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EEG and MEG: 
Multisensor systems that 

record brain activity with a 
high temporal resolution

❒ Objective: Separation and localization of brain sources 

❒ Applications: 
▪ Diagnosis and management of diseases such as epilepsy 

⇒ e.g., identification of epileptogenic zones 
▪ Neuroscience: Understanding of brain functions

www.canada-meg-consortium.org

1. Motivation
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Employed tensor model: 
▪ Canonical Polyadic (CP) 

decomposition [1,2] 
▪ PARAFAC2 [5] 
▪ Shift-invariant CP (SCP) [6] 
▪ Block term decomposition [7]

❒ Tensor-based approaches for EEG source separation:

Exploited dimensions in  
addition to space and time: 
▪ frequency [1] 
▪ wave vector [2] 
▪ subject [3] 
▪ realization [4]  

[1] Miwakeichi et al. 2004 
[2] Becker et al. 2012  
[3] Morup et al. 2006 
[4] Deburchgraeve et al. 2009

[5] Weis et al. 2010  
[6] Morup et al. 2008 
[7] Hunyadi et al. 2014

1. Motivation
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Employed tensor model: 
▪ Canonical Polyadic (CP) 

decomposition [1,2] 
▪ PARAFAC2 [5] 
▪ Shift-invariant CP (SCP) [6] 
▪ Block term decomposition [7]

Exploited dimensions in  
addition to space and time: 
▪ frequency [1] 
▪ wave vector [2] 
▪ subject [3] 
▪ realization [4]  

1. Motivation

!  Tensor-based approaches for EEG source separation: 

⇒ Tensor decomposition results are mostly used to identify 
spatial maps and time signals of the sources 

!  Idea: improve interpretation of EEG by identifying the source 
positions and their spatial extents " brain source imaging 



5

1.Motivation 

2. Data Model 

3. CP Tensor decomposition 

4. Tensor - based source localization 
•   Classical two-steps approach 
•   Proposed single - step approach 

5. Simulations 

6. Conclusion

Outline
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    on spatial parameters
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❒ EEG data matrix: 

❒ Distributed source model:
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activity of interest

background 
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72.1 Example of a patch 



82. Data model

❒ EEG data matrix: 

❒ Distributed source model: 

 

❒  Lead field matrix: depends 
    on spatial parameters

❒ Signal matrix: temporal 
    behavior of D dipoles

distributed source lead 
field vector                   

          
       –  coefficient vector

average  
signal of the 
p-th source



93. CP tensor decomposition

❒ Essentially unique (up to scale and permutation 
indeterminacies) under mild conditions 

❒ Approximates a tensor by P rank-1 components:
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103.1 Space-Time-Frequency (STF) analysis
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Electric potential data Wavelet

Exploits temporal changes of the data
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123.2 Space-Time-Wave-Vector (STWV) analysis
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Tensor       : 

stacked data matrices  
of R spikes

3.3 Construction of a space-time-spike tensor

❒ Stack EEG data of interictal epileptic spike-like signals observed at different 
time instants along the third dimension of the tensor [4]

EEG data

data 
matrix

[4] Deburchgraeve et al. 2009 , “Neonatal seizure localization using Parafac 
decomposition,” Clinical Neurophysiology



153.3 CP model of a space-time-spike tensor

❒ CP model: 

 e.g. 

 p=1 

 p=2 

⇒ spatial maps can be used for source localization

spatial maps time signals spike amplitudes



164.1 Classical two-step tensor-based source localization 
approach: STS-DA

❒ First step: CP decomposition of tensor X to identify the matrix H 

❒ Second step: Separate localization of each distributed source based on  
▪ the distributed source lead field vector       
▪ a dictionary of circular-shaped source regions, the “disks”, of varying 

sizes, which are described by the coefficient vectors 
▪ a metric

space

time

spike
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Source 1 Source P
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184.3 Proposed single-step approach:  
STS-SISSY (1)

❒ Idea: Perform tensor decomposition and source localization in a single step 
▪ Impose structural constraint:                        Piecewise-constant spatial    

distribution 
▪ Employ fused LASSO regularization:

gradient operator
regularization parameters
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194.4 Proposed single-step approach:  
STS-SISSY (2)

❒ Reformulation of the constrained optimization problem: 

❒ Solution using ADMM with update equations: 
  

                                   with 

▪ Latent variables: 

▪ Lagrangian multipliers:



205. Simulation setup

❒ Realistic head model ❒ SEEG signals for patch dipoles 

❒ Extended sources (patches) composed of adjacent grid dipoles 
❒ Highly correlated interictal epileptic spike activities within a patch 
❒ Two sources: 

▪ One source composed of two patches with delayed spike-like signals 
▪ One source composed of one patch with spike-like signals of slightly 

different morphology than for the first  source 
❒ 91 sensors, 50 realizations of spikes with different amplitudes

scalp

skull

brain

source 
space



215.1 Evaluation criterion and performance results

❒ Evaluation criterion: dipole localization error (DLE) 

❒ Performance results for two scenarios:

Set containing the indices of active grid dipoles
Set containing the indices of estimated active grid dipoles

scenario Single-step 
STS-SISSY

Two-step 
STS-DA

1 1.32 18.23

2 1.37 7.29

Scenario 2Scenario 1

Position of the k-th grid dipole



225.2 Illustration of simulation results



236. Conclusions

❒ EEG sources can be separated and localized in a single step by 
the proposed constrained tensor decomposition approach 

❒ The proposed algorithm makes use of the ALS and ADMM 
optimization strategies 

❒ Realistic simulations in the context of drug-resistant epilepsy 
have shown that the proposed single-step method outperforms a 
previously developed two-step tensor-based source localization 
approach
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