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General Setting

Goal: Complete multidimensional data.

Applications:

>

Completion of corrupted

hyperspectral images, CT Scans, ...

Compression of multivariate
functions with singularities

Non-intrusive methods for
stochastic/parametric PDEs

Context-aware recommender
systems



General Setting

Mathematical setting:

» Consider tensor X" with very few entries known.

» Encode known entries by linear projection Pq.

» lll-posed problem.

» Regularize with (multilinear) low-rank model for X.
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General Setting
Goal: Complete multidimensional data.

Mathematical setting:

» Consider tensor X with very few entries known.
» Encode known entries by linear projection Pq.

Low-rank tensor reconstruction:

o1 T
min §||PQX — known entries||

subjectto X € My := {RM*™* X : rank(X) = k)

» In this talk: Assume that My is a smooth embedded submanifold.

» Multilinear ranks (Tucker, TT) OK.
Tensor rank (CANDECOMP/PARAFAC) not OK.
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1. Low-rank matrix completion
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3. Low-rank tensor completion: High order
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Low-rank matrix completion
by Riemannian optimization



Matrix Completion

recover?
ol A

Pq RMXN _y ]Rmxn’ Po X = Xij if (i,j) €qQ,
0 else.
Applications: image reconstruction, image inpainting, Netflix problem
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Huge body of work! Overview: http://perception.csl.illinois.edu/matrix-rank/

«O» «F»r «=» « »



Basic setting

Pq :

RMXN _y pmxn




Manifold of Low-Rank Matrices
My = {X e R™" : rank(X) = k}

» My is a smooth manifold, e.g., [Bruns/Vetter'1988].
» Riemannian metric induced by inner product (A, B) = tr(A” B).

~~ Minimization on My by Riemannian optimization:

Constraint Optimization Riemannian Optimization
min 1HPQfoQAH% min 1|| Po X — P A||2
X 2 x 2
X e R™N X € My
subjectto rank(X) = k = unconstrained!
» Newton-type [Simonsson/Eldén’2010], [Vandereycken/Vandewalle’2010].

Trust-region methods for low-rank matrix completion [Boumal/Absil'2011].
Nonlinear CG [Vandereycken’'2012, Ngo/Saad'2012]

Gradient descent [Journée et al.2010, Mishra et al.2012,
Shalit/Weinshall/Chechik’2010].
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Tangent space Tx M

Consider SVD of rank-k matrix

xz[uul][z 0

0 0

][v V], S eRrik

Riemannian gradient grad f(X) € Tx.My defined by

(grad f(X), &) = DF(X)[¢]

Vf S Tka.
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Retraction
Gradient descent: X < X —ygrad f(X) & My e



Retraction

Gradient descent: X < X —ygrad f(X) & My e

Retraction = Mapping Ry : TxMy — M such that
1. Ris locally smooth on the tangent bundle
2. Rx(0) = X;
3. DRx(0)[¢] = ¢ holds locally.

The metric projection

Rx(§) = Px(X+&) =argmin [ X + & — Z||r

Ze My
is a retraction.

» Computed by truncated SVD [Absil/Malick’2010].

» Alternatives: orthographic projection; matching first terms of
Taylor series expansion of exponential map.



Vector transport

Conjugate gradient method requires combination of gradients for
subsequent iterates:

grad f(X) € TxMy, gradf(Y) e Ty My
= gradf(X) + grad f(Y) 772 &



Vector transport

Conjugate gradient method requires combination of gradients for
subsequent iterates:

grad f(X) € TxMy, gradf(Y) e Ty My
= gradf(X) + grad f(Y) 772 &

Tx M
Can be addressed by 4
vector transport: ’
Txsy : TxMk — Ty M b Tx—=v()
Tx=v(§) = Prym, (§)- - ‘

M
Can be implemented in O((m + n)k?) ops.



Geometric nonlinear CG for matrix completion

Input: Initial guess Xp € M.
Mo < —grad f(Xo)
ag < argmin,, f(Xo + anp)
X1 — RXO(OCOUO)

fori=1,2,...do
Compute gradient:
& < grad (X))
Conjugate direction by PR+ updating rule:
ni < =&+ BiTx_,—x(ni-1)
Initial step size from linearized line search:
o < argmin,, f(X; + an;)
Armijo backtracking for sufficient decrease:
Find smallest integer m > 0 such that
F(Xi) = f(Rx, (2~ Maimy)) > =1 -107%(&, 2" Mam)
Obtain next iterate:
Xit1 < Rx(27Main;)

end for

Cost/iteration: O((m + n)k? + |Q|k) ops.



Numerical experiments

» Comparison to LMAFit [Wen/Yin/Zhang’2010].
http://Ilmafit.blogs.rice.edu/ .

» Oversampling factor OS = |Q|/(k(2n — k)).

» Purely academic example A = A AL with A, Ag = randn.


http://lmafit.blogs.rice.edu/

Influence of n

relative residual

Convergence curve: k =40, 0S = 3

—n=1000
—n=2000

n=4000
—n=8000

50 100 150 200
iteration

» Dashed lines: LMAFit. Solid lines: Nonlinear CG.

» time(1 iteration of Nonlinear CG)
~ 2x time(1 iteration of LMAFit)



Influence of rank

—k=10
—k=20

k=30
—k=40
—k=50
—k=60

relative residual

0 50 100 150 200
iteration
» Dashed lines: LMAFit. Solid lines: Nonlinear CG.

» time(1 iteration of Nonlinear CG)
~ 2x time(1 iteration of LMAFit)



Numerical experiments

» Comparison to LMAFit [Wen/Yin/Zhang’2010].
http://Ilmafit.blogs.rice.edu/ .

» Oversampling factor OS = |Q|/(k(2n — k)) = 8.

» 8000 x 8000 matrix A is obtained from evaluating

1

f(XJ’):m

on [0,1] x [0,1].


http://lmafit.blogs.rice.edu/

Influence of rank
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» Hom: Start with kK = 1 and subsequently increase k, using
previous result as initial guess.



Further remarks

» Convergence analysis complicated by the fact that M is not
closed.

» Second-order methods (Newton-like) require Hessian: painful
and not of much help for low-rank matrix completion.

» Matrices generated by functions that are smooth only almost
everywhere ~~ most low-rank matrix completion methods have
difficulties in achieving high accuracy in such a setting.

» Potential way out: Adaptive choice of metric [Ngo/Saad’2012].



Low-rank tensor completion
by Riemannian optimization
low order



Tensor Completion

o Applications:

» Completion of multidimensional data,
e.g. hyperspectral images, CT Scans

» Compression of multivariate
functions with singularities
> ...
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Multilinear Rank & Tucker Format

Reshape tensor into matrix by slicing, e.g. for first dimension:
X B - - X(1) B _ e Rn1><(n2.n3)

I'

Representation of rank-k-tensor:

DA



Higher-Order SVD (HOSVD)

Goal: Approximate given tensor X by Tucker decomposition with
prescribed multilinear rank k = (ki, k2, k3).

1. Calculate SVD of matricizations:
Xy = U2, V] forp=1,23.
2. Truncate basis matrices:
U, :=U,(:,1:k,) forp=1,23.
3. Form core tensor:
C:= U x1 U] xo U] x5 x.

Truncated tensor produced by HOSVD
[Lathauwer/De Moor/Vandewalle’2000]:

//YVICX1 U1 X2U2 ><3U3.

Quasi-optimality: | X — X|| < Vd||X — Xpest]-



Manifold of Low-Rank Tensors

My = {X € R"*" : rank(X) = k},

d d
dimMi) = [+ (k/n/ B k;(k;z— 1))_
J=1 i=1

» My is a smooth manifold. Discussed for more general formats in
[Holtz/Rohwedder/Schneider'2012], [Uschmajew/Vandereycken’2012]

» Riemannian with metric induced by standard inner product
(X, ) = (X, Yay) (sum of element-wise product)
Manifold structure used in

» dynamical low-rank approximation
[Koch/Lubich’2010], [Arnold/Jahnke’2012],
[Lubich/Rohwedder/Schneider/Vandereycken'2012],
[Khoromskij/Oseledets/Schneider2012], . ..

» best multilinear approximation [Eldén/Savas'2009], [Ishteva/Absil/Van
Huffel/De Lathauwer'2011], [Curtef/Dirr/Helmke’2012]



Gradients and Tangent Space Ty Mk

Every ¢ in the tangent space TyMg at X =C x1 U x2 V xz W
can be written as:

E=Sxq1U %oV xg W
+Cxq1 UL %2V x3 W
+C x4 U xo V| xgW
+Cxq1U x2V x3 W,

for some S € Rhixkexks ), ¢ RM*k with UTU =0, ...
Again, we obtain the Riemannian gradient of the objective function
1
f(X) = 5IPa X — Pa Al2

by projecting the Euclidean gradient into the tangent space:

grad f(X) = Pryam (P X — Pq A)



Retraction

Retraction = Mapping Rx : Ty Mk — My such that
1. Ry is locally smooth wrt X;
2. Ryx(0) = &;
3. DR«(0)[¢] = £ holds locally.

Metric projection

Rx(§) = Px(X + &) = argmin X + £ — Z|.
Ze My

No closed-form solution available s
» Replaced by HOSVD truncation.
» Seems to work fine.

» HOSVD truncation is a retraction
[K./Steinlechner/Vandereycken'14].



Vector transport

Conjugate gradient method requires combination of gradients for
subsequent iterates:
grad f(X) € Ty My, gradf(Y) € Ty My

= gradf(X)+gradf(Y) 777 >

Can be addressed by vector

4 transport:
’ Tamy : TaMic = Ty My
w‘ Ten(6) = Pryaa(€).
Can be implemented in O(nk®)
ops.



Geometric Nonlinear CG for Tensor Completion

Input: Initial guess Xy € M.
Mo «— —grad f(Xp)
ag + argmin, f(Xo + ano)
X1 — qu(aono)

fori=1,2,...do
Compute gradient:
& < grad f( X))
Conjugate direction by PR+ updating rule:
0= =&+ BiTx_ —»x,f(ni-1)
Initial step size from linearized line search:
o < argmin,, f(X; + an;)
Armijo backtracking for sufficient decrease:
Find smallest integer m > 0 such that
F(X) = (R (2 Maimy)) > —1-1074(&, 2 Payny)
Obtain next iterate:
Xiy1 Ry (27 Tayn;)
end for Cost/iteration: O(nk? + |Q|k9~") ops.



Reconstruction of CT Scan
199 x 199 x 150 tensor from scaled CT data set “INCISIX”,
(taken from OSIRIX MRI/CT data base
[www.osirix-viewer.com/datasets/])

Slice of original tensor HOSVD approx. of rank 21

Sampled tensor (6.7%) Low-rank completion of rank 21

Compares very well with existing results w.r.t. low-rank recovery and
speed, e.g., [Gandy/Recht/Yamada/2011].



Hyperspectral Image

Set of photographs, (204 x 268 px) taken across a large range of
wavelengths. 33 samples from ultraviolet to infrared [Image data:
Foster et al’2004]

Stacked into a tensor of size 204 x 268 x 33

10% of the Original Hyperspectral Imega Tensor, 16th Slice Completed Tensor, 16th Slice
Size of Tensor is [204, 268, 33] Final Rank is k =[50 50 6]

Here: Only 10% of entries known; [Signoretti et al.’2011] use 50%.



How many samples do
we need?

Matrix case:

O(n - log” n) samples suffice!
[Candés/Tao’2009]

= Completion of tensor by
applying matrix completion to
matricization: O(n?log(n)). Gives
upper bound!

Tensor case:

Certainly: || < O(n?)

In all cases of convergence
~+ exact reconstruction.

Conjecture: || = O(n - log” n)

log( Smallest size of Q needed to converge )

9.51

100 200 300 400 500 600 700 800 900 1000
tensor size n




Robustness of Convergence

Noisy completion, n = 100, k = [4, 5, 6]

S, S, S

Rel. err on Omega and noise levels

S,

» Random 100 x 100 x 100 tensor of multilinear rank (4,5, 6)
perturbed by white noise.

» Upon convergence ~~ reconstruction up to noise level.



Low-rank tensor completion
by Riemannian optimization
HIGH order



Going to high order

Applications leading to high-order tensors d':
» Stochastic and parameter-dependent PDEs [DK/Tobler'2011]
» Machine learning [Ishteva et al.]

» Learning of multivariate functions [Cevher et al.]
> ...

Tensor completion in Tucker format requires O(nk? + |Q|k9=1)
operations.
~» Need other formats.

Formats described by tensor network diagrams:
» Introduced by Roger Penrose.
» Heavily used in quantum mechanics (spin networks).



Thisis ascalary € R



This is a vector x € R



These are two vectors x, y € R”




This is the inner product between x, y € R”

n
<Xay> = iny/
i=1



These are two matrices A, B

Q

Q



This is the matrix product C = AB

Q
Q

r
Cj=)Y_ AkBy
k=1



This is the matrix product C = UL V'

O () ()
N\ N\ N\

r r
Cj= Z Z UiZke Vi

k=1 £=1

If r < n: Implicit representation of C via smaller matrices U, V, ¥.



This is a tensor X of order 3

%



This is a tensor X of order 3 in Tucker decomposition

n 2 3

Xk = Z Z Z Coy0505 Uit; Vie, Wi,

01=1 Lr=1 {3=1
Implicit representation of X’ via
> 1 X X I3 core tensor C
» ny x r; matrix U spans first mode
> o x rp matrix V spans second mode
» n3 x r3 matrix W spans third mode.



Six-dimensional tensor X in TT format

» X implicitly represented by four r x n x r tensors and two n x r
matrices

» Quantum mechanics: MPS (matrix product states)

» Matrix-based tensor formats introduced in numerical analysis by
Grasedyck, Hackbusch, Kiihn, Oseledets, Tyrtishnikov.



Six-dimensional tensor X in TT format

This partition corresponds to low-rank factorization

X(1’2’3) _ UVT X(1’2’3) c R M2a X NaNs N Ue Rn1n2n3><f37 Ve R M4 NsM6 X 13
) )
X(1:2.3) is matricization of X:

Merge multi-indices (1,2, 3) into row indices and
multi-indices (4, 5, 6) into column indices

The ranks of X(*»-#) for y=1,...,d — 1 are the TT ranks of X.



Inner product of two tensors in TT decomposition

N\ N N N\

» Carrying out contractions requires O(dnk*) instead of O(n?)
operations for tensors of order d.



Tensor completion in TT format

Low-rank tensor completion:

m)in rank(X) , X € RMXMX...Xnq

subjectto PqX =Pq A

» Tensors of fixed TT rank k form a smooth manifold
[Holtz/Rohwedder/Schneider2012]:

My = {x e R"**" : rank(X) = k}.

~ Riemannian optimization can be applied and requires
O(d(n+ |Q|)r®) operations.
» See [Steinlechner2015] for details.



Example: Cookie Problem

1 1
O O O O O O O
O O O O
D__)QOO O O O O
O O O O 00O
0 1 0 1
9 cookies 16 cookies

Consider heat equation:
_div(a(va)VU(Xa p)) = 17 X e D7
u(x,p) =0, x € 0D.
with parametrized piecewise constant heat coefficient
P if x € Dgt, u=m(t—1)+s,
a(x,p) = .
(x.p) {1, otherwise.

d cookies ~ d parameters py, po, . .., Pqg.



Example: Cookie Problem

1 1
O O O O O O O
O O O O
D__)QOO O O O O
O O O OO0 0O
0 1 0 1
9 cookies 16 cookies

Quantity of interest: Average temperature

u(p) == /[o " u(x, p)dx.

Discretize parameter space with tensorized Chebyshev
polynomials with n nodes.

Discrete values U(p) arranged in n x n x - x ntensor X.
Each entry of X requires solution of PDE.

Idea: Sample randomly and do rest by tensor completion!

v
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Example: Cookie Problem

9 cookies

TT-Cross Riemannian optimization
Tol. Error Eval. Error i9]
103 | 8.35-10~* 11681 9.93.10°° 1548
10-4 | 2.21-10°% 14631 8.30-10°° 2784
10=% | 1.05-10"° 36291 6.26-10° 3224
10=% | 1.00-10~% 42561 6.50- 1077 5338
107 | 1.31-10~7 77731 1.64-10~7 9475

» TT cross approximation by Savostyanov/Oseledets’2011.

» Adaptive choice of ranks, but random choice of sample points in
training set.

» Error measured on test set not included in training set.



Example: Cookie Problem

16 cookies

TT-Cross Riemannian optimization
Tol. Error Eval. Error Q]
1072 | 8.17-107*% 22951 2.84-10~* 2959
1074 | 3.93-10~° 68121 2.10-107° 5261
10=° | 9.97-107% 79961 1.07-107° 8320
107% [ 1.89-10% 216391 1.89-1076 12736
10~/ — — 7.12.1077 26010

» TT cross approximation by Savostyanov/Oseledets’2011.

» Adaptive choice of ranks, but random choice of sample points in
training set.

» Error measured on test set not included in training set.



Conclusions

» Riemannian optimization competitive with state-of-the-art for
low-rank matrix completion.

» Riemannian optimization much better than competitors for
low-rank tensor completion.

» Nonlinear CG works well in practice. So far, only local
convergence analysis.

» Most implementation details not discussed.

» Extension of Riemannian optimization to linear systems and
eigenvalue problems using low-rank tensor formats in
[DK/Steinlechner/Vandereycken’2015].



