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Being Bayesian: Averaging beliefs of the unknown

o) = / i ply*16) e(0))

likelihood poster|or
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prior



Metropolis Hastings & Markov Chains

Construct 0y — 07 — 6, — 03 — ...
» Given unnormalised target 7(0) o< p(0|y)
» At iteration t, state 0,
» Propose 0" ~ q(-|6;)

Accept 0,1 < 0" with probability

(x(@)a(09)
(w(eoq(wet)’ 1)

Reject 0;,1 < 0, otherwise.



This talk: Which proposal?

Crucial for efficiency of sampler. Often,

q:(:10:) = N(-|6;,...)




Adaptive Metropolis: (Haario et al, 2001)
Online estimates of global covariance

q:(+10:) = N (+10:, Vzit)




Adaptive Metropolis: (Haario et al, 2001)

Inefficient for curved targets

q:(+10:) = N (+10:, Vzit)




Non-linear & Intractable Targets

Sophisticated solutions for non-linear targets:

» Metropolis Adjusted Langevin Algorithms (MALA),
(Roberts & Stramer, 2003)

» Hamiltonian Monte Carlo (HMC),
(Girolami & Calderhead, 2011)

» Require target gradient V7(-) or second order information

Our case: Neither V() nor even 7(-) can be computed.



Pseudo Marginal MCMC

» Posterior inference over latent process f

p(0ly) o p(B)p(y16) = p(6) / p(F0)p(y|F, 0)df := (0)

v

Intractable for, e.g., non-conjugate Gaussian process

v

Use unbiased estimator 7 () in MH ratio
Beaumont, 2003; Andrieu & Roberts, 2009;
Filippone & Girolami 2014

(#(0)a(69)
min (50010

0Y) from correct invariant distribution
No access to V7(-)

v

v



Gaussian Process Classification
O-Posterior slice of a GPC on UCI Glass dataset.

5
—6 -5 —4 —2 —1 0

,,02

Objective: Adaptive sampler that learns the shape of
non-linear targets without gradient information?



Method: Kernel Embeddings & Covariance




Proposal construction idea

Input space X




Proposal construction idea

Input space X Feature space H

¢(Xt)
%

Feature map & Kernel:

p: X = H k(x,y) = (o(x), o(¥))n



Proposal construction idea

Input space X

Kernel mean & covariance:

p=EB(X)]  C=E[6(X)®¢(X)] —ueu

n
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Proposal construction idea

Input space X

Feature space sample f

2
0, ”—/m>
n

f=o(x)+ Z B: [6(z7) — pa]

Feature space sample:

ot




Proposal construction idea

Input space X eature space H

ind-a hearby pre-image in X
(gradient descent)



Proposal construction idea

Input space X ture space ‘H

Feature space sample f

da hearby pre-image in X
(gradient descent)



Proposal construction formally

1. Get a chain subsample z = {z;}7,
2. Construct an RKHS sample f ~ N (é(x;), ?C,)

3. Propose x" such that ¢(x’) is close to f i.e. attempt

X' = arg min [[6(x) — |13,
XEX

4. Add noisy exploration term & ~ N(0,~?)
This gives

X/|Xt7 f7§ = Xt - an:Xt H@ (X) - f”?—[ +£



Final proposal

We have
X/|Xt7 f?é- =Xt — r}vX:Xt HO (X) - fH?—[ +£

Analytically integrate out
» RKHS samples f
» gradient step
» exploration noise £
Obtain Gaussian proposal on the input space:

0.(X'|x;) = N (xe, v 1y + V2 M, HM] )

Z,X¢

M, e = 2[Vex k(X,21), ..., Vaex k(X, z)]



Locally aligned covariance




Locally aligned covariance




Covariance structure for standard kernels

Linear kernel k(x,x') = x"x'

q.(:|ly) = Ny, vl + 41/22THZ)

Classical Adaptive Metropolis (Haario et al 1999;2001)

Gaussian kernel k(x,x') = exp <—§a—2 Ix — x'yyg)

42 &
[covlgl]; = 705+ Py > k(v za)1 (2 — ¥i)(zaj — ¥)

a=1
+ O (—1 >
n

Influence of previous points z, on covariance is weighted by
similarity k(y, z,) to current location y.



MCMC Kameleon

Input:

» unnormalized target m, or even 7

» kernel k

» subsample size n

» scaling parameters v,y

» update schedule {p;};>1 with p,— 0, >°77, pr = 00



MCMC Kameleon

At iteration t + 1,
1. With probability p;, update a random subsample
z = {z}7_, of the chain history {x;}/_
2. Sample proposed point x’ from
42(-|xe) = N (xe. 7 lg + > My HM, )
3. Accept/reject with MH ratio

X', w.p. min {1, —F(X,)qZ(XﬂX,)} ;
Xt+1 = ) ﬂ-(xt)qz(x |Xt)
x;, otherwise.

Convergence to 7 preserved as long as p;— 0 (Roberts &
Rosenthal, 2007)



Outline

Experiments: Results & Conclusion



Gaussian Process Classification
Posterior over parameters of a GPC on UCI Glass dataset.
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8-dimensional non-linear posterior: no ground truth,

performance with respect to a long-run, heavily thinned
benchmark sample. Mixed (1st-3rd) moments convergence.



UCI Glass dataset
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8-dimensional non-linear posterior: no ground truth,
performance with respect to a long-run, heavily thinned
benchmark sample. Mixed (1st-3rd) moments convergence.



UCI Glass dataset
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UCI Glass dataset
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8-dimensional non-linear posterior: no ground truth,
performance with respect to a long-run, heavily thinned
benchmark sample. Mixed (1st-3rd) moments convergence.



Synthetic target: Banana

Banana: B(b,v): take X ~ N (0,X) with
Y =diag(v,1,...,1), and set Yo = X, + b(X? — v), and
Y, = X; for i #£2
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Conclusions

MCMC Kameleon
» A simple, versatile, gradient-free adaptive MCMC sampler
» Proposals locally align with target distribution
» Qutperforms existing approaches on nonlinear targets

» Very general framework (non-Euclidean X)

» Code: https://github.com/karlnapf/kameleon-mcmc




Conclusions

MCMC Kameleon
» A simple, versatile, gradient-free adaptive MCMC sampler

v

Proposals locally align with target distribution

v

Outperforms existing approaches on nonlinear targets

v

Very general framework (non-Euclidean X)

v

Code: https://github.com/karlnapf/kameleon-mcmc

Thank you! Questions?



RKHS and Kernel Embedding

Definition

Let k be a kernel on X, and P a probability measure on X.
The kernel embedding of P into the RKHS Hy is px(P) € Hy
such that

Epf(X) = (f, tk(P))4,
for all f € H,

» For any positive semidefinite function k, there is a unique
RKHS . Can consider x — k(-,x) as a feature map.

» For many kernels k, including the Gaussian, Laplacian and
inverse multi-quadratics, the kernel embedding P — pup is
injective (Sriperumbudur et al, 2010)

» Captures all moments (similarly to the characteristic
function).



Covariance Operator
Definition
The covariance operator of P is Cp : Hx — Hyi such that
Vf7g E %ky

(f, CPg>Hk = Covp [f(X)g(X)]
Cp : Hyx — Hy is given by
Cp = /k(-, x) @ k(-,x) dP(x) — pp ® pp

(covariance of canonical features), and for f, g, h € H

(f @ g)u.h = (h,g)n,f



Feature space sample
RKHS sample

F=o(x) + > Bi0(zi) — e
i=1
has covariance

E[(f — o(xe)) @ (f — o(xt))]
= E [Z > BiBi(8(z) — p2) ® (6(27) — pz)

= O 0l — ) © (0z) )

= V2C,



Kernel distance gradient

g(x) = llo(x) — fll3,
= k(x,x) = 2k(x,y) =2 Bi[k(x. 1) — pz(x)]

i=1
Vg (X)lx=y = Vuk(X, X)lx=y = 2Vick(X, y) =y =Mz HI3

-~

=0

where
M, = 2[Vik(x, 21)|x=y, - - -, Vxk(X, zn)|x=y]

and )
H = /n - _]-n><n
n



Gradient step intuition

|¢ (x) — f|[5, varies most along high density areas of (-



Bayesian Gaussian Process Classification

» GPC model: latent process f, labels y, covariates X, and
hyperparameters 6:

p(f.y,0) = p(0)p(f]0)p(ylf)

where |0 ~ N (0, KCy) is a realization of a GP with
covariance Iy (evaluated at X)

d

B o 1 (xis — X 5)?
(Ko)ij = r(xi,xj|0) = exp (_§ ; exp(fs)

» p(y|f) =TI\, p(yi|f;) is a product of sigmoidal functions:

1

P T ey

yi € {_17 1}



Bayesian Gaussian Process Classification

» Fully Bayesian treatment: Interested in posterior p(f|y)

» Cannot use a Gibbs sampler on p(0, f|y), which samples
from p(f|6,y) and p(0|f, y) in turns, since p(0|f,y) is
extremely sharp

» Filippone & Girolami, 2014 use Pseudo-Marginal MCMC
to sample p(Aly) = p(0) [ p(0, f|y)p(f|0)df

» Unbiased estimate of p(y|@) via importance sampling:

nlmp | )

ZP y[f) o)

p(fly) oc p(0)p(y|0) ~ p(0

Nimp <

» No access to likelihood, gradient, or Hessian
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