Exponential Random Graphs Model. *Social Networks* 33 :41–55.

Noisy MCMC Algorithm

In this talk, we focus on the following algorithm:

Noisy MCMC Algorithm

- arbitraty θ_0 ,
- given θ_n ,
 - **1** draw $t_{n+1} \sim q(\cdot)$,
 - $\theta_{n+1} = \begin{cases} t_{n+1} \text{ with proba. } \hat{a}(\theta_n, t_{n+1}) \\ \theta_n \text{ otherwise,} \end{cases}$

where $\hat{a}(\theta, t)$ is any approximation of $a(\theta, t)$.

• There is no reason for this algorithm to target the objective $p(\theta)$.

- There is no reason for this algorithm to target the objective $p(\theta)$.
- Conditions on $\hat{a}(\theta, t)$ such that we sample from a distribution that is "not too far from $p(\theta)$ "?

- There is no reason for this algorithm to target the objective $p(\theta)$.
- Conditions on $\hat{a}(\theta, t)$ such that we sample from a distribution that is "not too far from $p(\theta)$ "?
- When $P \simeq P'$ (transition kernels), what can we say about their asymptotic distributions? \to stability of Markov Chains theory,

N. V. Kartashov (1996). Strong Stable Markov Chains, VSP, Utrecht.

- There is no reason for this algorithm to target the objective $p(\theta)$.
- Conditions on $\hat{a}(\theta, t)$ such that we sample from a distribution that is "not too far from $p(\theta)$ "?
- When $P \simeq P'$ (transition kernels), what can we say about their asymptotic distributions? \rightarrow stability of Markov Chains theory,

N. V. Kartashov (1996). Strong Stable Markov Chains, VSP, Utrecht.

 This is a general idea in computational statistics: if your task is beyond your computational power, solve a simpler task and hope (prove?) that the two solutions are not so different. E.g.: the LASSO.

Overview of the Talk

- Introduction
 - Metropolis-Hastings Algorithm
 - Noisy MCMC
 - The stability of Markov chains problem
- Stability of Markov Chains
 - Uniformly Ergodic Markov Chains
 - Consequences for the Noisy-MCMC algorithm
- 3 Applications
 - Intractable Likelihood / ERGM
 - Big Data
 - Conclusion

Total Variation (TV) Distance bewteen Kernels

Reminder:

$$\|\pi-\pi'\|_{\mathrm{TV}} = \sup_{A \text{ event}} |\pi(A)-\pi'(A)| = \frac{1}{2} \int |\pi(\theta)-\pi'(\theta)| \mathrm{d}\theta.$$

Total Variation (TV) Distance bewteen Kernels

Reminder:

$$\|\pi-\pi'\|_{\mathrm{TV}} = \sup_{A \text{ event}} |\pi(A)-\pi'(A)| = rac{1}{2} \int |\pi(heta)-\pi'(heta)| \mathrm{d} heta.$$

Definition - TV for Kernels

$$||P - P'||_{\text{TV}} = \sup_{x} ||P(x, \cdot) - P'(x, \cdot)||_{\text{TV}}.$$

Ergodicity

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\text{TV}} \xrightarrow[n \to \infty]{} 0.$$

Ergodicity

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\mathrm{TV}} \xrightarrow[n \to \infty]{} 0.$$

Geometric ergodicity, $\rho < 1$

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\text{TV}} \le C(\theta_0) \rho^n.$$

Ergodicity

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\text{TV}} \xrightarrow[n \to \infty]{} 0.$$

Geometric ergodicity, $\rho < 1$

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\text{TV}} \le C(\theta_0) \rho^n.$$

Comes with CLT:

$$\sqrt{n}\left\{\frac{1}{n}\sum_{i=1}^n g(\theta_i) - \mathbb{E}_{T \sim \pi}[g(T)]\right\} \xrightarrow[n \to \infty]{d.} \mathcal{N}(0, \sigma_g^2).$$

S. P. Meyn & R. L. Tweedie (1993). Markov Chains and Stochastic Stability, Springer.

Ergodicity

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\text{TV}} \xrightarrow[n \to \infty]{} 0.$$

Geometric ergodicity, $\rho < 1$

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\text{TV}} \le C(\theta_0) \rho^n.$$

Uniform ergodicity, $C \ge 1, \rho < 1$

$$\forall \theta_0, \quad \|\delta_{\theta_0} P^n - \pi\|_{\text{TV}} \leq C \rho^n.$$

Stability for Uniformly Ergodic Chains

Theorem

Assume that P is uniformly ergodic : $\|\delta_{\theta_0}P^n - \pi\|_{\mathrm{TV}} \leq C\rho^n$. Then

$$\|\delta_{\theta_0}P^n - \delta_{\theta_0}(P')^n\|_{\mathrm{TV}} \leq K(C, \rho)\|P - P'\|_{\mathrm{TV}},$$

$$\mathcal{K}(\mathcal{C}, \rho) = \hat{n} + \frac{\mathcal{C}\rho^{\hat{n}}}{1-\rho} \text{ and } \hat{n} = \left\lceil \frac{\log(1/\mathcal{C})}{\log(\rho)} \right\rceil.$$

A. Yu. Mitrophanov (2005). Sensitivity and Convergence of Uniformly Ergodic Markov Chains. Journal of Applied Probability 42:1003–1014.

Refined Version

Assume that P is uniformly ergodic : $\|\delta_{\theta_0}P^n - \pi\|_{TV} \leq C\rho^n$. Then

$$\|p_0 P^n - p_0'(P')^n\|_{\mathrm{TV}} \le \begin{cases} \|p_0 - p_0'\|_{\mathrm{TV}} + n\|P - P'\|_{\mathrm{TV}} \\ \text{when } n \le \hat{n}, \end{cases}$$

$$C\rho^n \|p_0 - p_0'\|_{\mathrm{TV}} + \left(\hat{n} + C\frac{\rho^{\hat{n}} - \rho^n}{1 - \rho}\right) \|P - P'\|_{\mathrm{TV}}$$

$$\text{when } n > \hat{n}.$$

Consequence for Noisy MCMC

Reminder : $a(\theta, t)$ and approximation $\hat{a}(\theta, t)$. Note that $\hat{a}(\theta, t)$ might be based on additional Monte Carlo simulations, in this case, we should write $\hat{a}(\theta, t, S)$ where S stands for these simulations.

Corollary

• There is a function $\delta(\theta,t)$ such that

$$\mathbb{E}_{\mathcal{S}} |a(\theta, t) - \hat{a}(\theta, t, \mathcal{S})| \leq \delta(\theta, t).$$

• The kernel P associated with $a(\theta, t)$ is uniformly ergodic with constants C, ρ .

Then
$$\|\delta_{\theta_0}P^n - \delta_{\theta_0}\hat{P}^n\|_{\mathrm{TV}} \leq 2K(C,\rho)\sup_{\theta} \int q(\mathrm{d}t|\theta)\delta(\theta,t).$$

Intractable Likelihood / ERGM

$$f_{\theta}(x) = \frac{\exp(\theta^{T}s(x))}{Z(\theta)}, \ a(\theta, t) = \frac{\pi(t)\exp(t^{T}s(x))q(\theta)}{\pi(\theta)\exp(\theta^{T}s(x))q(t)} \frac{Z(\theta)}{Z(t)} \wedge 1$$

and we cannot compute Z.

Intractable Likelihood / ERGM

$$f_{\theta}(x) = \frac{\exp(\theta^{T} s(x))}{Z(\theta)}, \ a(\theta, t) = \frac{\pi(t) \exp(t^{T} s(x)) q(\theta)}{\pi(\theta) \exp(\theta^{T} s(x)) q(t)} \frac{Z(\theta)}{Z(t)} \wedge 1$$

and we cannot compute Z. However,

$$\mathbb{E}_{x \sim f_t} \left(\frac{\exp(\theta^T s(x))}{\exp(t^T s(x))} \right) = \sum_{x} \frac{\exp(\theta^T s(x))}{\exp(t^T s(x))} \frac{\exp(t^T s(x))}{Z(t)} = \frac{Z(\theta)}{Z(t)}$$

Intractable Likelihood / ERGM

$$f_{\theta}(x) = \frac{\exp(\theta^{T}s(x))}{Z(\theta)}, \ a(\theta, t) = \frac{\pi(t)\exp(t^{T}s(x))q(\theta)}{\pi(\theta)\exp(\theta^{T}s(x))q(t)} \frac{Z(\theta)}{Z(t)} \wedge 1$$

and we cannot compute Z. However,

$$\mathbb{E}_{x \sim f_t} \left(\frac{\exp(\theta^T s(x))}{\exp(t^T s(x))} \right) = \sum_{x} \frac{\exp(\theta^T s(x))}{\exp(t^T s(x))} \frac{\exp(t^T s(x))}{Z(t)} = \frac{Z(\theta)}{Z(t)}$$

so we can draw $S_N = (x_1, \dots, x_N)$ iid from f_t (feasible) and

$$\hat{a}(\theta, t, S_N) = 1 \wedge \frac{\pi(t) \exp(t^T s(x)) q(\theta)}{\pi(\theta) \exp(\theta^T s(x)) q(t)} \frac{1}{N} \sum_{i=1}^N \frac{\exp(\theta^T s(x_i))}{\exp(t^T s(x_i))}.$$

Comments

$$\hat{a}(\theta, t, S_N) = 1 \wedge \frac{\pi(t) \exp(t^T s(x)) q(\theta)}{\pi(\theta) \exp(\theta^T s(x)) q(t)} \frac{1}{N} \sum_{i=1}^N \frac{\exp(\theta^T s(x_i))}{\exp(t^T s(x_i))}.$$

• notation : P the original kernel, \hat{P}_N the approx.

Comments

$$\hat{a}(\theta, t, S_N) = 1 \wedge \frac{\pi(t) \exp(t^T s(x)) q(\theta)}{\pi(\theta) \exp(\theta^T s(x)) q(t)} \frac{1}{N} \sum_{i=1}^N \frac{\exp(\theta^T s(x_i))}{\exp(t^T s(x_i))}.$$

- notation : P the original kernel, \hat{P}_N the approx.
- for N = 1, this algorithm is known as the exchange algorithm and is known to be exact.

I. Murray, Z. Ghahramani & D. MacKay (2006). MCMC for Doubly-Intractable Distributions. Proceedings of the 22nd Conference on Uncertainty and Artificial Intelligence, AUAI Press.

Comments

$$\hat{a}(\theta, t, S_N) = 1 \wedge \frac{\pi(t) \exp(t^T s(x)) q(\theta)}{\pi(\theta) \exp(\theta^T s(x)) q(t)} \frac{1}{N} \sum_{i=1}^N \frac{\exp(\theta^T s(x_i))}{\exp(t^T s(x_i))}.$$

- notation : P the original kernel, \hat{P}_N the approx.
- for N = 1, this algorithm is known as the exchange algorithm and is known to be exact.

I. Murray, Z. Ghahramani & D. MacKay (2006). MCMC for Doubly-Intractable Distributions. Proceedings of the 22nd Conference on Uncertainty and Artificial Intelligence, AUAI Press.

• Better mixing when N > 1, but in this case the algorithm is no longer exact. Mitrophanov's theorem will tell us how to calibrate N to reach a given accuracy.

Noisy MCMC for ERGM

Corollary

Assume that

- the parameter space is bounded : $\sup_{\theta \in \Theta} \|\theta\| = \mathcal{T} < \infty$,
- there is a constant c > 0 such that

$$c \leq \pi(\theta), q(\theta|t) \leq 1/c.$$

Then:
$$\|\delta_{\theta_0} P^n - \delta_{\theta_0} \hat{P}_N^n\|_{\mathrm{TV}} \leq \frac{\mathcal{C}(\mathcal{T}, c, s)}{\sqrt{N}}$$
, $\mathcal{C}(\mathcal{T}, c, s)$ known.

P. Alquier, N. Friel, R. G. Everitt & A. Boland (2014). Noisy Monte-Carlo: Convergence of Markov Chains with Approximate Transition Kernels. *Statistics and Computing*, to appear.

Simulations : Florentine Family Business Dataset

Simulations : Florentine Family Business Dataset

$$s(x) = (s_1(x), s_2(x))$$

- $s_1(x)$ number of edges,
- $s_2(x)$ number of 2-stars.

Numerical Results

	Edge		2-star	
Method	Mean	SD	Mean	SD
BERGM	-2.675	0.647	0.188	0.155
Exchange	-2.573	0.568	0.146	0.133
Noisy Exchange	-2.686	0.526	0.167	0.122
Noisy Langevin	-2.281	0.513	0.081	0.119
MALA Exchange	-2.518	0.62	0.136	0.128
Noisy MALA	-2.584	0.498	0.144	0.113

Table: Posterior means and standard deviations.

Chains, density and ACF plot for the edge statistic.

Chains, density and ACF plot for the 2-star stat.

Austerity in MCMC Land

$$x = (x_1, \dots, x_n)$$
 iid with n very large, $p(\theta) \propto \pi(\theta) \prod_{i=1}^n f_{\theta}(x_i)$.

A. Korattikara, Y. Chen & M. Welling (2014). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. *Proceedings of ICML 2014*.

MH:

- draw $t_{n+1} \sim q(\cdot|\theta_n)$, $U \sim \mathcal{U}[0,1]$,
- $\theta_{n+1} = \begin{cases} t_{n+1} \text{ when } U \leq b(\theta_n, t_{n+1}) = \frac{\pi(t_{n+1}) \prod_{i=1}^n f_{t_{n+1}}(x_i) q(\theta_n | t_{n+1})}{\pi(\theta_n) \prod_{i=1}^n f_{\theta_n}(x_i) q(t_{n+1} | \theta_n)} \\ \theta_n \text{ otherwise.} \end{cases}$

Austerity in MCMC Land

$$x = (x_1, \dots, x_n)$$
 iid with n very large, $p(\theta) \propto \pi(\theta) \prod_{i=1}^n f_{\theta}(x_i)$.

A. Korattikara, Y. Chen & M. Welling (2014). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. *Proceedings of ICML 2014*.

MH:

- **1** draw $t_{n+1} \sim q(\cdot|\theta_n)$, $U \sim \mathcal{U}[0,1]$,
- $\begin{array}{l} \boldsymbol{\theta}_{n+1} = \\ \begin{cases} t_{n+1} \text{ when } U \leq b\big(\theta_n, t_{n+1}\big) = \frac{\pi(t_{n+1})\prod_{i=1}^n f_{t_{n+1}}(x_i)q(\theta_n|t_{n+1})}{\pi(\theta_n)\prod_{i=1}^n f_{\theta_n}(x_i)q(t_{n+1}|\theta_n)} \\ \theta_n \text{ otherwise.} \end{cases}$

Idea : to test the hypothesis $U \leq b(\theta_n, t_{n+1})$ with a given confidence level instead.

Testing $U \leq b(\theta, t)$

$$U \leq \frac{\pi(t) \prod_{i=1}^{n} f_{t}(x_{i}) q(\theta|t)}{\pi(\theta) \prod_{i=1}^{n} f_{\theta}(x_{i}) q(t|\theta)}$$

$$\mathbf{H}_{0}: \quad \frac{1}{n} \sum_{i=1}^{n} \log \frac{f_{t}(x_{i})}{f_{\theta}(x_{i})} \geq \frac{1}{n} \log \left[U \frac{\pi(\theta) q(t|\theta)}{\pi(t) q(\theta|t)} \right] =: V.$$

Testing $U \leq b(\theta, t)$

$$U \leq \frac{\pi(t) \prod_{i=1}^{n} f_{t}(x_{i}) q(\theta|t)}{\pi(\theta) \prod_{i=1}^{n} f_{\theta}(x_{i}) q(t|\theta)}$$

$$\mathsf{H}_0: \quad \frac{1}{n}\sum_{i=1}^n\log\frac{f_t(x_i)}{f_\theta(x_i)}\geq \frac{1}{n}\log\left[U\frac{\pi(\theta)q(t|\theta)}{\pi(t)q(\theta|t)}\right]=:V.$$

We draw (y_1, \ldots, y_B) iid in $\{x_1, \ldots, x_n\}$, $B \ll n$,

$$\frac{1}{B} \sum_{i=1}^{B} \log \frac{f_t(y_i)}{f_{\theta}(y_i)} \left\{ \begin{array}{l} \geq V + c \Rightarrow \text{ accept } \mathbf{H}_0, \\ \leq V - c \Rightarrow \text{ reject } \mathbf{H}_0, \\ \in]V - c, V + c [\Rightarrow \text{ start again, increase } B. \end{array} \right.$$

We choose c so that the type 1 and type 2 errors are $\leq \alpha$ fixed.

Theoretical Analysis

R. Bardenet, A. Doucet & C. Holmes (2014). Towards Scaling up Markov Chain Monte Carlo : an Adaptive Subsampling Approach. *Proceedings of ICML 2014*.

They calibrate c through Audibert's empirical Bernstein's inequality and obtain :

Theorem

Denote P_{α} the approximate kernel with level $\alpha > 0$. Assume that the original kernel P is uniformly ergodic (C, ρ) . Then

$$\|\delta_{\theta_0} P^n - \delta_{\theta_0} P^n_{\alpha}\|_{TV} \le \alpha K'(C, \rho).$$

Theoretical Analysis

R. Bardenet, A. Doucet & C. Holmes (2014). Towards Scaling up Markov Chain Monte Carlo: an Adaptive Subsampling Approach. *Proceedings of ICML 2014*.

They calibrate c through Audibert's empirical Bernstein's inequality and obtain :

Theorem

Denote P_{α} the approximate kernel with level $\alpha > 0$. Assume that the original kernel P is uniformly ergodic (C, ρ) . Then

$$\|\delta_{\theta_0}P^n - \delta_{\theta_0}P^n_{\alpha}\|_{TV} \le \alpha K'(C, \rho).$$

However, limitation : they prove that after the burn-in period, we tend to need $B \simeq n/2$ at each step.

Limitations

$$\|\delta_{ heta_0}P^n - \delta_{ heta_0}\hat{P}^n\|_{\mathrm{TV}} \leq 2K(\mathcal{C},
ho)\sup_{ heta}\int q(\mathrm{d}t| heta)\delta(heta, t).$$

Limitations

$$\|\delta_{\theta_0}P^n - \delta_{\theta_0}\hat{P}^n\|_{\mathrm{TV}} \leq 2K(C, \rho) \sup_{\theta} \int q(\mathrm{d}t|\theta)\delta(\theta, t).$$

• First, in many situations, $\int q(\mathrm{d}t|\theta)\delta(\theta,t)=\infty$. (However, in some cases, $\delta(\theta,t)=\delta$ can be made arbitraty small as in the examples above).

Limitations

$$\|\delta_{\theta_0}P^n - \delta_{\theta_0}\hat{P}^n\|_{\mathrm{TV}} \leq 2K(C, \rho)\sup_{\theta} \int q(\mathrm{d}t|\theta)\delta(\theta, t).$$

- First, in many situations, $\int q(\mathrm{d}t|\theta)\delta(\theta,t)=\infty$. (However, in some cases, $\delta(\theta,t)=\delta$ can be made arbitraty small as in the examples above).
- Uniformly ergodic chains are rare when one uses MH algorithm. Example: in the ERGM model, we need a bounded Θ...

Beyond Uniformly Ergodic Markov chains

Reminder: a criterion for geometric ergodicity.

$$\exists \lambda \in (0,1), \exists b < \infty, \exists V : \Theta \rightarrow [1,\infty], \exists C \subset \Theta \text{ such that}$$

$$\forall \theta \in \Theta, \int P(\theta, d\theta') V(\theta') \leq \lambda V(\theta) + b \mathbf{1}_{\theta \in \mathcal{C}}.$$

Beyond Uniformly Ergodic Markov chains

Reminder: a criterion for geometric ergodicity.

$$\exists \lambda \in (0,1), \exists b < \infty, \exists V: \Theta \to [1,\infty], \exists \mathcal{C} \subset \Theta \text{ such that}$$

$$\forall \theta \in \Theta, \int P(\theta, d\theta') V(\theta') \leq \lambda V(\theta) + b \mathbf{1}_{\theta \in \mathcal{C}}.$$

This *drift condition*, together with "usual" assumptions (irreducibility...) ensure that P is V-uniformly ergodic:

$$\|\delta_{\theta_0}P^n - \pi\|_V \le C\rho^n V(\theta_0)$$

and this turn out to be equivalent to geometric ergodicity!

Beyond Uniformly Ergodic Markov chains

Reminder: a criterion for geometric ergodicity.

$$\exists \lambda \in (0,1), \exists b < \infty, \exists V: \Theta \to [1,\infty], \exists \mathcal{C} \subset \Theta \text{ such that}$$

$$\forall \theta \in \Theta, \int P(\theta, d\theta') V(\theta') \leq \lambda V(\theta) + b \mathbf{1}_{\theta \in \mathcal{C}}.$$

This *drift condition*, together with "usual" assumptions (irreducibility...) ensure that P is V-uniformly ergodic:

$$\|\delta_{\theta_0}P^n - \pi\|_{V} \le C\rho^n V(\theta_0)$$

and this turn out to be equivalent to geometric ergodicity! This is satisfied in many practical situations,

G. O. Roberts & J. S. Rosenthal (2004). General State Space Markov Chains and MCMC Algorithms. *Probability Surveys* 1:20–71.

Stability of Geometrically Ergodic Markov Chains

Theorem

Sequence of kernels $\|\hat{P}_N - P\|_{\mathrm{TV}} \to 0$, $\exists V(\cdot) \geq 1$:

- P is V-uniformly ergodic;
- $\exists N_0 \in \mathbb{N}, 0 < \delta < 1, L > 0, \forall N \geq N_0$

$$\int V(\theta)\hat{P}_N(\theta_0, d\theta) \leq \delta V(\theta_0) + L.$$

Then for N large enough, \hat{P}_N is geometrically ergodic with limiting distribution π_N and $\|\pi_N - \pi\| \xrightarrow[N \to \infty]{} 0$.

D. Ferré, L. Hervé & J. Ledoux (2013). Regular Perturbations of V-Geometrically Ergodic Markov Chains. *Journal of Applied Probability* 50:184–194.

More improvements

Recent works on non-asymptotic bounds for MCMC based on the Ricci's curvature of P:

A. Joulin & Y. Ollivier (2010). Curvature, Concentration and Error Estimates for Markov Chain Monte Carlo. *The Annals of Probability* 38:2418–2442.

A. Drumus & E. Moulines (2014). Quantitative Bounds of Convergence for Geometrically Ergodic Markov Chains in the Wasserstein Distance with Application to the Metropolis Adjusted Langevin Algorithm. *Statistics and Computing*, to appear.

Stability using these tools :

N. S. Pillai & A. Smith (2014). Ergodicity of Approximate MCMC Chains with Applications to Large Data Sets. *Preprint* arXiv:1405.0182.