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Metropolis-Hastings Algorithm

@ Objective : simulate from p(9).
e Usually : p(0) = m(0]x) o m(0)Ly(x) known up to a
constant.

Metropolis-Hastings Algorithm (MH)

@ arbitraty 6,

@ given 0,
Q draw thy1 ~ q(:[0n),
| tny1 with proba. a(6,, th41)
Q Ona = { 0, otherwise.
p(t)q(0]t)
a(f,t) = ——F——= AL
O 0= 0)atelo)
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Potential Problem with MH (1/2)

In some situations, the computation of the acceptance ratio
a(0,, thy1) is too slow.

Example 1 : “Big Data”

x = (x1,...,x%,) iid with n very large,

p(0) oc w(6) H fo(xi)-

@ A. Korattikara, Y. Chen & M. Welling (2014). Austerity in MCMC Land : Cutting the
Metropolis-Hastings Budget. Proceedings of ICML 2014.
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Potential Problem with MH (2/2)

Example 2 : Exponential Random Graph Model (ERGM)

Given a set of nodes {1,...,n}, and x a graph on these nodes
represented by the adjacency matrix x;; = 1 < “/ and j are
connected”, and s(x) be a vector of statistics. We define :

(x) = exp(07s(x)) _ exp(07s(x))
’ >, exp(67s(x)) Z(0)

Then

a(0,t) =

@ A. Caimo & N. Friel (2011). Bayesian Inference for Exponential Random Graphs Model. Social
Networks 33 :41-55.
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Noisy MCMC Algorithm

In this talk, we focus on the following algorithm :

Noisy MCMC Algorithm

@ arbitraty 6,

@ given 0,

Q draw tpy1 ~ q(),
[ tny1 with proba. 3(6,, th41)
Q Ony1 = { 0, otherwise,

where 3(0, t) is any approximation of a(#, t).
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Some Remarks

@ There is no reason for this algorithm to target the
objective p(6).
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Some Remarks

@ There is no reason for this algorithm to target the
objective p(6).

e Conditons on 3(6, t) such that we sample from a
distribution that is “not too far from p(6)"?

@ When P ~ P’ (transition kernels), what can we say about

their asymptotic distributions ? — stability of Markov
Chains theory,

Q N. V. Kartashov (1996). Strong Stable Markov Chains, VSP, Utrecht. J
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Some Remarks

@ There is no reason for this algorithm to target the
objective p(6).

e Conditons on 3(6, t) such that we sample from a
distribution that is “not too far from p(6)"?

@ When P ~ P’ (transition kernels), what can we say about

their asymptotic distributions ? — stability of Markov
Chains theory,

Q N. V. Kartashov (1996). Strong Stable Markov Chains, VSP, Utrecht. J

@ This is a general idea in computational statistics : if your
task is beyond your computational power, solve a simpler
task and hope (prove 7) that the two solutions are not so
different. E.g. : the LASSO.
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Overview of the Talk

© Introduction
@ Metropolis-Hastings Algorithm
@ Noisy MCMC
@ The stability of Markov chains problem

@ Stability of Markov Chains
@ Uniformly Ergodic Markov Chains
@ Consequences for the Noisy-MCMC algorithm

© Applications
@ Intractable Likelihood / ERGM
@ Big Data
@ Conclusion
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Total Variation (TV) Distance bewteen Kernels

Reminder :

Im = 7llev = sup |m(A) —7'(A)| = %/IW(G) — 7' (0)]d.

A event
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Total Variation (TV) Distance bewteen Kernels

Reminder :

Im = 7llev = sup |m(A) —7'(A)| = %/IW(G) — 7' (0)]d.

A event

Definition - TV for Kernels

HP — PIHTV = sup ||P(X7 ) — 'D/(X7 ')HTV'
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Reminder : Convergence of Markov Chains

Ergodicity

Veo, ||(5,90Pn—7T||TV mo
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Reminder : Convergence of Markov Chains

Ergodicity

Veo, ||(5,90Pn—7T||TV mo

V.

Geometric ergodicity, p < 1

Vo, |06, P" — wllvv < C(bo)p"-

A\
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Reminder : Convergence of Markov Chains

Ergodicity

VGO, HCSQOPn—’/T”TV ;T:O

<

Geometric ergodicity, p < 1

Vo, |06, P" — wllvv < C(bo)p"-

Comes with CLT :

Vi {1 IO Em[gm]} o N(O.),

Q S. P. Meyn & R. L. Tweedie (1993). Markov Chains and Stochastic Stability, Springer.

R
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Reminder : Convergence of Markov Chains

Ergodicity

Voo, |66, P" — 7||lTv — 0.

Geometric ergodicity, p < 1

Vo, |06, P" — wllvv < C(bo)p"-

Uniform ergodicity, C > 1,p < 1

V@o, H(SQOPH—WHTV S Cpn
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Stability for Uniformly Ergodic Chains

Assume that P is uniformly ergodic : ||dg, P" — 7||Tv < Cp".
Then

109, P" — 985 (P")"lrv < K(C, p)|IP — P'||1v,

=N C—pﬁan nh= —Iog(l/C)
&)= e [log(p) W

@ A. Yu. Mitrophanov (2005). Sensitivity and Convergence of Uniformly Ergodic Markov Chains.
Journal of Applied Probability 42 :1003—1014.
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Uniformly Ergodic Markov Chains

Stability of Markov Chains Consequences for the Noisy-MCMC algorithm

Refined Version

Assume that P is uniformly ergodic : ||dg, P" — 7|lTv < Cp".
Then

([lpo = Pollev + nl[P — P'lry
when n <,

PoP" — po(P")" |l v < CP"||P0—P6||T\{

+ (h+ CE) 1P = Plav

when n > 7.
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Consequence for Noisy MCMC

Reminder : a(f, t) and approximation 3(0, t). Note that 3(0, t)
might be based on additional Monte Carlo simulations, in this
case, we should write 3(f, t, S) where S stands for these
simulations.

Corollary
@ There is a function §(6, t) such that

Es |8(9, t) o é(97 £, 5)’ < 5(97 t)'

@ The kernel P associated with a(0, t) is uniformly ergodic
with constants C, p.

Then ||, P" — 65, Pl < 2K(C, p) sup / 4(dt10)5(0, t).
6

Pierre Alquier Approximate MCMC methods




Intractable Likelihood / ERGM
Big Data
Applications Conclusion

Intractable Likelihood / ERGM

exp(07s(x))
fo(x) = 7))

and we cannot compute Z.

, a0, t) =
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Intractable Likelihood / ERGM

_exp(07s(x))

fo(x) = _ w(t)exp(tTs(x))q(0) Z(0)

,alf,t) =
z0) ) = 0y exp07s(0)ale) 2(1)
and we cannot compute Z. However,

exp(07s(x) | _ x— exp(07s(x)) exp(t7s(x)) _ Z(0)
EXfo(exp(th(x)))‘gexp(ﬂsw) Z() "~ Z(1)

A1
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Intractable Likelihood / ERGM

epO7s() ) w(t)en(ts()ale) Z(0)
zo) D= G exp(@Ts())a(®) 2(1)

and we cannot compute Z. However,

E, (eXP(9TS(X))) -y exp(67s(x)) exp(t"s(x)) _ Z(0)

“ew(tTs(0)) ~ S eal(Ts() T 200 ()

so we can draw Sy = (xg,. .., xy) iid from f; (feasible) and

fo(x) =

. - (t)exp(tT s(x) exp Ts(x;)
3(0,t,Sn) = 1A — X)q(t /\/Z
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Comments

; _ 1m0 exp(t7s(x))q(8) 1§~ exp(075(x)
(0,8 50) = 1N ) @ s(x1)a(®) W 2 oxp(7s(x))

e notation : P the original kernel, Py the approx.
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Comments

. _ w(t)exp(ﬂsv))q(e)l — exp(07s(x)
3(0,t,Sn) = 1 A Z :

e notation : P the original kernel, Py the approx.

e for N = 1, this algorithm is known as the exchange
algorithm and is known to be exact.

@ I. Murray, Z. Ghahramani & D. MacKay (2006). MCMC for Doubly-Intractable Distributions.
Proceedings of the 22nd Conference on Uncertainty and Artificial Intelligence, AUAI Press.
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Comments

; _ 1m0 exp(t7s(x))q(8) 1§~ exp(075(x)
(0,8 50) = 1N ) @ s(x1)a(®) W 2 oxp(7s(x))

e notation : P the original kernel, Py the approx.

e for N = 1, this algorithm is known as the exchange
algorithm and is known to be exact.

@ I. Murray, Z. Ghahramani & D. MacKay (2006). MCMC for Doubly-Intractable Distributions.
Proceedings of the 22nd Conference on Uncertainty and Artificial Intelligence, AUAI Press.

@ Better mixing when N > 1, but in this case the algorithm
is no longer exact. Mitrophanov's theorem will tell us how
to calibrate N to reach a given accuracy.
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Noisy MCMC for ERGM

Corollary

Assume that
@ the parameter space is bounded : supycg ||0]] = T < o0,

@ there is a constant ¢ > 0 such that
c <m(f),q(f]t) <1/c.

C(T,c,s)
v'N

Then : ||, P" — 66, Pl ||l Tv < L C(T, c,s) known.

@ P. Alquier, N. Friel, R. G. Everitt & A. Boland (2014). Noisy Monte-Carlo : Convergence of
Markov Chains with Approximate Transition Kernels. Statistics and Computing, to appear.
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Simulations : Florentine Family Business Dataset
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Simulations : Florentine Family Business Dataset

s(x) = (s1(x), %2(x))
@ s1(x) number of
edges,

@ 5,(x) number of
2-stars.
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Numerical Results

Edge 2-star
Method Mean SD  Mean SD
BERGM -2.675 0.647 0.188 0.155
Exchange -2.573 0.568 0.146 0.133

Noisy Exchange |-2.686 0.526 0.167 0.122
Noisy Langevin -2.281 0.513 0.081 0.119
MALA Exchange | -2.518 0.62 0.136 0.128
Noisy MALA -2.584 0.498 0.144 0.113

Table : Posterior means and standard deviations.
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Chains, density and ACF plot for the edge statistic.
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Chains, density and ACF plot for the 2-star stat.
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Austerity in MCMC Land

x = (x1,...,X,) iid with n very large, p(6) o 7(0) [, fo(x:)-

@ A. Korattikara, Y. Chen & M. Welling (2014). Austerity in MCMC Land : Cutting the
Metropolis-Hastings Budget. Proceedings of ICML 2014.

MH :
@ draw t,.1 ~ q(-|0,), U ~U[0,1],
Q 01 =
tor1 when U < b(0,, thy1) =
0, otherwise.

m(tn+ )71 fop iy (1) G(Onltn+1)
m(On)] [i21 fo, (xi)a(tn+1[6n)
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Austerity in MCMC Land

x = (x1,...,X,) iid with n very large, p(6) o 7(0) [, fo(x:)-

@ A. Korattikara, Y. Chen & M. Welling (2014). Austerity in MCMC Land : Cutting the
Metropolis-Hastings Budget. Proceedings of ICML 2014.

MH :
@ draw t,.1 ~ q(-|0,), U ~U[0,1],
Q 01 =
tys1 when U < b{O, tnes) = “S el
0, otherwise.

Idea : to test the hypothesis U < b(6,, t,+1) with a given
confidence level instead.
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Testing U < b(0, t)
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Testing U < b(0, t)

H : —ZI @X:;>1|og[UM} =: V.

We draw (yi,...,ys) iid in {x1,...,x,}, B < n,

8 >V + ¢ = accept Hy,
Zogf <V —c = reject Hy,
= €]V — ¢,V + c[= start again, increase B.

We choose ¢ so that the type 1 and type 2 errors are < «
fixed.
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Theoretical Analysis

@ R. Bardenet, A. Doucet & C. Holmes (2014). Towards Scaling up Markov Chain Monte Carlo : an
Adaptive Subsampling Approach. Proceedings of ICML 2014.

They calibrate ¢ through Audibert’s empirical Bernstein's
inequality and obtain :

Denote P, the approximate kernel with level o > 0. Assume
that the original kernel P is uniformly ergodic (C, p). Then

||590’Dn - 590Pg”TV < OzK/(C,p).
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Theoretical Analysis

@ R. Bardenet, A. Doucet & C. Holmes (2014). Towards Scaling up Markov Chain Monte Carlo : an
Adaptive Subsampling Approach. Proceedings of ICML 2014.

They calibrate ¢ through Audibert’s empirical Bernstein's
inequality and obtain :

Denote P, the approximate kernel with level o > 0. Assume
that the original kernel P is uniformly ergodic (C, p). Then

||590’Dn - 590Pg”TV < OzK/(C,p).

However, limitation : they prove that after the burn-in period,
we tend to need B ~ n/2 at each step.

Pierre Alquier Approximate MCMC methods



Intractable Likelihood / ERGM
Big Data
Applications Conclusion

Limitations

6P = b2, P < 2K(C. p)sup / a(d]6)5(6, o).
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Limitations

6P = b2, P < 2K(C. p)sup / a(d]6)5(6, o).

e First, in many situations, [ q(dt|#)d(0,t) = co.
(However, in some cases, 6(f, t) = ¢ can be made
arbitraty small as in the examples above).
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Limitations

6P = b2, P < 2K(C. p)sup / a(d]6)5(6, o).

e First, in many situations, [ q(dt|#)d(0,t) = co.
(However, in some cases, 6(f, t) = ¢ can be made
arbitraty small as in the examples above).

e Uniformly ergodic chains are rare when one uses MH

algorithm. Example : in the ERGM model, we need a
bounded ©...
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Beyond Uniformly Ergodic Markov chains

Reminder : a criterion for geometric ergodicity.
X € (0,1),3b < 00,3V : O — [1,0],3C C © such that

Vo € O, / P(6,d0" )V (8') < A\V(0) + blgec.
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Beyond Uniformly Ergodic Markov chains

Reminder : a criterion for geometric ergodicity.
X € (0,1),3b < 00,3V : O — [1,0],3C C © such that

Vo € O, / P(6,d0" )V (8') < A\V(0) + blgec.

This drift condition, together with “usual” assumptions
(irreducibility...) ensure that P is V-uniformly ergodic :

1605 P" =l < Cp"V(6o)

and this turn out to be equivalent to geometric ergodicity !
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Beyond Uniformly Ergodic Markov chains

Reminder : a criterion for geometric ergodicity.
X € (0,1),3b < 00,3V : O — [1,0],3C C © such that
Vo € ©, / P(6,d8")V(0") < AV(0) + blgec.

This drift condition, together with “usual” assumptions
(irreducibility...) ensure that P is V-uniformly ergodic :

1605 P" =l < Cp"V(6o)

and this turn out to be equivalent to geometric ergodicity !
This is satisfied in many practical situations,

@ G. O. Roberts & J. S. Rosenthal (2004). General State Space Markov Chains and MCMC
Algorithms. Probability Surveys 1 :20-71.
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Stability of Geometrically Ergodic Markov Chains

(Theorem .

Sequence of kernels ||Py — P|jrv — 0, IV(-) > 1 :
@ P is V-uniformly ergodic;
o N eN,0<d<1,L>0,VN > Ny,

/ V(8)Pu(6o, d6) < 5V (6) + L.

Then for N large enough, Py is geometrically ergodic with
limiting distribution 7y and |7y — 7| P 0.
— 00

@ D. Ferré, L. Hervé & J. Ledoux (2013). Regular Perturbations of V-Geometrically Ergodic Markov
Chains. Journal of Applied Probability 50 :184—194.
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More improvements

Recent works on non-asymptotic bounds for MCMC based on
the Ricci's curvature of P :

@ A. Joulin & Y. Ollivier (2010). Curvature, Concentration and Error Estimates for Markov Chain
Monte Carlo. The Annals of Probability 38 :2418-2442.

@ A. Drumus & E. Moulines (2014). Quantitative Bounds of Convergence for Geometrically Ergodic

Markov Chains in the Wasserstein Distance with Application to the Metropolis Adjusted Langevin
Algorithm. Statistics and Computing, to appear.

Stability using these tools :

@ N. S. Pillai & A. Smith (2014). Ergodicity of Approximate MCMC Chains with Applications to
Large Data Sets. Preprint arXiv :1405.0182.
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