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1. Motivation 2

EEG and MEG:
Multisensor systems that
record brain activity with a
high temporal resolution

www.canada-meg-consortium.org

3 Objective: Separation and localization of brain sources

3 Applications:
= Diagnosis and management of diseases such as epilepsy
= e.g., identification of epileptogenic zones
= Neuroscience: Understanding of brain functions
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O Tensor-based approaches for EEG source separation:

Exploited dimensions in

addition to space and time:

frequency [1]
wave vector [2]
subject [3]
realization [4]

[1] Miwakeichi et al. 2004

[2] Becker et al. 2012

[3] Morup et al. 2006

[4] Deburchgraeve et al. 2009

Employed tensor model:

= Canonical Polyadic (CP)
decomposition [1,2]

= PARAFAC2 [5]
= Shift-invariant CP (SCP) [6]
= Block term decomposition [7]

[5] Weis et al. 2010
[6] Morup et al. 2008
[7] Hunyadi et al. 2014
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O Tensor-based approaches for EEG source separation:

Exploited dimensions in Employed tensor model:
addition to space and time: = Canonical Polyadic (CP)

= frequency [1] decomposition [1,2]

= wave vector [2] = PARAFAC2 [5]

= subject [3] = Shift-invariant CP (SCP) [06]

= realization [4] = Block term decomposition [7]

= Tensor decomposition results are mostly used to identify
spatial maps and time signals of the sources

3 ldea: improve interpretation of EEG by identifying the source
positions and their spatial extents =» brain source imaging
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2. Data model 6

X=G-SecRV
/ \

G e RY*P S e RV*!
O Lead field matrix: depends 3 Signal matrix: temporal
on spatial parameters behavior of D dipoles

N - number of sensors T - number of time samples
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J EEGdatamatrix: | X = G - S € RV*T

— N

G c RNXD S = RDXT
O Lead field matrix: depends 3 Signal matrix: temporal
on spatial parameters behavior of D dipoles
N - number of sensors T - number of time samples

3 Distributed source model:

activity of interest == X _
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background
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2.1 Example of a patch /




2. Data model 8

J EEGdatamatrix: | X = G - S € RV*T

— N

G c RNXD S = RDXT
O Lead field matrix: depends 3 Signal matrix: temporal
on spatial parameters behavior of D dipoles
N - number of sensors T - number of time samples

3 Distributed source model:

P
X = Xe + Xb = E hpsg -+ Xb P - number of sources

p=y \
h;,, = G, distributed source lead average

field vector signal of the

p-th source

Vp — coefficient vector



3. CP tensor decomposition ?

3 Essentially unique (up to scale and permutation
indeterminacies) under mild conditions

space
3 Approximates a tensor by P rank-1 components:

Component Component
1 P

C

<
JJ *» .-

~p diagonal elements



3. CP tensor decomposition ?

3 Essentially unique (up to scale and permutation
indeterminacies) under mild conditions

space
3 Approximates a tensor by P rank-1 components:

P
X ~ ) a(p)ob(p)oc(p) P TR +ﬁjj
p—1

Component Component
1 P

C

L,
X ~ Ix;AxyBx3C A.-B

~p diagonal elements



3.1 Space-Time-Frequency (STF) analysis °

S
Wavelet
Transform frequency A
i over:time
ata
spacel matrix spacel
—_— > e
time time
o0
Wit f)= [ aer)- viartr
S N
Electric potential data Wavelet

Exploits temporal changes of the data



3.1 Space-Time-Frequency (STF) analysis !

S
Wavelet

Transform frequency A

i over:time

ata
space l matrix space l
e —

time time

Frequency /CP decomposition
characteristics Assumption:

Oscillatory signals

Time
characteristics

Space
characteristics




3.1 Space-Time-Frequency (STF) analysis !

S
Wavelet
Transform frequency A
i over:time
ata
space l matrix space l
time time
Frequency /CP decomposition
characteristics Assumption:
Cw Oscillatory signals

= -
Space Buw Time
charagteristics HV characteristics

R
W(r,t.f)~ > aw(r;p)-bw(t:p) - cw(f:p)
p=1




3.2 Space-Time-Wave-Vector (STWV) analysis 12

e ———
Local Fourier Wave
transform vector /,
. ovegpace
ata
space l matrix space l
> S

time time

Evaluates spatial changes of the data within a spherical window
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e ———
Local Fourier Wave
transform vector /,
. ovegpace
ata
space l matrix space l
> S

time time

o0
F(r,t,k) = / w(r’ —7) -z, t)el T dr’
o ~

3D window function Electric potential data

Evaluates spatial changes of the data within a spherical window
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3.2 Space-Time-Wave-Vector (STWV) analysis 13

e ———
Local Fourier Wave
transform vector /,
. over:s>pace
ata
space l matrix space l
— > —_—>
time time
Wave vector / CP decomposition
characteristics
Cp
3=
T
Spage | ime
characteristics f % characteristics

R
F(r,t,k)~ > ap(r;p)-bp(t;p) - cp(k:p)
p=1




3.3 Construction of a space-time-spike tensor 14

0 Stack EEG data of interictal epileptic spike-like signals observed at different
time instants along the third dimension of the tensor [4]

EEG data Tensor X :
ot A e R stacked data matrices
FP2-—-‘W4»--« e NWW\AN of R SplkeS

; /|/,|
FC5 A PRI S B N b > P |/
F B sl fmpremmnadd, St ‘L~w’. >  mtens //’|
C P 5 PEVIS SN S — "- B et (m—r—
C PG vyt ot | fiman i o L~
il N 1 o | 2 data
FTIOM}-\WJ"\M !{“"'NNMJ\‘M,WW matrlx
[T TR S " ]
P10 v o
POZ~ - «
L I
0

[4] Deburchgraeve et al. 2009 , “Neonatal seizure localization using Parafac
decomposition,” Clinical Neurophysiology



3.3 CP model of a space-time-spike tensor 15

S
O CP model: X ~ Z h o Sp o Cp
;;/ \\\\
spatial maps time signals splke amplitudes
e.q. H=|h;,....hp = [81,...,sp] = [cy1,...,cp]

s(t) cfr)

" Mwmwﬁw
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4.1 Classical two-step tensor-based source localization g
approach: STS-DA

O First step: CP decomposition of tensor X to identify the matrix H

Source 1 Source P

7 Second step: Separate localization of each distributed source based on
= the distributed source lead field vector

= a dictionary of circular-shaped source regions, the “disks”. of varylng
sizes, which are described by the coefficient vectors hp G 'p

= a metric

M (h,,, )



4.1 Classical two-step tensor-based source localization g
approach: STS-DA

O First step: CP decomposition of tensor X to identify the matrix H

Source 1 Source P

7 Second step: Separate localization of each distributed source based on
= the distributed source lead field vector

= a dictionary of circular-shaped source regions, the “disks”. of varylng
sizes, which are described by the coefficient vectors hp G 'p

= a metric
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4.2 Distributed source localization results: 17
Disk algorithm
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4.3 Proposed single-step approach: 18
STS-SISSY (1)

e |
O ldea: Perform tensor decomposition and source localization in a single step

= Impose structural constraint: H = GW Piecewise-constant spatial
distribution

» Employ fused LASSO regularization: \(||TW¥||; + o|(®||;)

gradient operator
A, a  — regularization parameters
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4.3 Proposed single-step approach: 18
STS-SISSY (1)

distribution

O ldea: Perform tensor decomposition and source localization in a single step
= Impose structural constraint: H = GW Piecewise-constant spatial

= Employ fused LASSO regularization: )\(||T®¥||; + o|[¥||;)

gradient operator

A, a  — regularization parameters

3 Constrained tensor decomposition based on ALS algorithm:
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4.3 Proposed single-step approach: 18
STS-SISSY (1)

A, @

O ldea: Perform tensor decomposition and source localization in a single step

= Impose structural constraint: H = GW Piecewise-constant spatial
distribution

= Employ fused LASSO regularization: )\(||T®¥||; + o|[¥||;)

gradient operator

— regularization parameters

3 Constrained tensor decomposition based on ALS algorithm:

min || X" — H(C © 8)"([f + A(|T®[ +ol[¥|) => ?

SQ

t.

H=GW¥

X® : unfolding X through its i-th direction

min|[X® - S(CoH)T|} = S$=X®(Con)"’)’

min [X® ~CSoH)} => c=X® (SoH)")”




4.4 Proposed single-step approach: 19
STS-SISSY (2)

0 Reformulation of the constrained optimization problem:

. (1) o T2 ,
Jmin |[X H(C®8) ||z + A|[Y ]l + al|Z]]1)

s.t. H=GWY, Y=TV, Z=W¥

O Solution using ADMM with update equations:

H=XMCoS)+pG¥ + V)(Co®S)T(C®S) + plp)~!
V=T 'T+plp+pG'G)"'®
with® = p(T'Y +Z+G'(H-V))-T'U-W

= Latent variables:

Y = proz ., »(T¥ +U/p)
Z = proz ), 2 (¥ + W/p)
= Lagrangian multipliers:

AU = p(T® - Y); AV = p(G¥ — H); AW = p(¥ — Z)



9. Simulation setup 20

-— 77
A Realistic head model 3 SEEG signals for patch dipoles
8 - ' v

_~scalp

@
source S
space a
| SP 2
o
—skull B
‘ k=
! w

brain

% 50 100 150 200
time samples

3 Extended sources (patches) composed of adjacent grid dipoles
3 Highly correlated interictal epileptic spike activities within a patch
3 Two sources:
= One source composed of two patches with delayed spike-like signals

» One source composed of one patch with spike-like signals of slightly
different morphology than for the first source

3 91 sensors, 50 realizations of spikes with different amplitudes



5.1 Evaluation criterion and performance results 21

O Evaluation criterion: dipole localization error (DLE)

1/ 1 1
DLE = - — in||r, — — in ||r —
2(#1 kEEII r;lelgllrk rel| + y > min |[ry rfll)

beT
7T — Set containing the indices of active grid dipoles
7 — Set containing the indices of estimated active grid dipoles

Iy — Position of the k-th grid dipole
3 Performance results for two scenarios:

Scenario 1 Scenario 2

1.37 7.29

- 1.32 18.23




5.2 lllustration of simulation results 22

—
Ground truth
Two -Step Two -Step
STS—DA (C1)

£

Single-Step Single-Step

STS - SISSY (C1) STS - SISSY (C2)

J \
‘—/ ¢ v > »-

Min




6. Conclusions 23

3 EEG sources can be separated and localized in a single step by
the proposed constrained tensor decomposition approach

3 The proposed algorithm makes use of the ALS and ADMM
optimization strategies

O Realistic simulations in the context of drug-resistant epilepsy
have shown that the proposed single-step method outperforms a

previously developed two-step tensor-based source localization
approach
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