Tensor approaches for source separations: from
applications to algorithms (and vice versa)

Xavier Luciani

Université de Toulon, CNRS, LSIS, UMR 7296, 83957 La Garde, France.
Aix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, 13397 Marseille, France.

Workshop Tensor decompositions and covariance matrix estimation
November 27th, 2015, Marseille



A BRIEF PERSONAL INTRODUCTION

Currently

e Maitre de conférence at the Laboratoire des Sciences de 'Information
et des Systemes in the team Slgnal et IMage and at University of
Toulon depuis 2013.

Research interests

Algorithms for tensor decompositions

Joint diagonalization
e Source separation based on tensor methods

e Numerical analysis of fluorescence spectroscopy signals

A common thread: the tensor decompositions.



A BRIEF PERSONAL INTRODUCTION

Thesis
o Analyse numérique des spectres de fluorescence 3D issus de mélanges non linéaires,
PROTEE Laboratory, UTLN.

— Linear and non-linear tensor modelization and decompositions of
fluorescence signals.

Post doctoral positions

o Algorithmes de décomposition tensorielle et séparation de sources, application aux
télécommunications, I3S Laboratory, UNSA.

— Algorithms for tensors decompositions and new tonsorial methods for BSS
(BI) of mixture of telecommunications signals.

o Algorithmes de décomposition tensorielle et de diagonalisation conjointe, LTSI
Laboratory, University of Rennes 1.

— Development of original algorithms for tensor decompositions and joint
diagonalization.

® Séparation des spectres de fluorescence, PROTEE Laboratory, UTLN.
— Non-linear tensor modelization and decompositions of fluorescence signals.



OUTLINE

@ Tensor decompositions in sources separation

@ Example of applications of tensor decompositions in sources separation
Application example in analytical chemistry
Application example in telecommunications
Application example in Independent Components Analysis

@ Algorithms for Canonical Polyadic Decomposition (CPD)

@ Solving the overfactoring problem with DIAG: application to fluorescence
spectroscopy
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OUTLINE

@ Tensor decompositions in sources separation
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WHAT DO WE CALL A TENSOR DECOMPOSITION ?
Basic definitions

e Tensor: for us a tensor is simply a multiway array of order greater than
2.
e Tensor decomposition: decompose a tensor as a sum of other tensors.

e For practical applications : known data are stored in an order Q tensor
and we fit a mathematical model involving Q factor matrices
containing the desired information.

Direct Prohlem

: Math tical ()
athematical
T Model [A] [B] lCJ
L N

Inverse Problem T
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WHAT DO WE CALL A TENSOR DECOMPOSITION ?

In the sources separation context

e Each column of the factors matrices is linked to a source. Factor
matrices have the same number of columns which is equal to the
number of sources.

e Thus, an order Q tensor of size (I1,--- ,Io) will be decomposed as
Y- M Q
q;lizuiQ :ngl |:7l (A P aA ):|i1i2---l'Q (1)

e Where AD), ..., A(Q are the factor matrices of sizes (I1;,N), ---, (Ig,N).

e N defines the rank of the decomposition and is equal to the number of
sources.
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WHY USING TENSOR DECOMPOSITIONS ?

¢ They allow to exploit the multidimensional structure of some
data set.

e Conversely to the "matrix case", in many practical situation the
inverse problem (i.e. finding the elements of the factor matrices
of the decomposition from the element of the tensor) has an
unique solution !

e They allow to deal with more sources than observations

8/67
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SOME TD USED IN SOURCE SEPARATION PROBLEMS
Canonical Polyadic Decomposition (CPD)

(Q)
1112 Qg = ZAzln zzn a an )

e Introduced in [Hitchcock, 1927] and popularized in [Harshman, 1970].

e The simplest tensor decomposition, also known as PARAFAC and
CANDECOMP.

e Has an unique solution within some weak conditions.

e Every tensor has an exact CPD and in this case N also defines the
tensor rank.

e Used in most applications: Data analysis, telecommunications (MIMO
systems), Independent Component Analysis (ICA) biomedical (EEG,
fMRI...), spectroscopy (fluorescence, chromatography...)...



TENSORS DECOMPOSITIONS FOR BSS  APPLICATIONS CPD ALGORITHMS OVERFACTORING
0000800000 0000000000000 0000000000000 0000000 00000
[o]

00000000

SOME TD USED IN SOURCE SEPARATION PROBLEMS

Non linear Fluorescence Decomposition (NLFD)
P P
T = Y AipBjpCrp [T ™) (3)
p=1 p=1

e Introduced in [Luciani, 2009] and deeply studied in [Cohen, Luciani
and Comon, 2015]

e Specific to the decomposition of non linear fluorescence measurements.

e Have (locally) an unique solution within some weak conditions.
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SOME TD USED IN SOURCE SEPARATION PROBLEMS

Tucker Decomposition (of order 3)

I F F

T = Z Z Z Aif, Bit, G, X o (4)
fA=1fH=1f=1

Introduced in [Hitchcock, 1927] and popularized in [Tucker, 1966].

X is called the core tensor.

e Does generally not have an unique solution.

Used in data analysis, data compression...
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SOME TD USED IN SOURCE SEPARATION PROBLEMS
CONFAC Decomposition (of order 3)

F, F, F3
{Z;]'k: Z Z Z AzﬁﬁB]szkfz)gﬁfzfg(@»‘Pv9)7 ®)
A=1f=1f=1
where
)9’fo3(® ¥,Q) = Z O VhnQfn- (6)

e Introduced in [De Almeida, 2008]

e Constraint matrices, ®, ¥ and I'" are full row-rank matrices.

® Their columns are canonical vectors possibly multiplied by -1.
e Particular case of the Tucker decomposition.

® Has an unique solution within some weak conditions

® Used in telecommunications (MIMO systems), ICA...
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TENSOR METHODS FOR SOURCE SEPARATIONS

e We have to distinguish two main kinds of tensor methods for source
separation.

e This entirely depends of the nature of the data.

A. Direct methods

Here the known data have an intrinsic tensor structure. This means that:
e Each source is a (Q — 1)-dimensions signal with Q > 2.

e Data are actually a set of mixtures of the sources. Thereby, they vary according
to Q variables and thus can be directly stored in a tensor of order Q.

® This tensor can be modelled using an appropriate tensor decomposition such
that mixture parameters and source signals are directly obtained from the
factor matrices of the decomposition.

e This case is of course very interesting since it allows to solve directly the
problem (providing the tensor decomposition is unique and we dispose of an
efficient decomposition algorithm)

e We will see two concrete applications in chemistry and in telecommunications.

13 /67
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TENSOR METHODS FOR SOURCE SEPARATIONS

B. Indirect methods

Here the known data does not have an intrinsic tensor structure.

® Usually this means that the data vary according to only 1 or 2 and can only be
stored in a vector or a matrix.

e Thereby we have to perform some mathematical transformation of the data in
order to increase their diversities and store them in a tensor.

e If the transformation is suitable this tensor can be modelled using a tensor
decomposition such that mixture parameters and/or source signals are
directly obtained from the factor matrices of the decomposition.

e This is notably the case of ICA and traditional BSS and BI of Mixtures.

® According to their nature, there are several ways to increase the diversities of
the data: Fourier transform, Cumulants, Derivatives of the characteristic
function...

® These methods usually require some assumptions about the source signal.

14 / 67
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TENSOR METHODS FOR SOURCE SEPARATIONS
A. Direct methods

Collected
Data

Direct Problem

Mathematical

— T Madel

‘ Inverse Problem

Mixture
and
sources
estimates

B. Indirect methods

Collected
Data

“Tensorized

Y

data’

Direct Problem

Inverse Problem

Mixture
andfor
sources
estimates

Mathematical transformation of the data

(HOS, TF or TS transforms...)
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OUTLINE

@ Example of applications of tensor decompositions in sources
separation
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OUTLINE

@ Example of applications of tensor decompositions in sources
separation
Application example in analytical chemistry
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FLUORESCENCE SPECTROSCOPY

Excitation and Emission Matrix of fluorescence (EEM)

Sample cell

Primary IFE l

Excitation
Beam A,

Emission
Beam A
Secondary IFE 1

Detector 1o

20 3 40 50 60 70
Emission wevelength number

e We measure the fluorescence intensity of a solution for different
couples of exciting and emitting wavelengths.

e 2 wavelength diversities = 2 way data: EEM X

18 /67
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THE SOURCE SIGNALS

e A solution is generally a mixture of several fluorescent components
(fluorophores)
e Each fluorophore is characterized by its own EEM.

e We consider I excitation wavelengths and | emission wavelengths

e The EEM, Y,, of a fluorophore n is a rank 1 matrix of size (,]) so that
Y, = a,b,," where:

e a,[i] is the capacity of fluorophore 7 to absorb light at excitation
wavelength number i.

e b,[j] is the capacity of fluorophore n to emit light at emission
wavelength number j.

e Thus, a, and b, define the excitation and emission spectra of
fluorophore n.

e Matrix Y, can be seen as the source signal associated to fluorophore 7.

19 /67
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FLUORESCENT MIXTURES

e Of course the fluorescence intensity of a fluorophore is also a function
of its concentration ¢,

e A fluorescent solution can be seen as a mixture of N fluorophores and
we can show that a linear approximation gives:

N
X=Y Yy 7)
n=1

where X is the EEM of the mixture .

20/ 67
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CPD OF THE FLUORESCENCE TENSOR [BRO, 1997]

e In practice we dispose of a set of K > 1 solutions of the same N
fluorophores and we have:

N
X =Y CuYan (8)
n=1
where X} is the EEM of solution k and C,; is the concentration of

fluorophore 7 in solution k.

e We can then store all matrices Xy in an order 3 tensor 7 of size (I,],K),
recalling that Y, = a;b," and defining A; , = a,[i] and B; , = by[j] we
have:

N
(Z;,j,k = Z Ai,nBj,an,n (9)
n=1

e Thereby, the CPD of T gives directly the excitation spectra (columns of
A), the emission spectra (columnd of B) and the concentration profile
(columnd of C) of each fluorophore without any other knowledge.

N
1
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EXAMPLE 1
EEM set

We have 3 EEM corresponding to 3 different mixtures of 2 fluorophores

Vistre 1 Miure 2 Misture 3
f E
4 10 1

2

S I
B 20| 2
g 2
54 %
5o 2
10 4
e a5 P

@ e ]

20 30 50
Emission wavelength number

CP decomposition of X

Exciation spectra Emission spectra Concentration profile

“’
- - N
3

S im B

H e

2 o

9 2

0 2 0 a0 20 a0 60 0 d B
Exctation wavelegth number Emission wavelegth number Mixture number 22/67
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EXAMPLE 2
EEM set

We have 4 EEM corresponding to 4 different mixtures of 3 fluorophores

0

3

0

20

0

0 40

&

Longueur donde d'excitation (indice)

Longueur donde d'excitation (indice)

Longueur donde d'excitation (indice)

Longueur donde d'excitation (indice)
8

0 50|

g
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CP decomposition of X
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INNER FILTER EFFECTS (IFE)

Definition
Gradual absorption of the exciting and
emitted (fluorescence) lights throughout o
the sample cell during the FEEM et
acquisition [Parker and Barnes, 1957]
[lakowicz, 1983].
IFE dramatically increases with the

Primary IFE

Sample cell

Beam A
. Secondary IFE 1
concentration !

Detector

Example of IFE

Mixture of Quinine sulphate and [
fluorescein:

e Left: low concentrate mixture

® Right: Highly concentrate mixture

24 /67
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THE NFLD: A NON LINEAR TENSOR MODEL

IFE modelisation

In order to simplified the notation, we assume that excitation and emission range are equal.
IFE can be modelized using the beer-lamber law and after some simplifications of
physical phenomena, it comes:

P P

Tt = Y. AipBjpCrp [ e e (10)
p= p=1

We call this tensor decomposition the Non Linear Fluorescence Decomposition

[Luciani et al.,2009] [Cohen and Comon, 2013][Cohen, Luciani and Comon, 2015]

Identifiability of the NLFD
® Matrix case (One FEEM) = the NLFD does not restore the identifiability.
® General case = We conjecture that the NLFD is generically not locally
identifiable if and only if P = {IHIJ—%J and ] > (K—1)(I—1)+3 or any
permutation of this inequality is true.

® Scaling indeterminacy is removed in the emission mode.
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CORRECTION METHODS: FROM NLFD 1O CPD
Each FEEM is linearized by cancelling the non linear term using an
additional measurement. Then the set of linearized FEEM can be
decomposed by CPD
Using the absorbance spectra
e Additional measurement : absorption spectrum of the mixture.

e Simple but provides poor results (notably when the absorbency is large).

Using a controlled dilution [Luciani et al., 2009]

e Additional measurement : a second FEEM measured from a controlled (low)
dilution of the mixture.

e Simple and efficient but requires a dilution and thus to modify the samples.

Using a mirrored cell [Luciani et al., 2013]
e Additional measurement : a second FEEM measured using a mirrored cell.

e Numerically more sophisticated but does not require to modify the samples.

26/ 67
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DIRECT COMPUTATION OF THE NLFD

Proposed algorithm: NFLD-LM algorithm [Cohen, Luciani and
Comon, 2015]

e The additional information is given by the sample diversity : the
model is regarded as a tensor decomposition, locally unique.

e The NLFD can then be performed using the Levenberg-Marquardt
optimization method = NFLD-LM algorithm

e The algorithm is sensitive to bad initialization. DIAG is then used for
the initialization since it provides a good starting point very quickly.



TENSORS DECOMPOSITIONS FOR BSS

0000000000

APPLICATIONS CPD ALGORITHMS
0000000000000 0000000 00000

0000000000080
[e]

00000000

OVERFACTORING

SOME EXPERIMENTAL RESULTS

NLFD and CPD of 5 concentrated mixtures of quinine sulphate and

quinine sulphate fluorescein
. 0] Lo
E 0.4] § 0.4
8 8
202 202
k4 s
} s
4 &
1 5 2 5 3 a 4 45 5 1 5 25 3 35 45 5
‘Sample number Sample number

03 0.4
;; 02 ;; 03|
£ s
£ o1

50 300 350 400 450 500 50 300 350 400 450
Excitation wavelength Excitation wavelength

03
_ _03
s E]
£ Soz
E 0.1 ig 01

350 400 550 600 50 400 550

450 500
Emission wavelength

450 500
Emission wavelength
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SOME EXPERIMENTAL RESULTS

NLFD and CPD of 5 concentrated mixtures of tryptophane, quinine
sulphate and fluorescein.

fluorescein quinine sulphate ryptophane
3 < 40| I3
530 5 S
£ £3 £ 15
8 20| 8 8
g 820 8 10
£ 10 2 2
K] & 10 s 5
& @ &
1 3 4 5 1 2 3 4 5 1 2 3 5
Sample number Sample number Sample number
04] 03 09
El 3 3 04
S 03 S E
s So2 ES
2z > 203
£02 H 5oz
£ £o1 s
sot = To1
50 300 _ 350 400 450 500 50 300 350 400 450 270 280 200 300 810 320
Excitation wavelength Excitation wavelength Excitation wavelength
0.3] 0.3f
308 3 3
A S 02| S 02
Z02 z z
§ 5 s
Eo1 g0t 204
450 500 550 350 400 450 500 550 50 300 350 400 450
Emission wavelength Emission wavelength Emission wavelength
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OUTLINE

@ Example of applications of tensor decompositions in sources
separation

Application example in telecommunications

30/ 67
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CPD APPLIED TO MIMO /DS-CDMA SYSTEM
[SIDIROPOULOS, 2000]
e We consider a simplified MIMO (Multiple-Input Multiple-Output)
system of N transmit antennas I receive antennas.
e Transmit antenna n sends a DS-CDMA signal y,.

e Each DS-CDMA signal is built by spreading an information sequence
su[j] of ] symbols by a particular code sequence ¢, [k] of length K.

e Thereby we have y,[k+ (j — 1)K] = s,[i]cu k]

e Assuming a linear mixture model, receive antenna 7 receives a signal x;
so that x; = ):Ir:]=1 H; yyn

e The mixture matrix H models the fading/gain between each couple of
transmit and receive antennas.

e x; and y, are signals of length JK.
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MIMO /DS-CDMA SYSTEM

e From the I signals x; we can then build a third order tensor X of size
(I,],K) so that:

Xijx = xilk+(j—1)K] (11)

e We then have N
Xijk=Y HinYnlk+(—1)K] (12)

n=1

e Defining S; ;, = su[j] and Cy ,, = cx[k] yields:
N
Xijk =Y HinSjnCin (13)
n=1

e In other words, the CPD of X gives a direct and deterministic
estimation of the mixing matrix, the source signals and the coding
sequences.
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@ Example of applications of tensor decompositions in sources
separation

Application example in Independent Components Analysis
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IDENTIFICATION OF UNDERDETERMINED MIXTURES
Linear model of mixture
z(m) =Hs(m)+n(m), m=1---M

z € CN or RN ; observation random vector

e s=s1,...,5¢]" € CK: source random vector

H = [hy,...,hg] € CN*K: mixing matrix

ne (CNI noise random vector

Underdetermined Blind Identification (BI) problem

e Estimate of H from z(m)

e More sources than sensors! (K > N)

34 /67
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IDENTIFICATION OF UNDERDETERMINED MIXTURES
Linear model of mixture

z(m) =Hs(m)+n(m), m=1---M

z € CN or RN : observation random vector

e s=[s1,...,s¢]T € CK: source random vector

H = [hy,...,hg] € CV*K: mixing matrix

nec (CNZ noise random vector

Assumptions
@ H does not contain collinear columns

@ Sources are mutually independent and non-Gaussian
® Sources and noise are statistically independent

@ The number of sources is known
34 /67
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TENSOR-BASED METHODS FOR BI

How to
@ Transform mathematically the data, using HOS such as Cumulants or
derivatives of the characteristic function (CAF).

@ Store transformed data into an higher order array (tensor) whose
appropriate decomposition provides an estimate of H,

© Perform the tensor decomposition.

Underlying idea
e Uniqueness properties
e Able to deal with the underdetermined case

e Number of efficient algorithms

35/67
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BI CAF-BASED ALGORITHMS

@ Find a relationship between observations and sources
characteristic (or generating) functions — core equation

® Choose S differentiation points

©® Compute P-th order partial derivatives of the core equation with
respect to each point (here P=3)

@ Store the derivative results in a tensor X

@ Estimate H from an appropriate decomposition of X

Real sources vs. Complex sources

e Real case: CP decomposition [Comon 2004]

e Complex case: CONFAC decomposition [Luciani, 2010] [de
Almeida, 2012]
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BI CAF-BASED ALGORITHMS IN THE REAL CASE

e Let us denote &, and ¢ the second generating functions of the
observations and source k respectively:

Qx(x) def logE[exp(xsg)], x€R,

D, (u’) et logElexp(u®'z)], u’€RY.

e Replacing z by its model and neglecting the noise contribution yield:

P, (u’) = logE[exp (Zuiansk> ].

n,k

¢ Using the source independence property, we get:

D (u’) = Zk:(Pk (;anu;‘;) : (14)
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BI CAF-BASED ALGORITHMS IN THE REAL CASE
w) =Y ¢ (ZanuZ> : (15)
k n

e Differentiating (15) 2 times in S points (u!---u®) of RV yields:

*P,(u
Z HicHjx Gt (16)
Cowou; 8u] =
e where Gy def W
? ]
e We can thus construct a third order tensor, T, of size (N,N,S) so that
%P, (u¥)
(117 = T ouou; au

e Equation (16) shows that the CPD of 7" allows to directly estimate the
mixing matrix H.
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BI CAF-BASED ALGORITHMS IN THE REAL CASE

e In practice, in order to build ¢ we can easily calculate formal estimators
of the partial derivative of &, at a given point based on sample means.

e Taking various differentiation points allows to apply a tensor method
using SO statistics only.

e Since the maximal CPD rank keeping the unicity property is greater
than the smallest tensor dimension, if we take at least N differentiation
points we can deal with more sources (CPD rank) than observations
(tensor smallest dimensions).

39/67
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BI CAF-BASED ALGORITHMS IN THE REAL CASE

e Of course this approach can be generalized at higher differentiation

order: .
PP, (u’)

——~— =Y H,H, - H,.iGs, 17

au”launz"'auﬂp 1 mk= gk npkJsk ( )

d_ef ap(pk(Zankuil)
sk = au,,lau,,z.-.aunp-

e withn, =1,... . Nandp=1,...,P and where G

e This allows to increase the tensor order hence the CPD maximal rank,
hence the maximal number of sources.

e The counter part is that the statistic require more samples to be
correctly estimated.

e Algorithms family based on this approach: ALESCAF, LEMACAF,
IEMACAFC, CONFAC-ELS.
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© Algorithms for Canonical Polyadic Decomposition (CPD)
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CPD ALGORITHMS

Iterative algorithms
Alternating Least Squares (ALS) [Harshman, 1970] [Bro, 1998]

Gradient, conjugate gradient, LM, BFGS...[Tomasi and Bro, 2006]
[Comon, Luciani and de Almeida, 2009][Acar ef al., 2011]

Enhanced Line Search (ELS) [Rajih et al., 2008] [Comon, 2009]

e Pro: Precision, implementation of positive constraints...

e Cons: Convergence problems, over-factoring, correlated factors

Semi-algebraic approaches

Idea: rewrite the CPD as a Joint Diagonalization problem
e By congruence [de Lathauwer et al., 2004]

e By similarity (JEVD): Closed Form Solution (CFS) [Roemer and Haardt
2006, 2008] and DIrect AlGorithm [DIAG, Luciani and Albera 2011,
2012]
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OVERFACTORING

ALGORITHMS FOR THE CPD

Alternating Least Squares

e 7,=CGOB
o 7Zp=A0C
e Zc=BOA

® Xk =AZ"4+Epjx
* Xjxi=BZ'g+Ej ki
° XK.,I] =CZ'+ EKJ]

e Gk =Xk —A(COB)|]2

@ Initialize B and C
@® Estimate of A, Band C:

A =X KZA(Z 4Zp) "
Compute Zp and estimate B:
B =X xiZp(Z pZp) "
Compute Z¢ and estimate C:

C=XgyZc(Z'cZe)™

© Compute: (7 jx

O restart from 2 till convergence.
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ALGORITHMS FOR THE CPD

Gradient descent
Vector of parameters p and gradient g of the quadratic criterion:

vec[A'] 8A
p=| vecB'] |, g=| gB
vec[CT] 8c
update p:
p(t+1) =p(t) —u(t)g(t)
We have:
ga = [L4®(C'CHB'B)lvec[A’]—[I4® (C®B)|vec[Xkjxi]
g8 = [IB ® (ATA [ CTC)]VeC[BT] — [IA & (A © C)}vec [XIKX]]

gc = [Ic®(B'BHATA)vec[C']—[Ic®(BGA)]vec [X]IxK]
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ALGORITHMS FOR THE CPD

Levenberg-Marquardt

Jacobian matrix (J) of residual error :

J = [JA) ]B7 JC]

p(t+1) =p() — ()T +n(t) 1" g¢)

update p:

We have:
Ja
JB
Jc

= IL®(COB)
I Iz ® (A®C)]
= IL[Ic®(BOA))

Where matrices I1; are permutation matrices.
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ALGORITHMS FOR THE CPD, ENHANCED LINE
SEARCH (RAJIH, 2005)

Relevance
Speed up iterative algorithms, get out of local minima.

Algorithm

@ Choose a research direction A, in the parameter space
(for instance, p(t+1) —p(t), gor JT+nI"'g)

@® find the optimal step u in the direction A, by minimizing
polynomial:

[1Xejx — (A -+ A, ) ((C+ utpe) © (B+ )| P
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DIAG ALGORITHM (AT ORDER 3)

In the following we describe the real version of the algorithm but the complex
version is almost identical.

e Let 7 be 3 way tensor of size I x | x K and T the I x JK unfolding matrix
of T such that:

P
Q;%k = Z AinBankn and T= A(C@B)T (18)
n=N
e Denoting USV' the SVD of T truncated at order P then 3 W such that:

A=UW and (COB)" =W 1SV".

e Let¢™M),... 0K be the diagonal matrices built from the rows of C, then:

(COB)T = [q)(l)BT’...’(I)(K)BT} (19)
sV’ = [wq>(1>BT,-..,wq>(K>BT] (20)
—— ——
T KT
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DIAG ALGORITHM (AT ORDER 3)
JEVD rewriting
e From SV™ we have obtained K matrices T®) = BoKIWT.

e Defining, Mk1k2) = p)ip(ke) and A®ik2) — @k)ip(k2) where £ denotes
the Moore-Penrose matrix inverse, we have:

Wk =1---K=1,ky=2---K, kp >k M2 =W TARRWT | (21)

Joint EigenValue Decomposition problem

e Iterative JEVD algorithm = W'
e WT= CoBand A since (COB)" =W 1SV and A = UW
e (COB)=BandC.

Necessary conditions
H1l. N <min(],])

H2. Matrix C has at least two rows whose entries are non-zero. 48/67
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EXTENSION TO HO TENSORS

Tiy-ig = Z Hzlr 12r a z(QQ; : (22)
e Tensor T of order Q, rank P and dimensions Iy x I x --- x Ig
e Q factor matrices H@ of size I;x N
We define:
e numbers: 1l = LI, 11---Iy, (b>a)
e matrices: YEZ% =HYoH" Vo ...0H®, (b>a)

q

and the unfolded matrices T(q) of size 7} x 72 . so that:

q+1

T(l]) _ Y(l)Y(q+1)T. (23)
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EXTENSION TO HO TENSORS

Let USV" be the truncated SVD of T(g) at rank N, then, it exist an invertible
matrix W of size N x N such that:

(1) _ @)1 _ w-layT
Y,) =UW and Y} '" =W 'SV, (24)

We then define I diagonal matrices oM ... d0) from the Ig rows of HQ,

N Ty e
SV = wq><1>Y§qQ+}1>)T,-.-,wqﬁb)yg’ggﬂf; (26)
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EXTENSION TO HO TENSORS
JEVD rewriting

e From SV we have obtained Ig matrices ") = Yggill))CD(V)WT.

Y Let, M(pl’pZ) — F(Pl )ﬁl"(Pz) and A(PLPZ) — q)(Pl)ﬁcI)(m) (ﬁ pseudo inverse)/
then we have

Vpr=1---Ig—1,pp=2--Ig, p2 >p1 MP1p2) — W-TAPLP2)WT,
(27)

JEVD of matrices M(¥1+2)

e Iterative JEVD algorithm = W'

e WT= YT and Ygl since YU — w-1svT and YV = UW

) —
Q) q Q) (@

. Yg‘g)l) et YE;; = HD...HQ (rank 1 HOSVDs) o
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GENERIC NECESSARY CONDITIONS
 (piac: Jamodes order and g € [2;Q — 1]y so that N < min(n‘{,rt%’ll)
e Cors: 3(q1,92) € [LQR, 1 # g2 so that I, >Pand I, >N
* Cas: ¥q€[L:Q, H%LZN

Proposition:
Ccrs = Cpiac = CALs

Cpiac at low orders

Q=3. Atleast two tensor dimension is greater or equal to the CPD rank N.

Q=4. Atleast one tensor dimension is greater than N and at least one product of
two of the remaining dimensions is also greater than N.

Q=5. ® At least one tensor dimension is greater than N and at least one
product of three of the remaining dimensions is also greater than N.
® Or at least one product between two tensor dimensions and another
product between two of the remaining dimensions are greater than N

52 /67



TENSORS DECOMPOSITIONS FOR BSS APPLICATIONS CPD ALGORITHMS OVERFACTORING
0000000000 0000000000000 00000000000 e00000000 OOOOO
[o]

00000000

CHOICE OF THE UNFOLDING MATRIX

All the mode don’t play the same role in the algorithm but they can be
permuted. Hence we have to choose carefully:

@ The value of g (at order 3, g =1).

® The permutation of tensor modes.

e Choosing T(g) so that N << min (HZ1=1 Im,]'[%;; " Im) allows to relax
Cpiac- Usually it gives the more accurate results in noisy situations.
e When it is possible, putting the mode with the smallest dimension at

the end decreases the overall complexity and thus can dramatically
speed up the algorithm.
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DIAG MAIN FEATURES

e A customizable algorithm (depend on the choice of the unfolding
matrix and of the JEVD algorithm).

e Can be very fast.

e Can be used to initialize an iterative algorithm in order to improve the
accuracy of the solution while keeping a fast result.

e Able to deal with very correlated factors.

e Can help to solve the overfactoring problem.
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THE JOINT EIGENVALUE DECOMPOSITION

Problem formulation
Find a non-singular matrix A € RP*? from a set of non-defective matrices
M®) so that:

Vke [1;K]n, MK =ADWA (28)

where the K matrices D) € RP*? are diagonal and unknown.

State of the art

All these algorithm resort to a Jacobi-like iterative procedure.
e sh-rt [Fu, 2006] based on the polar decomposition of A.
e JUST [Iferroudjene, 2009] based on the polar decomposition of A.
® JDTM [Luciani and Albera, 2010] based on the polar decomposition of A.

e JET (JET-U and JET-O) [Luciani and Albera, 2011 and 2015] based on the LU
decomposition of A.

e JDTE [André, 2015] global estimation of A at each iteration.
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THE JET ALGORITHM

LU decomposition

Due to the indeterminacies of the JEVD problem, the matrix A (56) can be
chosen of the form A = LU (without any loss of generality) with:

e L: unit lower triangular matrix (1 on the diagonal)

e U: unit upper triangular matrix (1 on the diagonal)

Joint triangularization
Let R® be given by R¥) = UD®U! for any k € [1;K]y.

e Joint triangularization of the K matrices M*) by L:
vke [1:Klny, MO =LROL

e Direct computatlon of the unit upper triangular matrix U from the set
of matrices R¥) (component by component).
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THE JET ALGORITHM

elementary lower triangular matrix

An elementary lower triangular matrix L(/)(a) is a unit lower triangular
matrix with only one non-null off-diagonal component a located at the i-th
row and the j-th column.

LU factorization
Any unit lower triangular matrix L of size (N x N) can be factorized as a
product of M = N(N —1)/2 elementary lower triangular matrices:

Jacobi-like procedure

Repeat several times a series (called "sweep") of M sequential optimizations
with respect to only one parameter.
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THE JET ALGORITHM

Update of the matrices to be triangularized

V(i) € [N, i >, vk e 1K, MO (L0(x))  MOLD () (29)

e EBach of these updates only depends on one parameter x; j;

¢ Each parameter x;; is computed in order to sequentially improve the
upper triangular structure of the L) (x;j)-updated matrices.

Objective functions

K N-1 N 2

) = Y Y ¥ (M) (30)
k=1 g=1 p=q+1
02

Culx)) = ) (M (31).

»
Il
_
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THE JDTM ALGORITHM

Joint Diagonalization algorithm based on Targeting hyperbolic Matrices

Polar decomposition

N-1 N
A= H G(6 ¢z]) (32)

i=1 j=i+1

1 i j P

1 e 0 0 0 1

i cos(G,]) sm(e,]) 0 i

G(8;) = . : :
1 —sin(eij) cos(el]) 0 i
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THE JDTM ALGORITHM

Joint Diagonalization algorithm based on Targeting hyperbolic Matrices

Polar decomposition

N-1 N
A= H G(6 ¢z]) (32)

i=1 j=i+1

1 i j P

1 0 0 0 1

i - cos}{(q)ij) e sinl'{((b,y) I O i

H(0;) = . :
1 .. sinh(¢y) -+ cosh(py) - Of f
1 0 0 0 P

we look for the optimal parameter (8;;,0;;) for each pair (i,]) successively.
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THE JDTM ALGORITHM

o~ (T1 1T oy a0y )t (T1 1 ciomey ). o

i=1 j=i+1 i=1 j=i+1
Updating procedure
We perform successively the following updates for each (i,j),i <

vk=1---K N® « G(6;)"MPG(ey), (34)

vk=1--K M® — H(9y) 'NOH(9;). (35)
And the whole process (sweep) is repeated iteratively till convergence.
Originality of JDTM
Resort to a simplified cost function for H that target two particular terms:

K N,N

22( c AT o (7 e () I
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JDTM VERSUS JET

Real case
e JDTM : Good accuracy for the estimation of A especially in difficult situations,
require very few sweep to reach the convergence, very versatile algorithm.

e JET-U : (by far) the less costly algorithm in all situations, very efficient in the
most simple cases.

e JET-O : Usually the most costly but also the most accurate.
Complex case

e All algorithms were extended to the complex case. JET can be extended in a
very natural way to € while JDTM complex version is much more tricky.

e For low SNR values: JET-U and JET-O are more efficient than JDTM for the
estimation of A.

e Conversely, for high SNR values JDTM should be prefered.

® JDTM requires much more sweep to converge.

61 /67



TENSORS DECOMPOSITIONS FOR BSS APPLICATIONS CPD ALGORITHMS OVERFACTORING
0000000000 0000000000000 0000000000000 0000000 00000
[o]

00000000

OUTLINE

@ Solving the overfactoring problem with DIAG: application to
fluorescence spectroscopy
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OVERFACTORING : DEFINITION AND EXAMPLE

e In practice we have: 7 = 22]:1 AinBjnCrn+ Eijk

e Actual tensor rank is greater than N (physical rank), which is unknown
and generally overestimated (overfactoring), 2 possibilities then:
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OVERFACTORING : DEFINITION AND EXAMPLE

e In practice we have: 7 = Zﬁle AinBinCin+ Eijk

e Actual tensor rank is greater than N (physical rank), which is unknown

and generally overestimated (overfactoring), 2 possibilities then:

@ extra-factors have no influence on the estimation of the real
factors and their overall contribution can be neglected = No
problem.

Example:

12000,
1000
8000|

6000|

Intensiry (u.a)

Intensity (u.2.)

40001+ [“=real factor (SQ)
—e—real factor (F)

- = -estimated factor (F)
-8 -estimated factor (SQ)
- = - estimated extra—factor]

2000|

15 2 25 10 20 30 40 50 10 20 30 40 50
‘Sample number Excitation wavelength number Emission wavelength number

Figure : No problem of overfactoring.
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OVERFACTORING : DEFINITION AND EXAMPLE

e In practice we have: 7 = Zﬁle AinBinCin+ Eijk

e Actual tensor rank is greater than N (physical rank), which is unknown
and generally overestimated (overfactoring), 2 possibilities then:

@ extra-factors impact the estimation of the real factors and cannot
be neglected = pb to choose the appropriate model.

Example:

1g* Concentraton profiles: Excitation spectra Emission spectra
1.8 05 0.45
. [—o—real factor (SQ)
160 —o—real factor (F)
- = - estimated factor (F)
1.4 - =~ estimated factor (SQ)
. - s - estimated extra-factor]

Intensity (v.a)

10 20 30 40 50 60
Emission wavelength number

Figure : Overfactoring problem (ALS).
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COMPARATIVE RESULTS 1

Synthetic tensors

10° : : : 10° : : ‘
—e—ALS-ELS
w0l —6— ALS-ELS 107l |[—e—DiAG P
—&—DIAG —A—CFS
—A—CFS
w w
210 2 107
z 1 =z
3
10 10° 1
8
-4 4
10 : ‘ w ‘ ‘ ‘
3 4 5 6 7 103 4 5 6 7
CP Rank CP Rank
(a) 7x7x7 tensors of physical rank 3 (b) 7 x7 x7 x7 tensors of physical rank 3

Figure : Factors estimation error vs model rank
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COMPARATIVE RESULTS 2
Fluorescence tensor of physical rank 2
e 5 Mixtures of quinine sulphate and fluorescein, 5 x 46 x 61 tensor

e We compare various CP algorithms for model rank 2 to 5
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COMPARATIVE RESULTS 2

Fluorescence tensor of physical rank 2

e 5 Mixtures of quinine sulphate and fluorescein, 5 x 46 x 61 tensor

e We compare various CP algorithms for model rank 2 to 5

Results for model rank 2, Red : actual factors, Blue : estimated factors

ALS + Pos. const.

20 d0 w8

ALS + ELS

ALS + HOSVD

DiAG
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COMPARATIVE RESULTS 2

Fluorescence tensor of physical rank 2

e 5 Mixtures of quinine sulphate and fluorescein, 5 x 46 x 61 tensor

e We compare various CP algorithms for model rank 2 to 5

Results for model rank 3, Red : actual factors, Blue : estimated factors

ALS + Pos. const.

20 d0 w0 8

ALS + ELS

ALS + HOSVD

DiAG

2 40 w0 0
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COMPARATIVE RESULTS 2
Fluorescence tensor of physical rank 2
e 5 Mixtures of quinine sulphate and fluorescein, 5 x 46 x 61 tensor
e We compare various CP algorithms for model rank 2 to 5

Results for model rank 4, Red : actual factors, Blue : estimated factors

ALS + Pos. const. ALS + ELS ALS + HOSVD DiAG
0 4 04

] w0 W @ 0 B @ 6 EN N
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COMPARATIVE RESULTS 2
Fluorescence tensor of physical rank 2
e 5 Mixtures of quinine sulphate and fluorescein, 5 x 46 x 61 tensor
e We compare various CP algorithms for model rank 2 to 5

Results for model rank 5, Red : actual factors, Blue : estimated factors

ALS ALS + Pos. const ALS + ELS ALS + HOSVD DIAG
04 o0 04 04y
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COMPARATIVE RESULTS 2
Fluorescence tensor of physical rank 2
e 5 Mixtures of quinine sulphate and fluorescein, 5 x 46 x 61 tensor
e We compare various CP algorithms for model rank 2 to 5

Factors estimation error vs model rank

1 T T T T

—ALS
0.6 —— ALS-pos —
——ALS-ELS
—— ALS-HOSVD
—DIAG

Estmation Error

0 I I 1 I I

35
Number of factors 65 /67
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COMPARATIVE RESULTS 3
Fluorescence tensor of physical rank 3
e 9 Mixtures of QS, fluorescein and tryptophan, 9 x 57 x 57 tensor

e We compare various CP algorithms for model rank 4 to 6
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COMPARATIVE RESULTS 3
Fluorescence tensor of physical rank 3
e 9 Mixtures of QS, fluorescein and tryptophan, 9 x 57 x 57 tensor
e We compare various CP algorithms for model rank 4 to 6

Results for model rank 4, Red : actual factors, Blue : estimated factors

ALS + Pos. const. ALS + ELS ALS + HOSVD DiAG
0 4 04

EE] ERE] ER ] ERE] )

66 /67



TENSORS DECOMPOSITIONS FOR BSS APPLICATIONS CPD ALGORITHMS OVERFACTORING
0000000000 0000000000000 0000000000000 0000000 00080
[o]

00000000

COMPARATIVE RESULTS 3
Fluorescence tensor of physical rank 3
e 9 Mixtures of QS, fluorescein and tryptophan, 9 x 57 x 57 tensor
e We compare various CP algorithms for model rank 4 to 6

Results for model rank 5, Red : actual factors, Blue : estimated factors

ALS + Pos. const. ALS + ELS ALS + HOSVD DiAG
0 4 04
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COMPARATIVE RESULTS 3
Fluorescence tensor of physical rank 3
e 9 Mixtures of QS, fluorescein and tryptophan, 9 x 57 x 57 tensor
e We compare various CP algorithms for model rank 4 to 6

Results for model rank 6, Red : actual factors, Blue : estimated factors

ALS ALS + Pos. const. ALS + ELS ALS + HOSVD DiAG
o 0 4 04
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OVERFACTORING

COMPARATIVE RESULTS 3

Fluorescence tensor of physical rank 3
e 9 Mixtures of QS, fluorescein and tryptophan, 9 x 57 x 57 tensor

e We compare various CP algorithms for model rank 4 to 6

Factors estimation error vs model rank

Estmation Error

—ALS
——ALS-pos
——ALS-ELS

~——ALS-HOSVD
——DIAG

5
Number of factors

6
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CONCLUSION
Tensor decompositions for BBS and BI

2 kinds of approaches according the structure of the data.

Tensor modelling of the data (direct problem) combined with a tensor
decomposition algorithm (inverse problem).

Some applications leads the TD algorithm choice...

..but existing TD and algorithms can also leads to new applications !

Algorithms

The CPD can be rewritten as a JEVD problem = DIAG algorithm.
This approach is fast and can also be used to initialize iterative algorithm.
It allows to deal with very correlated factors and to deal with overfactoring.

Future improvement: including positivity constraint, relax the necessary
working conditions, improve speed and noise robustness => PhD thesis of
Rémi André started in November 2014 directed by Eric Moreau.
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