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General Setting

Goal: Complete multidimensional data.

Applications:
I Completion of corrupted

hyperspectral images, CT Scans, . . .
I Compression of multivariate

functions with singularities
I Non-intrusive methods for

stochastic/parametric PDEs
I Context-aware recommender

systems
I . . .



General Setting

Goal: Complete multidimensional data.

Mathematical setting:

I Consider tensor X with very few entries known.
I Encode known entries by linear projection PΩ.

Tensor reconstruction:

min
X

1
2
‖PΩX − known entries‖2

I Ill-posed problem.
I Regularize with (multilinear) low-rank model for X .



General Setting

Goal: Complete multidimensional data.

Mathematical setting:

I Consider tensor X with very few entries known.
I Encode known entries by linear projection PΩ.

Low-rank tensor reconstruction:

min
X

1
2
‖PΩX − known entries‖2

subject to X ∈Mk := {Rn1×n2×···×nd : rank(X ) = k)

I In this talk: Assume thatMk is a smooth embedded submanifold.
I Multilinear ranks (Tucker, TT) OK.

Tensor rank (CANDECOMP/PARAFAC) not OK.
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Low-rank matrix completion
by Riemannian optimization



Matrix Completion

PΩ A =


 recover?
 A

PΩ : Rm×n → Rm×n, PΩ X =

{
Xij if (i , j) ∈ Ω,

0 else.

Applications: image reconstruction, image inpainting, Netflix problem
Low-rank matrix completion:

min
X

rank(X ) , X ∈ Rm×n

subject to PΩ X = PΩ A



Low-rank matrix completion: ( NP-Hard)

min
X

rank(X ) , X ∈ Rm×n

subject to PΩ X = PΩ A

Nuclear norm relaxation: ( convex, but expensive)

min
X

‖X‖∗ =
∑

i

σi , X ∈ Rm×n

subject to PΩ X = PΩ A

Robust low-rank completion: (Assume rank is known)

min
X

1
2
‖PΩ X − PΩ A‖2

F , X ∈ Rm×n

subject to rank(X ) = k

Huge body of work! Overview: http://perception.csl.illinois.edu/matrix-rank/



Basic setting

minimize
X

f (X ) :=
1
2
‖PΩ(X − A)‖2

F

subject to X ∈Mk :=
{

X ∈ Rm×n : rank(X ) = k
}

PΩ : Rm×n → Rm×n

Xij 7→
{

Xij if (i , j) ∈ Ω,
0 if (i , j) 6∈ Ω.



Manifold of Low-Rank Matrices
Mk :=

{
X ∈ Rm×n : rank(X ) = k

}
I Mk is a smooth manifold, e.g., [Bruns/Vetter’1988].
I Riemannian metric induced by inner product 〈A,B〉 = tr(AT B).

 Minimization onMk by Riemannian optimization:

Constraint Optimization

min
X

1
2
‖PΩ X − PΩ A‖2

F

X ∈ Rm×n

subject to rank(X ) = k

Riemannian Optimization

min
X

1
2
‖PΩ X − PΩ A‖2

F

X ∈Mk

⇒ unconstrained!
I Newton-type [Simonsson/Eldén’2010], [Vandereycken/Vandewalle’2010].
I Trust-region methods for low-rank matrix completion [Boumal/Absil’2011].
I Nonlinear CG [Vandereycken’2012, Ngo/Saad’2012]
I Gradient descent [Journée et al.’2010, Mishra et al.’2012,

Shalit/Weinshall/Chechik’2010].
I . . .



Tangent space TXMk

Consider SVD of rank-k matrix

X =
[
U U⊥

] [ Σ 0
0 0

] [
V V⊥

]T
, Σ ∈ Rk×k .

Tangent space ofMk at X :

TXMk =

{[
U U⊥

] [ Rk×k Rk×(n−k)

R(m−k)×k 0

] [
V V⊥

]T}

Riemannian gradient grad f (X ) ∈ TXMk defined by

〈grad f (X ), ξ〉 = D f (X )[ξ] ∀ξ ∈ TXMk .

For f (X ) := 1
2‖PΩ(X − A)‖2

F :

grad f (X ) = PTXMk

(
PΩ(X − A)

)
with orthogonal projection PTXMk : Rm×n → TXMk .



Retraction
Gradient descent: X ← X − γ grad f (X ) 6∈ Mk



Retraction
Gradient descent: X ← X − γ grad f (X ) 6∈ Mk

Retraction = Mapping RX : TXMk →Mk such that
1. R is locally smooth on the tangent bundle
2. RX (0) = X ;
3. DRX (0)[ξ] = ξ holds locally.

The metric projection

RX (ξ) = PX (X + ξ) = arg min
Z∈Mk

‖X + ξ − Z‖F

is a retraction.

I Computed by truncated SVD [Absil/Malick’2010].
I Alternatives: orthographic projection; matching first terms of

Taylor series expansion of exponential map.



Vector transport
Conjugate gradient method requires combination of gradients for
subsequent iterates:

grad f (X ) ∈ TXMk , grad f (Y ) ∈ TYMk

⇒ grad f (X ) + grad f (Y ) ???



Vector transport
Conjugate gradient method requires combination of gradients for
subsequent iterates:

grad f (X ) ∈ TXMk , grad f (Y ) ∈ TYMk

⇒ grad f (X ) + grad f (Y ) ???

Can be addressed by
vector transport:

TX→Y : TXMk → TYMk

TX→Y (ξ) = PTYMk (ξ).

TX→Y (ξ)

Mk

X
η

ξ

TYMk

TXMk

Can be implemented in O((m + n)k2) ops.



Geometric nonlinear CG for matrix completion
Input: Initial guess X0 ∈Mk .
η0 ← −grad f (X0)
α0 ← argminα f (X0 + αη0)
X1 ← RX0 (α0η0)

for i = 1,2, . . . do
Compute gradient:
ξi ← grad f (Xi )
Conjugate direction by PR+ updating rule:
ηi ← −ξi + βiTXi−1→Xi f (ηi−1)
Initial step size from linearized line search:
αi ← argminα f (Xi + αηi )
Armijo backtracking for sufficient decrease:
Find smallest integer m ≥ 0 such that
f (Xi )− f (RXi (2

−mαiηi )) ≥ −1 · 10−4〈ξi ,2−mαiηi〉
Obtain next iterate:
Xi+1 ← RXi (2

−mαiηi )
end for

Cost/iteration: O((m + n)k2 + |Ω|k) ops.



Numerical experiments
I Comparison to LMAFit [Wen/Yin/Zhang’2010].
http://lmafit.blogs.rice.edu/ .

I Oversampling factor OS = |Ω|/(k(2n − k)).
I Purely academic example A = ALAT

R with AL,AR = randn.

http://lmafit.blogs.rice.edu/


Influence of n

0 50 100 150 200

10
−10

10
−5

10
0

iteration

re
la

ti
v
e
 r

e
s
id

u
a
l

Convergence curve: k = 40, OS = 3

 

 
n=1000
n=2000
n=4000
n=8000
n=16000
n=32000

I Dashed lines: LMAFit. Solid lines: Nonlinear CG.
I time(1 iteration of Nonlinear CG)
≈ 2× time(1 iteration of LMAFit)



Influence of rank
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I Dashed lines: LMAFit. Solid lines: Nonlinear CG.
I time(1 iteration of Nonlinear CG)
≈ 2× time(1 iteration of LMAFit)



Numerical experiments
I Comparison to LMAFit [Wen/Yin/Zhang’2010].
http://lmafit.blogs.rice.edu/ .

I Oversampling factor OS = |Ω|/(k(2n − k)) = 8.
I 8 000× 8 000 matrix A is obtained from evaluating

f (x , y) =
1

1 + |x − y |2

on [0,1]× [0,1].

http://lmafit.blogs.rice.edu/


Influence of rank

I Hom: Start with k = 1 and subsequently increase k , using
previous result as initial guess.



Further remarks
I Convergence analysis complicated by the fact thatMk is not

closed.
I Second-order methods (Newton-like) require Hessian: painful

and not of much help for low-rank matrix completion.
I Matrices generated by functions that are smooth only almost

everywhere most low-rank matrix completion methods have
difficulties in achieving high accuracy in such a setting.

I Potential way out: Adaptive choice of metric [Ngo/Saad’2012].



Low-rank tensor completion
by Riemannian optimization

low order



Tensor Completion

Low-rank tensor completion:

min
X

rank(X ) , X ∈ Rn1×n2×...×nd

subject to PΩ X = PΩA

Applications:
I Completion of multidimensional data,

e.g. hyperspectral images, CT Scans
I Compression of multivariate

functions with singularities
I . . .



Multilinear Rank & Tucker Format

Reshape tensor into matrix by slicing, e.g. for first dimension:

X =  X(1) = ∈ Rn1×(n2·n3)

Multilinear rank of tensor X ∈ Rn1×n2×n3 defined by tuple

k = (k1, k2, k3), with ki = rank
(
X(i)
)
.

X =
U

W

V

C

Representation of rank-k-tensor:
Tucker decomposition:

X = C ×1 U ×2 V ×3 W

U ∈ Rn1×k1 , V ∈ Rn2×k2 , W ∈ Rn3×k3 ,
and core tensor C ∈ Rk1×k2×k3



Higher-Order SVD (HOSVD)
Goal: Approximate given tensor X by Tucker decomposition with
prescribed multilinear rank k = (k1, k2, k3).

1. Calculate SVD of matricizations:

X(µ) = ŨµΣ̃µṼ T
µ for µ = 1,2,3.

2. Truncate basis matrices:

Uµ := Ũµ(:,1 : kµ) for µ = 1,2,3.

3. Form core tensor:

C := UT
1 ×1 UT

2 ×2 UT
3 ×3 X .

Truncated tensor produced by HOSVD
[Lathauwer/De Moor/Vandewalle’2000]:

X̃ = C ×1 U1 ×2 U2 ×3 U3.

Quasi-optimality: ‖X − X̃‖ ≤
√

d‖X − Xbest‖.



Manifold of Low-Rank Tensors

Mk :=
{
X ∈ Rn1×...×nd : rank(X ) = k

}
,

dim(Mk) =
d∏

j=1

kj +
d∑

i=1

(
kini −

ki (ki − 1)

2

)
.

I Mk is a smooth manifold. Discussed for more general formats in
[Holtz/Rohwedder/Schneider’2012], [Uschmajew/Vandereycken’2012]

I Riemannian with metric induced by standard inner product
〈X ,Y〉 = 〈X(1),Y(1)〉 (sum of element-wise product)

Manifold structure used in
I dynamical low-rank approximation

[Koch/Lubich’2010], [Arnold/Jahnke’2012],
[Lubich/Rohwedder/Schneider/Vandereycken’2012],
[Khoromskij/Oseledets/Schneider’2012], . . .

I best multilinear approximation [Eldén/Savas’2009], [Ishteva/Absil/Van
Huffel/De Lathauwer’2011], [Curtef/Dirr/Helmke’2012]



Gradients and Tangent Space TXMk

Every ξ in the tangent space TXMk at X = C ×1 U ×2 V ×3 W
can be written as:

ξ = S ×1 U ×2 V ×3 W
+ C ×1 U⊥ ×2 V ×3 W
+ C ×1 U ×2 V⊥ ×3 W
+ C ×1 U ×2 V ×3 W⊥

for some S ∈ Rk1×k2×k3 , U⊥ ∈ Rn1×k1 with UT
⊥U = 0, . . .

Again, we obtain the Riemannian gradient of the objective function

f (X ) :=
1
2
‖PΩ X − PΩA‖2

F

by projecting the Euclidean gradient into the tangent space:

grad f (X ) = PTXMk (PΩ X − PΩA)



Retraction
Retraction = Mapping RX : TXMk →Mk such that

1. RX is locally smooth wrt X ;
2. RX (0) = X ;
3. DRX (0)[ξ] = ξ holds locally.

Metric projection

RX (ξ) = PX (X + ξ) = arg min
Z∈Mk

‖X + ξ −Z‖.

No closed-form solution available
I Replaced by HOSVD truncation.
I Seems to work fine.
I HOSVD truncation is a retraction

[K./Steinlechner/Vandereycken’14].



Vector transport

Conjugate gradient method requires combination of gradients for
subsequent iterates:

grad f (X ) ∈ TXMk, grad f (Y) ∈ TYMk

⇒ grad f (X ) + grad f (Y ) ???

Can be addressed by vector
transport:

TX→Y : TXMk → TYMk

TX→Y(ξ) = PTYMk (ξ).

Can be implemented in O(nkd )
ops.



Geometric Nonlinear CG for Tensor Completion

Input: Initial guess X0 ∈Mk.
η0 ← −grad f (X0)
α0 ← argminα f (X0 + αη0)
X1 ← RX0 (α0η0)

for i = 1,2, . . . do
Compute gradient:
ξi ← grad f (Xi )
Conjugate direction by PR+ updating rule:
ηi ← −ξi + βiTXi−1→Xi f (ηi−1)
Initial step size from linearized line search:
αi ← argminα f (Xi + αηi )
Armijo backtracking for sufficient decrease:
Find smallest integer m ≥ 0 such that
f (Xi )− f (RXi (2

−mαiηi )) ≥ −1 · 10−4〈ξi ,2−mαiηi〉
Obtain next iterate:
Xi+1 ← RXi (2

−mαiηi )
end for Cost/iteration: O(nkd + |Ω|kd−1) ops.



Reconstruction of CT Scan
199× 199× 150 tensor from scaled CT data set “INCISIX”,
(taken from OSIRIX MRI/CT data base
[www.osirix-viewer.com/datasets/])

Slice of original tensor HOSVD approx. of rank 21

Sampled tensor (6.7%) Low-rank completion of rank 21

Compares very well with existing results w.r.t. low-rank recovery and
speed, e.g., [Gandy/Recht/Yamada/’2011].



Hyperspectral Image
Set of photographs, (204× 268 px) taken across a large range of
wavelengths. 33 samples from ultraviolet to infrared [Image data:
Foster et al.’2004]
Stacked into a tensor of size 204× 268× 33

Completed Tensor, 16th Slice
Final Rank is k = [50 50 6]

10% of the Original Hyperspectral Imega Tensor, 16th Slice
Size of Tensor is [204, 268, 33]

Here: Only 10% of entries known; [Signoretti et al.’2011] use 50%.



How many samples do
we need?

Matrix case:
O(n · logβ n) samples suffice!
[Candès/Tao’2009]
⇒ Completion of tensor by
applying matrix completion to
matricization: O(n2 log(n)). Gives
upper bound!

Tensor case:
Certainly: |Ω| � O(n2)
In all cases of convergence
 exact reconstruction.

Conjecture: |Ω| = O(n · logβ n)
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Robustness of Convergence
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Noisy completion, n = 100, k = [4, 5, 6]

I Random 100× 100× 100 tensor of multilinear rank (4,5,6)
perturbed by white noise.

I Upon convergence reconstruction up to noise level.



Low-rank tensor completion
by Riemannian optimization

HIGH order



Going to high order

Applications leading to high-order tensors d :
I Stochastic and parameter-dependent PDEs [DK/Tobler’2011]
I Machine learning [Ishteva et al.]
I Learning of multivariate functions [Cevher et al.]
I . . .

Tensor completion in Tucker format requires O(nkd + |Ω|kd−1)
operations.
 Need other formats.

Formats described by tensor network diagrams:
I Introduced by Roger Penrose.
I Heavily used in quantum mechanics (spin networks).



This is a scalar γ ∈ R



This is a vector x ∈ Rn



These are two vectors x , y ∈ Rn



This is the inner product between x , y ∈ Rn

〈x , y〉 =
n∑

i=1

xiyi



These are two matrices A,B



This is the matrix product C = AB

Cij =
r∑

k=1

Aik Bkj



This is the matrix product C = UΣV T

Cij =
r∑

k=1

r∑
`=1

Uik Σk`Vj`

If r � n: Implicit representation of C via smaller matrices U,V ,Σ.



This is a tensor X of order 3



This is a tensor X of order 3 in Tucker decomposition

Xijk =

r1∑
`1=1

r2∑
`2=1

r3∑
`3=1

C`1`2`3Ui`1Vj`2Wk`3

Implicit representation of X via
I r1 × r2 × r3 core tensor C
I n1 × r1 matrix U spans first mode
I n2 × r2 matrix V spans second mode
I n3 × r3 matrix W spans third mode.



Six-dimensional tensor X in TT format

I X implicitly represented by four r × n × r tensors and two n × r
matrices

I Quantum mechanics: MPS (matrix product states)
I Matrix-based tensor formats introduced in numerical analysis by

Grasedyck, Hackbusch, Kühn, Oseledets, Tyrtishnikov.



Six-dimensional tensor X in TT format

This partition corresponds to low-rank factorization

X (1,2,3) = UV T , X (1,2,3) ∈ Rn1n2n3×n4n5n6 , U ∈ Rn1n2n3×r3 , V ∈ Rn4n5n6×r3

X (1,2,3) is matricization of X :

Merge multi-indices (1,2,3) into row indices and
multi-indices (4,5,6) into column indices

The ranks of X (1,...,µ) for µ = 1, . . . ,d − 1 are the TT ranks of X .



Inner product of two tensors in TT decomposition

I Carrying out contractions requires O(dnk4) instead of O(nd )
operations for tensors of order d .



Tensor completion in TT format

Low-rank tensor completion:

min
X

rank(X ) , X ∈ Rn1×n2×...×nd

subject to PΩ X = PΩA

I Tensors of fixed TT rank k form a smooth manifold
[Holtz/Rohwedder/Schneider’2012]:

Mk :=
{
X ∈ Rn1×...×nd : rank(X ) = k

}
.

 Riemannian optimization can be applied and requires
O(d(n + |Ω|)r3) operations.

I See [Steinlechner’2015] for details.



Example: Cookie Problem

0 1

1

D

D1,2

0 1

1

9 cookies 16 cookies

Consider heat equation:

−div(a(x ,p)∇u(x ,p)) = 1, x ∈ D,
u(x ,p) = 0, x ∈ ∂D.

with parametrized piecewise constant heat coefficient

a(x ,p) :=

{
pµ, if x ∈ Ds,t , µ = m(t − 1) + s,
1, otherwise.

d cookies d parameters p1,p2, . . . ,pd .



Example: Cookie Problem

0 1

1

D

D1,2

0 1

1

9 cookies 16 cookies

Quantity of interest: Average temperature

u(p) :=

∫
[0,1]2

u(x ,p) dx .

I Discretize parameter space with tensorized Chebyshev
polynomials with n nodes.

I Discrete values u(p) arranged in n × n × · × n tensor X .
I Each entry of X requires solution of PDE.
I Idea: Sample randomly and do rest by tensor completion!



Example: Cookie Problem

9 cookies

TT-Cross
Tol. Error Eval.

10−3 8.35 · 10−4 11681
10−4 2.21 · 10−5 14631
10−5 1.05 · 10−5 36291
10−6 1.00 · 10−6 42561
10−7 1.31 · 10−7 77731

Riemannian optimization
Error |Ω|

9.93 · 10−5 1548
8.30 · 10−6 2784
6.26 · 10−6 3224
6.50 · 10−7 5338
1.64 · 10−7 9475

I TT cross approximation by Savostyanov/Oseledets’2011.
I Adaptive choice of ranks, but random choice of sample points in

training set.
I Error measured on test set not included in training set.



Example: Cookie Problem

16 cookies

TT-Cross
Tol. Error Eval.

10−3 8.17 · 10−4 22951
10−4 3.93 · 10−5 68121
10−5 9.97 · 10−6 79961
10−6 1.89 · 10−6 216391
10−7 — —

Riemannian optimization
Error |Ω|

2.84 · 10−4 2959
2.10 · 10−5 5261
1.07 · 10−5 8320
1.89 · 10−6 12736
7.12 · 10−7 26010

I TT cross approximation by Savostyanov/Oseledets’2011.
I Adaptive choice of ranks, but random choice of sample points in

training set.
I Error measured on test set not included in training set.



Conclusions

I Riemannian optimization competitive with state-of-the-art for
low-rank matrix completion.

I Riemannian optimization much better than competitors for
low-rank tensor completion.

I Nonlinear CG works well in practice. So far, only local
convergence analysis.

I Most implementation details not discussed.
I Extension of Riemannian optimization to linear systems and

eigenvalue problems using low-rank tensor formats in
[DK/Steinlechner/Vandereycken’2015].


