Kernel Adaptive Metropolis Hastings

Dino Sejdinovic, <u>Heiko Strathmann</u>, Maria Lomeli, Christophe Andrieu, Arthur Gretton, ICML 2014

Gatsby Unit for Computational Neuroscience and Machine Learning
University College London

November 26, 2014

Joint work

Outline

Context: Intractable & non-linear Posteriors

Method: Kernel Embeddings & Covariance

Experiments: Results & Conclusion

Being Bayesian: Averaging beliefs of the unknown

$$p(y^*) = \int d\theta \, \underbrace{p(y^*|\theta)}_{\text{likelihood posterior}} \underbrace{p(\theta|y)}_{\text{option}}$$

where $p(\theta|y) \propto p(y|\theta) \underbrace{p(\theta)}_{\text{prior}}$

Metropolis Hastings & Markov Chains

Construct $\theta_0 \to \theta_1 \to \theta_2 \to \theta_3 \to \dots$

- Given unnormalised target $\pi(\theta) \propto p(\theta|y)$
- ightharpoonup At iteration t, state θ_t
- Propose $\theta' \sim q(\cdot|\theta_t)$

Accept $\theta_{t+1} \leftarrow \theta'$ with probability

$$\min\left(\frac{\pi(\theta')q(\theta_t|\theta')}{\pi(\theta_t)q(\theta'|\theta_t)},1\right)$$

Reject $\theta_{t+1} \leftarrow \theta_t$ otherwise.

This talk: Which proposal?

Crucial for efficiency of sampler. Often,

$$q_t(\cdot|\theta_t) = \mathcal{N}(\cdot|\theta_t,\dots)$$

Adaptive Metropolis: (Haario et al, 2001)

Online estimates of global covariance

$$q_t(\cdot|\theta_t) = \mathcal{N}(\cdot|\theta_t, \nu^2 \hat{\Sigma}_t)$$

Adaptive Metropolis: (Haario et al, 2001)

Inefficient for curved targets

$$q_t(\cdot|\theta_t) = \mathcal{N}(\cdot|\theta_t, \nu^2\hat{\Sigma}_t)$$

Non-linear & Intractable Targets

Sophisticated solutions for non-linear targets:

- ► Metropolis Adjusted Langevin Algorithms (MALA), (Roberts & Stramer, 2003)
- ► Hamiltonian Monte Carlo (HMC), (Girolami & Calderhead, 2011)
- ▶ Require target gradient $\nabla \pi(\cdot)$ or second order information

Our case: Neither $\nabla \pi(\cdot)$ nor even $\pi(\cdot)$ can be computed.

Pseudo Marginal MCMC

Posterior inference over latent process f

$$p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f},\theta)d\mathbf{f} := \pi(\theta)$$

- Intractable for, e.g., non-conjugate Gaussian process
- ► Use unbiased estimator \(\hat{\pi}(\cdot)\) in MH ratio Beaumont, 2003; Andrieu & Roberts, 2009; Filippone & Girolami 2014

$$\min\left(rac{\widehat{\pi}(heta')q(heta_t| heta')}{\widehat{\pi}(heta_t)q(heta'| heta_t)},1
ight)$$

- \triangleright $\theta^{(j)}$ from correct invariant distribution
- ▶ No access to $\nabla \pi(\cdot)$

Gaussian Process Classification

 θ -Posterior slice of a GPC on UCI Glass dataset.

Objective: Adaptive sampler that learns the shape of non-linear targets without gradient information?

Method: Kernel Embeddings & Covariance

Input space ${\mathcal X}$

Feature map & Kernel:

$$\phi: \mathcal{X} \to \mathcal{H}$$
 $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$

Kernel mean & covariance:

$$\mu := \mathbb{E}[\phi(X)] \qquad C := \mathbb{E}\left[\phi(X) \otimes \phi(X)\right] - \mu \otimes \mu$$

$$\hat{\mu}_{z} = \frac{1}{n} \sum_{i=1}^{n} \phi(z_{i}) \qquad C_{z} = \frac{1}{n} \sum_{i=1}^{n} \phi(z_{i}) \otimes \phi(z_{i}) - \mu_{z} \otimes \mu_{z}$$

Feature space sample:

$$\beta \sim \mathcal{N}\left(\beta \left| \mathbf{0}, \frac{\nu^2}{n} I_{n \times n} \right) \right.$$
$$f = \phi(x_t) + \sum_{i=1}^n \beta_i \left[\phi(z_i) - \mu_z \right]$$

Proposal construction formally

- 1. Get a chain subsample $\mathbf{z} = \{z_i\}_{i=1}^n$
- 2. Construct an RKHS sample $f \sim \mathcal{N}(\phi(x_t), \nu^2 C_z)$
- 3. Propose x' such that $\phi(x')$ is close to f i.e. attempt

$$x' = \arg\min_{\mathbf{x} \in \mathcal{X}} \|\phi(\mathbf{x}) - f\|_{\mathcal{H}}^2$$

4. Add noisy exploration term $\xi \sim \mathcal{N}(0, \gamma^2)$

This gives

$$x'|x_{t}, f, \xi = x_{t} - \eta \nabla_{x=x_{t}} \|\phi(x) - f\|_{\mathcal{H}}^{2} + \xi$$

Final proposal

We have

$$x'|x_{t}, f, \xi = x_{t} - \eta \nabla_{x=x_{t}} \|\phi(x) - f\|_{\mathcal{H}}^{2} + \xi$$

Analytically integrate out

- RKHS samples f
- ▶ gradient step
- ightharpoonup exploration noise ξ

Obtain Gaussian proposal on the input space:

$$q_{\mathbf{z}}(\mathbf{x}'|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_t, \gamma^2 I_d + \nu^2 M_{\mathbf{z}, \mathbf{x}_t} H M_{\mathbf{z}, \mathbf{x}_t}^{\top})$$

$$M_{\mathbf{z},x_t} = 2\left[\nabla_{x=x_t} k(x,z_1), \ldots, \nabla_{x=x_t} k(x,z_n)\right]$$

Locally aligned covariance

Locally aligned covariance

Covariance structure for standard kernels

Linear kernel $k(x, x') = x^{\top} x'$

$$q_{\mathbf{z}}(\cdot|y) = \mathcal{N}(y, \gamma^2 I + 4\nu^2 \mathbf{Z}^{\mathsf{T}} H \mathbf{Z})$$

Classical Adaptive Metropolis (Haario et al 1999;2001)

Gaussian kernel $k(x, x') = \exp\left(-\frac{1}{2}\sigma^{-2} \|x - x'\|_2^2\right)$

$$\begin{aligned} \left[\mathbf{cov}[q_{\mathbf{z}(\cdot|\mathbf{y})}] \right]_{ij} &= \gamma^2 \delta_{ij} + \frac{4\nu^2}{\sigma^4} \sum_{a=1}^n \left[k(\mathbf{y}, \mathbf{z}_a) \right]^2 (z_{a,i} - y_i) (z_{a,j} - y_j) \\ &+ \mathcal{O}\left(\frac{1}{n}\right) \end{aligned}$$

Influence of previous points z_a on covariance is weighted by similarity $k(y, z_a)$ to current location y.

MCMC Kameleon

Input:

- unnormalized target π , or even $\hat{\pi}$
- ▶ kernel k
- ► subsample size *n*
- scaling parameters ν, γ
- ▶ update schedule $\{p_t\}_{t>1}$ with $p_t \to 0$, $\sum_{t=1}^{\infty} p_t = \infty$

MCMC Kameleon

At iteration t+1,

- 1. With probability p_t , update a random subsample $z = \{z_i\}_{i=1}^n$ of the chain history $\{x_i\}_{i=0}^{t-1}$
- 2. Sample proposed point x' from $q_{\mathbf{z}}(\cdot|x_t) = \mathcal{N}(x_t, \gamma^2 I_d + \nu^2 M_{\mathbf{z}, x_t} H M_{\mathbf{z}, x_t}^{\mathsf{T}})$
- 3. Accept/reject with MH ratio

$$x_{t+1} = \begin{cases} x', & \text{w.p. min} \left\{1, \frac{\pi(x')q_{\mathbf{z}}(x_t|x')}{\pi(x_t)q_{\mathbf{z}}(x'|x_t)} \right\}, \\ x_t, & \text{otherwise}. \end{cases}$$

Convergence to π preserved as long as $p_t \rightarrow 0$ (Roberts & Rosenthal, 2007)

Outline

Context: Intractable & non-linear Posteriors

Method: Kernel Embeddings & Covariance

Experiments: Results & Conclusion

Gaussian Process Classification

Posterior over parameters of a GPC on UCI Glass dataset.

UCI Glass dataset

UCI Glass dataset

UCI Glass dataset

Synthetic target: Banana

0.4 0.2 0.0

 $Accept \in [0, 1]$

 $||\hat{\mathbb{E}}[X]||/10$

Banana: $\mathcal{B}(b, v)$: take $X \sim \mathcal{N}(0, \Sigma)$ with $\Sigma = \operatorname{diag}(v, 1, \ldots, 1)$, and set $Y_2 = X_2 + b(X_1^2 - v)$, and $Y_i = X_i$ for $i \neq 2$

Strongly twisted 8-dimensional $\mathcal{B}(0.1, 100)$

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

Conclusions

MCMC Kameleon

- A simple, versatile, gradient-free adaptive MCMC sampler
- Proposals locally align with target distribution
- Outperforms existing approaches on nonlinear targets
- ightharpoonup Very general framework (non-Euclidean \mathcal{X})
- ► Code: https://github.com/karlnapf/kameleon-mcmc

Conclusions

MCMC Kameleon

- A simple, versatile, gradient-free adaptive MCMC sampler
- Proposals locally align with target distribution
- Outperforms existing approaches on nonlinear targets
- Very general framework (non-Euclidean X)
- ► Code: https://github.com/karlnapf/kameleon-mcmc

Thank you! Questions?

RKHS and Kernel Embedding

Definition

Let k be a kernel on \mathcal{X} , and P a probability measure on \mathcal{X} . The kernel embedding of P into the RKHS \mathcal{H}_k is $\mu_k(P) \in \mathcal{H}_k$ such that

$$\mathbb{E}_P f(X) = \langle f, \mu_k(P) \rangle_{\mathcal{H}_k}$$

for all $f \in \mathcal{H}_k$

- For any positive semidefinite function k, there is a unique RKHS \mathcal{H}_k . Can consider $x \mapsto k(\cdot, x)$ as a feature map.
- ► For many kernels k, including the Gaussian, Laplacian and inverse multi-quadratics, the kernel embedding $P \mapsto \mu_P$ is injective (Sriperumbudur et al. 2010)
- Captures all moments (similarly to the characteristic function).

Covariance Operator

Definition

The covariance operator of P is $C_P: \mathcal{H}_k \to \mathcal{H}_k$ such that $\forall f, g \in \mathcal{H}_k$,

$$\langle f, C_P g \rangle_{\mathcal{H}_k} = \mathsf{Cov}_P [f(X)g(X)]$$

 $\mathcal{C}_P:\mathcal{H}_k o\mathcal{H}_k$ is given by

$$C_P = \int k(\cdot, x) \otimes k(\cdot, x) dP(x) - \mu_P \otimes \mu_P$$

(covariance of canonical features), and for $f,g,h\in\mathcal{H}_k$

$$\langle f \otimes g \rangle_{\mathcal{H}_k} h := \langle h, g \rangle_{\mathcal{H}_k} f$$

Feature space sample

RKHS sample

$$f = \phi(x_t) + \sum_{i=1}^n \beta_i \left[\phi(z_i) - \mu_z\right]$$

has covariance

$$\mathbb{E}\left[\left(f - \phi(\mathbf{x}_{t})\right) \otimes \left(f - \phi(\mathbf{x}_{t})\right)\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i} \beta_{j} (\phi(\mathbf{z}_{i}) - \mu_{\mathbf{z}}) \otimes (\phi(\mathbf{z}_{j}) - \mu_{\mathbf{z}})\right]$$

$$= \frac{\nu^{2}}{n} \sum_{i=1}^{n} (\phi(\mathbf{z}_{i}) - \mu_{\mathbf{z}}) \otimes (\phi(\mathbf{z}_{i}) - \mu_{\mathbf{z}})$$

$$= \nu^{2} C_{\mathbf{z}}$$

Kernel distance gradient

$$g(x) = \|\phi(x) - f\|_{\mathcal{H}}^{2}$$

$$= k(x, x) - 2k(x, y) - 2\sum_{i=1}^{n} \beta_{i} [k(x, z_{i}) - \mu_{z}(x)]$$

$$\nabla_{x}g(x)|_{x=y} = \underbrace{\nabla_{x}k(x, x)|_{x=y} - 2\nabla_{x}k(x, y)|_{x=y}}_{=0} - M_{z,y}H\beta$$

where

$$M_{\mathbf{z},y} = 2 \left[\nabla_{\mathbf{x}} k(\mathbf{x}, \mathbf{z}_1) |_{\mathbf{x} = \mathbf{y}}, \dots, \nabla_{\mathbf{x}} k(\mathbf{x}, \mathbf{z}_n) |_{\mathbf{x} = \mathbf{y}} \right]$$

and

$$H = I_n - \frac{1}{n} \mathbf{1}_{n \times n}$$

Gradient step intuition

 $\|\phi\left(\mathbf{x}\right)-f\|_{\mathcal{H}}^{2}$ varies most along high density areas of $\pi(\cdot)$

Bayesian Gaussian Process Classification

▶ GPC model: latent process f, labels y, covariates X, and hyperparameters θ :

$$p(\mathbf{f}, \mathbf{y}, \theta) = p(\theta)p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f})$$

where $\mathbf{f}|\theta \sim \mathcal{N}(0, \mathcal{K}_{\theta})$ is a realization of a GP with covariance \mathcal{K}_{θ} (evaluated at X)

$$(\mathcal{K}_{\theta})_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j' | \theta) = \exp\left(-\frac{1}{2} \sum_{s=1}^d \frac{(\mathbf{x}_{i,s} - \mathbf{x}_{j,s}')^2}{\exp(\theta_s)}\right)$$

▶ $p(y|f) = \prod_{i=1}^{n} p(y_i|f_i)$ is a product of sigmoidal functions:

$$p(y_i|f_i) = \frac{1}{1 - \exp(-y_i f_i)}, \quad y_i \in \{-1, 1\}.$$

Bayesian Gaussian Process Classification

- ▶ Fully Bayesian treatment: Interested in posterior $p(\theta|y)$
- ► Cannot use a Gibbs sampler on $p(\theta, \mathbf{f}|y)$, which samples from $p(\mathbf{f}|\theta, y)$ and $p(\theta|\mathbf{f}, y)$ in turns, since $p(\theta|\mathbf{f}, y)$ is extremely sharp
- ► Filippone & Girolami, 2014 use Pseudo-Marginal MCMC to sample $p(\theta|y) = p(\theta) \int p(\theta, \mathbf{f}|y) p(\mathbf{f}|\theta) d\mathbf{f}$
- ▶ Unbiased estimate of $\hat{p}(y|\theta)$ via importance sampling:

$$\hat{p}(\theta|\mathbf{y}) \propto p(\theta)\hat{p}(\mathbf{y}|\theta) \approx p(\theta) \frac{1}{n_{\text{imp}}} \sum_{i=1}^{n_{\text{imp}}} p(\mathbf{y}|\mathbf{f}^{(i)}) \frac{p(\mathbf{f}^{(i)}|\theta)}{Q(\mathbf{f}^{(i)})}$$

No access to likelihood, gradient, or Hessian